Add nvidia remote distro

This commit is contained in:
Chantal D Gama Rose 2024-11-19 21:02:20 +00:00
parent 18e8f18749
commit a5d413045c
7 changed files with 273 additions and 1 deletions

View file

@ -0,0 +1,60 @@
# NVIDIA Distribution
The `llamastack/distribution-nvidia` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| inference | `remote::nvidia` |
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
| safety | `inline::llama-guard` |
| telemetry | `inline::meta-reference` |
### Environment Variables
The following environment variables can be configured:
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
### Models
The following models are available by default:
- `${env.INFERENCE_MODEL} (None)`
### Prerequisite: API Keys
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/).
## Running Llama Stack with NVIDIA
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-nvidia \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env FIREWORKS_API_KEY=$FIREWORKS_API_KEY
```
### Via Conda
```bash
llama stack build --template fireworks --image-type conda
llama stack run ./run.yaml \
--port 5001 \
--env FIREWORKS_API_KEY=$FIREWORKS_API_KEY
```

View file

@ -5,7 +5,7 @@
# the root directory of this source tree. # the root directory of this source tree.
import os import os
from typing import Optional from typing import Any, Dict, Optional
from llama_models.schema_utils import json_schema_type from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
@ -50,3 +50,10 @@ class NVIDIAConfig(BaseModel):
@property @property
def is_hosted(self) -> bool: def is_hosted(self) -> bool:
return "integrate.api.nvidia.com" in self.base_url return "integrate.api.nvidia.com" in self.base_url
@classmethod
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
return {
"url": "https://integrate.api.nvidia.com",
"api_key": "${env.NVIDIA_API_KEY}",
}

View file

@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .nvidia import get_distribution_template # noqa: F401

View file

@ -0,0 +1,19 @@
version: '2'
name: nvidia
distribution_spec:
description: Use NVIDIA NIM for running LLM inference
docker_image: null
providers:
inference:
- remote::nvidia
memory:
- inline::faiss
- remote::chromadb
- remote::pgvector
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
image_type: conda

View file

@ -0,0 +1,60 @@
# NVIDIA Distribution
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
{{ providers_table }}
{% if run_config_env_vars %}
### Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in run_config_env_vars.items() %}
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
{% endfor %}
{% endif %}
{% if default_models %}
### Models
The following models are available by default:
{% for model in default_models %}
- `{{ model.model_id }} ({{ model.provider_model_id }})`
{% endfor %}
{% endif %}
### Prerequisite: API Keys
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/).
## Running Llama Stack with NVIDIA
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-{{ name }} \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env FIREWORKS_API_KEY=$FIREWORKS_API_KEY
```
### Via Conda
```bash
llama stack build --template fireworks --image-type conda
llama stack run ./run.yaml \
--port 5001 \
--env FIREWORKS_API_KEY=$FIREWORKS_API_KEY
```

View file

@ -0,0 +1,64 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_models.sku_list import all_registered_models
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
from llama_stack.providers.remote.inference.nvidia._nvidia import _MODEL_ALIASES
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::nvidia"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
}
inference_provider = Provider(
provider_id="nvidia",
provider_type="remote::nvidia",
config=NVIDIAConfig.sample_run_config(),
)
inference_model = ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="nvidia",
)
return DistributionTemplate(
name="nvidia",
distro_type="remote_hosted",
description="Use NVIDIA NIM for running LLM inference",
docker_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
default_models=[inference_model],
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider],
},
default_models=[inference_model],
),
},
run_config_env_vars={
"LLAMASTACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"NVIDIA_API_KEY": (
"",
"NVIDIA API Key",
),
},
)

View file

@ -0,0 +1,55 @@
version: '2'
image_name: nvidia
docker_image: null
conda_env: nvidia
apis:
- agents
- inference
- memory
- safety
- telemetry
providers:
inference:
- provider_id: nvidia
provider_type: remote::nvidia
config:
url: https://integrate.api.nvidia.com
api_key: ${env.NVIDIA_API_KEY}
memory:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config: {}
metadata_store:
namespace: null
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/registry.db
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: nvidia
provider_model_id: null
shields: []
memory_banks: []
datasets: []
scoring_fns: []
eval_tasks: []