mirror of
https://github.com/meta-llama/llama-stack.git
synced 2026-01-01 21:30:01 +00:00
Merge remote-tracking branch 'origin/main' into if_eval
This commit is contained in:
commit
a690c7b230
123 changed files with 4482 additions and 3161 deletions
|
|
@ -52,7 +52,7 @@ class Benchmarks(Protocol):
|
|||
async def get_benchmark(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
) -> Optional[Benchmark]: ...
|
||||
) -> Benchmark: ...
|
||||
|
||||
@webmethod(route="/eval/benchmarks", method="POST")
|
||||
async def register_benchmark(
|
||||
|
|
|
|||
|
|
@ -13,19 +13,16 @@ from llama_stack.schema_utils import json_schema_type, webmethod
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class PaginatedRowsResult(BaseModel):
|
||||
class IterrowsResponse(BaseModel):
|
||||
"""
|
||||
A paginated list of rows from a dataset.
|
||||
|
||||
:param rows: The rows in the current page.
|
||||
:param total_count: The total number of rows in the dataset.
|
||||
:param next_page_token: The token to get the next page of rows.
|
||||
:param data: The rows in the current page.
|
||||
:param next_start_index: Index into dataset for the first row in the next page. None if there are no more rows.
|
||||
"""
|
||||
|
||||
# the rows obey the DatasetSchema for the given dataset
|
||||
rows: List[Dict[str, Any]]
|
||||
total_count: int
|
||||
next_page_token: Optional[str] = None
|
||||
data: List[Dict[str, Any]]
|
||||
next_start_index: Optional[int] = None
|
||||
|
||||
|
||||
class DatasetStore(Protocol):
|
||||
|
|
@ -37,22 +34,21 @@ class DatasetIO(Protocol):
|
|||
# keeping for aligning with inference/safety, but this is not used
|
||||
dataset_store: DatasetStore
|
||||
|
||||
@webmethod(route="/datasetio/rows", method="GET")
|
||||
async def get_rows_paginated(
|
||||
# TODO(xiyan): there's a flakiness here where setting route to "/datasets/" here will not result in proper routing
|
||||
@webmethod(route="/datasetio/iterrows/{dataset_id:path}", method="GET")
|
||||
async def iterrows(
|
||||
self,
|
||||
dataset_id: str,
|
||||
rows_in_page: int,
|
||||
page_token: Optional[str] = None,
|
||||
filter_condition: Optional[str] = None,
|
||||
) -> PaginatedRowsResult:
|
||||
"""Get a paginated list of rows from a dataset.
|
||||
start_index: Optional[int] = None,
|
||||
limit: Optional[int] = None,
|
||||
) -> IterrowsResponse:
|
||||
"""Get a paginated list of rows from a dataset. Uses cursor-based pagination.
|
||||
|
||||
:param dataset_id: The ID of the dataset to get the rows from.
|
||||
:param rows_in_page: The number of rows to get per page.
|
||||
:param page_token: The token to get the next page of rows.
|
||||
:param filter_condition: (Optional) A condition to filter the rows by.
|
||||
:param start_index: Index into dataset for the first row to get. Get all rows if None.
|
||||
:param limit: The number of rows to get.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/datasetio/rows", method="POST")
|
||||
@webmethod(route="/datasetio/append-rows/{dataset_id:path}", method="POST")
|
||||
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None: ...
|
||||
|
|
|
|||
|
|
@ -4,19 +4,102 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, List, Literal, Optional, Protocol
|
||||
from enum import Enum
|
||||
from typing import Annotated, Any, Dict, List, Literal, Optional, Protocol, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.common.type_system import ParamType
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
||||
class DatasetPurpose(str, Enum):
|
||||
"""
|
||||
Purpose of the dataset. Each purpose has a required input data schema.
|
||||
|
||||
:cvar post-training/messages: The dataset contains messages used for post-training.
|
||||
{
|
||||
"messages": [
|
||||
{"role": "user", "content": "Hello, world!"},
|
||||
{"role": "assistant", "content": "Hello, world!"},
|
||||
]
|
||||
}
|
||||
:cvar eval/question-answer: The dataset contains a question column and an answer column.
|
||||
{
|
||||
"question": "What is the capital of France?",
|
||||
"answer": "Paris"
|
||||
}
|
||||
:cvar eval/messages-answer: The dataset contains a messages column with list of messages and an answer column.
|
||||
{
|
||||
"messages": [
|
||||
{"role": "user", "content": "Hello, my name is John Doe."},
|
||||
{"role": "assistant", "content": "Hello, John Doe. How can I help you today?"},
|
||||
{"role": "user", "content": "What's my name?"},
|
||||
],
|
||||
"answer": "John Doe"
|
||||
}
|
||||
"""
|
||||
|
||||
post_training_messages = "post-training/messages"
|
||||
eval_question_answer = "eval/question-answer"
|
||||
eval_messages_answer = "eval/messages-answer"
|
||||
|
||||
# TODO: add more schemas here
|
||||
|
||||
|
||||
class DatasetType(Enum):
|
||||
"""
|
||||
Type of the dataset source.
|
||||
:cvar uri: The dataset can be obtained from a URI.
|
||||
:cvar rows: The dataset is stored in rows.
|
||||
"""
|
||||
|
||||
uri = "uri"
|
||||
rows = "rows"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class URIDataSource(BaseModel):
|
||||
"""A dataset that can be obtained from a URI.
|
||||
:param uri: The dataset can be obtained from a URI. E.g.
|
||||
- "https://mywebsite.com/mydata.jsonl"
|
||||
- "lsfs://mydata.jsonl"
|
||||
- "data:csv;base64,{base64_content}"
|
||||
"""
|
||||
|
||||
type: Literal["uri"] = "uri"
|
||||
uri: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RowsDataSource(BaseModel):
|
||||
"""A dataset stored in rows.
|
||||
:param rows: The dataset is stored in rows. E.g.
|
||||
- [
|
||||
{"messages": [{"role": "user", "content": "Hello, world!"}, {"role": "assistant", "content": "Hello, world!"}]}
|
||||
]
|
||||
"""
|
||||
|
||||
type: Literal["rows"] = "rows"
|
||||
rows: List[Dict[str, Any]]
|
||||
|
||||
|
||||
DataSource = register_schema(
|
||||
Annotated[
|
||||
Union[URIDataSource, RowsDataSource],
|
||||
Field(discriminator="type"),
|
||||
],
|
||||
name="DataSource",
|
||||
)
|
||||
|
||||
|
||||
class CommonDatasetFields(BaseModel):
|
||||
dataset_schema: Dict[str, ParamType]
|
||||
url: URL
|
||||
"""
|
||||
Common fields for a dataset.
|
||||
"""
|
||||
|
||||
purpose: DatasetPurpose
|
||||
source: DataSource
|
||||
metadata: Dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Any additional metadata for this dataset",
|
||||
|
|
@ -50,19 +133,75 @@ class Datasets(Protocol):
|
|||
@webmethod(route="/datasets", method="POST")
|
||||
async def register_dataset(
|
||||
self,
|
||||
dataset_id: str,
|
||||
dataset_schema: Dict[str, ParamType],
|
||||
url: URL,
|
||||
provider_dataset_id: Optional[str] = None,
|
||||
provider_id: Optional[str] = None,
|
||||
purpose: DatasetPurpose,
|
||||
source: DataSource,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
) -> None: ...
|
||||
dataset_id: Optional[str] = None,
|
||||
) -> Dataset:
|
||||
"""
|
||||
Register a new dataset.
|
||||
|
||||
:param purpose: The purpose of the dataset. One of
|
||||
- "post-training/messages": The dataset contains a messages column with list of messages for post-training.
|
||||
{
|
||||
"messages": [
|
||||
{"role": "user", "content": "Hello, world!"},
|
||||
{"role": "assistant", "content": "Hello, world!"},
|
||||
]
|
||||
}
|
||||
- "eval/question-answer": The dataset contains a question column and an answer column for evaluation.
|
||||
{
|
||||
"question": "What is the capital of France?",
|
||||
"answer": "Paris"
|
||||
}
|
||||
- "eval/messages-answer": The dataset contains a messages column with list of messages and an answer column for evaluation.
|
||||
{
|
||||
"messages": [
|
||||
{"role": "user", "content": "Hello, my name is John Doe."},
|
||||
{"role": "assistant", "content": "Hello, John Doe. How can I help you today?"},
|
||||
{"role": "user", "content": "What's my name?"},
|
||||
],
|
||||
"answer": "John Doe"
|
||||
}
|
||||
:param source: The data source of the dataset. Ensure that the data source schema is compatible with the purpose of the dataset. Examples:
|
||||
- {
|
||||
"type": "uri",
|
||||
"uri": "https://mywebsite.com/mydata.jsonl"
|
||||
}
|
||||
- {
|
||||
"type": "uri",
|
||||
"uri": "lsfs://mydata.jsonl"
|
||||
}
|
||||
- {
|
||||
"type": "uri",
|
||||
"uri": "data:csv;base64,{base64_content}"
|
||||
}
|
||||
- {
|
||||
"type": "uri",
|
||||
"uri": "huggingface://llamastack/simpleqa?split=train"
|
||||
}
|
||||
- {
|
||||
"type": "rows",
|
||||
"rows": [
|
||||
{
|
||||
"messages": [
|
||||
{"role": "user", "content": "Hello, world!"},
|
||||
{"role": "assistant", "content": "Hello, world!"},
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
:param metadata: The metadata for the dataset.
|
||||
- E.g. {"description": "My dataset"}
|
||||
:param dataset_id: The ID of the dataset. If not provided, an ID will be generated.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="GET")
|
||||
async def get_dataset(
|
||||
self,
|
||||
dataset_id: str,
|
||||
) -> Optional[Dataset]: ...
|
||||
) -> Dataset: ...
|
||||
|
||||
@webmethod(route="/datasets", method="GET")
|
||||
async def list_datasets(self) -> ListDatasetsResponse: ...
|
||||
|
|
|
|||
|
|
@ -117,7 +117,7 @@ class Eval(Protocol):
|
|||
"""
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="GET")
|
||||
async def job_status(self, benchmark_id: str, job_id: str) -> Optional[JobStatus]:
|
||||
async def job_status(self, benchmark_id: str, job_id: str) -> JobStatus:
|
||||
"""Get the status of a job.
|
||||
|
||||
:param benchmark_id: The ID of the benchmark to run the evaluation on.
|
||||
|
|
|
|||
|
|
@ -115,7 +115,7 @@ class Files(Protocol):
|
|||
async def get_upload_session_info(
|
||||
self,
|
||||
upload_id: str,
|
||||
) -> Optional[FileUploadResponse]:
|
||||
) -> FileUploadResponse:
|
||||
"""
|
||||
Returns information about an existsing upload session
|
||||
|
||||
|
|
|
|||
|
|
@ -66,7 +66,7 @@ class Models(Protocol):
|
|||
async def get_model(
|
||||
self,
|
||||
model_id: str,
|
||||
) -> Optional[Model]: ...
|
||||
) -> Model: ...
|
||||
|
||||
@webmethod(route="/models", method="POST")
|
||||
async def register_model(
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
|
||||
from typing import Any, Dict, List, Literal, Optional, Protocol
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
|
@ -89,7 +89,7 @@ class QATFinetuningConfig(BaseModel):
|
|||
|
||||
|
||||
AlgorithmConfig = register_schema(
|
||||
Annotated[Union[LoraFinetuningConfig, QATFinetuningConfig], Field(discriminator="type")],
|
||||
Annotated[LoraFinetuningConfig | QATFinetuningConfig, Field(discriminator="type")],
|
||||
name="AlgorithmConfig",
|
||||
)
|
||||
|
||||
|
|
@ -184,7 +184,7 @@ class PostTraining(Protocol):
|
|||
description="Model descriptor from `llama model list`",
|
||||
),
|
||||
checkpoint_dir: Optional[str] = None,
|
||||
algorithm_config: Optional[AlgorithmConfig] = None,
|
||||
algorithm_config: Optional[LoraFinetuningConfig | QATFinetuningConfig] = None,
|
||||
) -> PostTrainingJob: ...
|
||||
|
||||
@webmethod(route="/post-training/preference-optimize", method="POST")
|
||||
|
|
@ -202,10 +202,10 @@ class PostTraining(Protocol):
|
|||
async def get_training_jobs(self) -> ListPostTrainingJobsResponse: ...
|
||||
|
||||
@webmethod(route="/post-training/job/status", method="GET")
|
||||
async def get_training_job_status(self, job_uuid: str) -> Optional[PostTrainingJobStatusResponse]: ...
|
||||
async def get_training_job_status(self, job_uuid: str) -> PostTrainingJobStatusResponse: ...
|
||||
|
||||
@webmethod(route="/post-training/job/cancel", method="POST")
|
||||
async def cancel_training_job(self, job_uuid: str) -> None: ...
|
||||
|
||||
@webmethod(route="/post-training/job/artifacts", method="GET")
|
||||
async def get_training_job_artifacts(self, job_uuid: str) -> Optional[PostTrainingJobArtifactsResponse]: ...
|
||||
async def get_training_job_artifacts(self, job_uuid: str) -> PostTrainingJobArtifactsResponse: ...
|
||||
|
|
|
|||
|
|
@ -136,7 +136,7 @@ class ScoringFunctions(Protocol):
|
|||
async def list_scoring_functions(self) -> ListScoringFunctionsResponse: ...
|
||||
|
||||
@webmethod(route="/scoring-functions/{scoring_fn_id:path}", method="GET")
|
||||
async def get_scoring_function(self, scoring_fn_id: str, /) -> Optional[ScoringFn]: ...
|
||||
async def get_scoring_function(self, scoring_fn_id: str, /) -> ScoringFn: ...
|
||||
|
||||
@webmethod(route="/scoring-functions", method="POST")
|
||||
async def register_scoring_function(
|
||||
|
|
|
|||
|
|
@ -49,7 +49,7 @@ class Shields(Protocol):
|
|||
async def list_shields(self) -> ListShieldsResponse: ...
|
||||
|
||||
@webmethod(route="/shields/{identifier:path}", method="GET")
|
||||
async def get_shield(self, identifier: str) -> Optional[Shield]: ...
|
||||
async def get_shield(self, identifier: str) -> Shield: ...
|
||||
|
||||
@webmethod(route="/shields", method="POST")
|
||||
async def register_shield(
|
||||
|
|
|
|||
|
|
@ -50,7 +50,7 @@ class VectorDBs(Protocol):
|
|||
async def get_vector_db(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
) -> Optional[VectorDB]: ...
|
||||
) -> VectorDB: ...
|
||||
|
||||
@webmethod(route="/vector-dbs", method="POST")
|
||||
async def register_vector_db(
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue