mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
revert openai_compat changes and use OpenAIMixin for openai_chat_completion
This commit is contained in:
parent
0f5bef893a
commit
a6baa7b3d4
9 changed files with 23 additions and 303 deletions
83
docs/_static/llama-stack-spec.html
vendored
83
docs/_static/llama-stack-spec.html
vendored
|
@ -6372,9 +6372,6 @@
|
|||
"$ref": "#/components/schemas/TokenLogProbs"
|
||||
},
|
||||
"description": "Optional log probabilities for generated tokens"
|
||||
},
|
||||
"usage": {
|
||||
"$ref": "#/components/schemas/UsageInfo"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -6433,31 +6430,6 @@
|
|||
"title": "TokenLogProbs",
|
||||
"description": "Log probabilities for generated tokens."
|
||||
},
|
||||
"UsageInfo": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"completion_tokens": {
|
||||
"type": "integer",
|
||||
"description": "Number of tokens generated"
|
||||
},
|
||||
"prompt_tokens": {
|
||||
"type": "integer",
|
||||
"description": "Number of tokens in the prompt"
|
||||
},
|
||||
"total_tokens": {
|
||||
"type": "integer",
|
||||
"description": "Total number of tokens processed"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"completion_tokens",
|
||||
"prompt_tokens",
|
||||
"total_tokens"
|
||||
],
|
||||
"title": "UsageInfo",
|
||||
"description": "Usage information for a model."
|
||||
},
|
||||
"BatchCompletionRequest": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
@ -10967,31 +10939,6 @@
|
|||
"title": "OpenAIChatCompletionToolCallFunction",
|
||||
"description": "Function call details for OpenAI-compatible tool calls."
|
||||
},
|
||||
"OpenAIChatCompletionUsage": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"prompt_tokens": {
|
||||
"type": "integer",
|
||||
"description": "The number of tokens in the prompt"
|
||||
},
|
||||
"completion_tokens": {
|
||||
"type": "integer",
|
||||
"description": "The number of tokens in the completion"
|
||||
},
|
||||
"total_tokens": {
|
||||
"type": "integer",
|
||||
"description": "The total number of tokens used"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"prompt_tokens",
|
||||
"completion_tokens",
|
||||
"total_tokens"
|
||||
],
|
||||
"title": "OpenAIChatCompletionUsage",
|
||||
"description": "Usage information for an OpenAI-compatible chat completion response."
|
||||
},
|
||||
"OpenAIChoice": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
@ -11329,13 +11276,6 @@
|
|||
"OpenAICompletionWithInputMessages": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"metrics": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/MetricInResponse"
|
||||
},
|
||||
"description": "(Optional) List of metrics associated with the API response"
|
||||
},
|
||||
"id": {
|
||||
"type": "string",
|
||||
"description": "The ID of the chat completion"
|
||||
|
@ -11361,9 +11301,6 @@
|
|||
"type": "string",
|
||||
"description": "The model that was used to generate the chat completion"
|
||||
},
|
||||
"usage": {
|
||||
"$ref": "#/components/schemas/OpenAIChatCompletionUsage"
|
||||
},
|
||||
"input_messages": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
|
@ -13125,13 +13062,6 @@
|
|||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"metrics": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/MetricInResponse"
|
||||
},
|
||||
"description": "(Optional) List of metrics associated with the API response"
|
||||
},
|
||||
"id": {
|
||||
"type": "string",
|
||||
"description": "The ID of the chat completion"
|
||||
|
@ -13157,9 +13087,6 @@
|
|||
"type": "string",
|
||||
"description": "The model that was used to generate the chat completion"
|
||||
},
|
||||
"usage": {
|
||||
"$ref": "#/components/schemas/OpenAIChatCompletionUsage"
|
||||
},
|
||||
"input_messages": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
|
@ -14551,13 +14478,6 @@
|
|||
"OpenAIChatCompletion": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"metrics": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/MetricInResponse"
|
||||
},
|
||||
"description": "(Optional) List of metrics associated with the API response"
|
||||
},
|
||||
"id": {
|
||||
"type": "string",
|
||||
"description": "The ID of the chat completion"
|
||||
|
@ -14582,9 +14502,6 @@
|
|||
"model": {
|
||||
"type": "string",
|
||||
"description": "The model that was used to generate the chat completion"
|
||||
},
|
||||
"usage": {
|
||||
"$ref": "#/components/schemas/OpenAIChatCompletionUsage"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
|
65
docs/_static/llama-stack-spec.yaml
vendored
65
docs/_static/llama-stack-spec.yaml
vendored
|
@ -4548,8 +4548,6 @@ components:
|
|||
$ref: '#/components/schemas/TokenLogProbs'
|
||||
description: >-
|
||||
Optional log probabilities for generated tokens
|
||||
usage:
|
||||
$ref: '#/components/schemas/UsageInfo'
|
||||
additionalProperties: false
|
||||
required:
|
||||
- completion_message
|
||||
|
@ -4591,25 +4589,6 @@ components:
|
|||
- logprobs_by_token
|
||||
title: TokenLogProbs
|
||||
description: Log probabilities for generated tokens.
|
||||
UsageInfo:
|
||||
type: object
|
||||
properties:
|
||||
completion_tokens:
|
||||
type: integer
|
||||
description: Number of tokens generated
|
||||
prompt_tokens:
|
||||
type: integer
|
||||
description: Number of tokens in the prompt
|
||||
total_tokens:
|
||||
type: integer
|
||||
description: Total number of tokens processed
|
||||
additionalProperties: false
|
||||
required:
|
||||
- completion_tokens
|
||||
- prompt_tokens
|
||||
- total_tokens
|
||||
title: UsageInfo
|
||||
description: Usage information for a model.
|
||||
BatchCompletionRequest:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -8124,26 +8103,6 @@ components:
|
|||
title: OpenAIChatCompletionToolCallFunction
|
||||
description: >-
|
||||
Function call details for OpenAI-compatible tool calls.
|
||||
OpenAIChatCompletionUsage:
|
||||
type: object
|
||||
properties:
|
||||
prompt_tokens:
|
||||
type: integer
|
||||
description: The number of tokens in the prompt
|
||||
completion_tokens:
|
||||
type: integer
|
||||
description: The number of tokens in the completion
|
||||
total_tokens:
|
||||
type: integer
|
||||
description: The total number of tokens used
|
||||
additionalProperties: false
|
||||
required:
|
||||
- prompt_tokens
|
||||
- completion_tokens
|
||||
- total_tokens
|
||||
title: OpenAIChatCompletionUsage
|
||||
description: >-
|
||||
Usage information for an OpenAI-compatible chat completion response.
|
||||
OpenAIChoice:
|
||||
type: object
|
||||
properties:
|
||||
|
@ -8406,12 +8365,6 @@ components:
|
|||
OpenAICompletionWithInputMessages:
|
||||
type: object
|
||||
properties:
|
||||
metrics:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/MetricInResponse'
|
||||
description: >-
|
||||
(Optional) List of metrics associated with the API response
|
||||
id:
|
||||
type: string
|
||||
description: The ID of the chat completion
|
||||
|
@ -8434,8 +8387,6 @@ components:
|
|||
type: string
|
||||
description: >-
|
||||
The model that was used to generate the chat completion
|
||||
usage:
|
||||
$ref: '#/components/schemas/OpenAIChatCompletionUsage'
|
||||
input_messages:
|
||||
type: array
|
||||
items:
|
||||
|
@ -9731,12 +9682,6 @@ components:
|
|||
items:
|
||||
type: object
|
||||
properties:
|
||||
metrics:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/MetricInResponse'
|
||||
description: >-
|
||||
(Optional) List of metrics associated with the API response
|
||||
id:
|
||||
type: string
|
||||
description: The ID of the chat completion
|
||||
|
@ -9759,8 +9704,6 @@ components:
|
|||
type: string
|
||||
description: >-
|
||||
The model that was used to generate the chat completion
|
||||
usage:
|
||||
$ref: '#/components/schemas/OpenAIChatCompletionUsage'
|
||||
input_messages:
|
||||
type: array
|
||||
items:
|
||||
|
@ -10776,12 +10719,6 @@ components:
|
|||
OpenAIChatCompletion:
|
||||
type: object
|
||||
properties:
|
||||
metrics:
|
||||
type: array
|
||||
items:
|
||||
$ref: '#/components/schemas/MetricInResponse'
|
||||
description: >-
|
||||
(Optional) List of metrics associated with the API response
|
||||
id:
|
||||
type: string
|
||||
description: The ID of the chat completion
|
||||
|
@ -10804,8 +10741,6 @@ components:
|
|||
type: string
|
||||
description: >-
|
||||
The model that was used to generate the chat completion
|
||||
usage:
|
||||
$ref: '#/components/schemas/OpenAIChatCompletionUsage'
|
||||
additionalProperties: false
|
||||
required:
|
||||
- id
|
||||
|
|
|
@ -451,20 +451,6 @@ class ChatCompletionResponseStreamChunk(MetricResponseMixin):
|
|||
event: ChatCompletionResponseEvent
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class UsageInfo(BaseModel):
|
||||
"""Usage information for a model.
|
||||
|
||||
:param completion_tokens: Number of tokens generated
|
||||
:param prompt_tokens: Number of tokens in the prompt
|
||||
:param total_tokens: Total number of tokens processed
|
||||
"""
|
||||
|
||||
completion_tokens: int
|
||||
prompt_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponse(MetricResponseMixin):
|
||||
"""Response from a chat completion request.
|
||||
|
@ -475,7 +461,6 @@ class ChatCompletionResponse(MetricResponseMixin):
|
|||
|
||||
completion_message: CompletionMessage
|
||||
logprobs: list[TokenLogProbs] | None = None
|
||||
usage: UsageInfo | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -833,21 +818,7 @@ class OpenAIChoice(BaseModel):
|
|||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIChatCompletionUsage(BaseModel):
|
||||
"""Usage information for an OpenAI-compatible chat completion response.
|
||||
|
||||
:param prompt_tokens: The number of tokens in the prompt
|
||||
:param completion_tokens: The number of tokens in the completion
|
||||
:param total_tokens: The total number of tokens used
|
||||
"""
|
||||
|
||||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
total_tokens: int
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIChatCompletion(MetricResponseMixin):
|
||||
class OpenAIChatCompletion(BaseModel):
|
||||
"""Response from an OpenAI-compatible chat completion request.
|
||||
|
||||
:param id: The ID of the chat completion
|
||||
|
@ -862,7 +833,6 @@ class OpenAIChatCompletion(MetricResponseMixin):
|
|||
object: Literal["chat.completion"] = "chat.completion"
|
||||
created: int
|
||||
model: str
|
||||
usage: OpenAIChatCompletionUsage | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Any
|
||||
|
||||
from fireworks.client import Fireworks
|
||||
|
@ -23,11 +23,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
|
@ -43,7 +39,6 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
convert_message_to_openai_dict,
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
|
@ -335,90 +330,3 @@ class FireworksInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Nee
|
|||
prompt_logprobs=prompt_logprobs,
|
||||
suffix=suffix,
|
||||
)
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
||||
# Divert Llama Models through Llama Stack inference APIs because
|
||||
# Fireworks chat completions OpenAI-compatible API does not support
|
||||
# tool calls properly.
|
||||
llama_model = self.get_llama_model(model_obj.provider_resource_id)
|
||||
|
||||
if llama_model:
|
||||
return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion(
|
||||
self,
|
||||
model=model,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
|
||||
return await super().openai_chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
|
|
|
@ -61,6 +61,7 @@ MODEL_ENTRIES = [
|
|||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="nomic-ai/nomic-embed-text-v1.5",
|
||||
aliases=["nomic-ai/nomic-embed-text-v1.5"],
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": 768,
|
||||
|
|
|
@ -31,8 +31,6 @@ from openai.types.chat import (
|
|||
ChatCompletionContentPartTextParam as OpenAIChatCompletionContentPartTextParam,
|
||||
)
|
||||
|
||||
from llama_stack.apis.inference.inference import UsageInfo
|
||||
|
||||
try:
|
||||
from openai.types.chat import (
|
||||
ChatCompletionMessageFunctionToolCall as OpenAIChatCompletionMessageFunctionToolCall,
|
||||
|
@ -105,7 +103,6 @@ from llama_stack.apis.inference import (
|
|||
JsonSchemaResponseFormat,
|
||||
Message,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionUsage,
|
||||
OpenAICompletion,
|
||||
OpenAICompletionChoice,
|
||||
OpenAIEmbeddingData,
|
||||
|
@ -280,11 +277,6 @@ def process_chat_completion_response(
|
|||
request: ChatCompletionRequest,
|
||||
) -> ChatCompletionResponse:
|
||||
choice = response.choices[0]
|
||||
usage = UsageInfo(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
completion_tokens=response.usage.completion_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
)
|
||||
if choice.finish_reason == "tool_calls":
|
||||
if not choice.message or not choice.message.tool_calls:
|
||||
raise ValueError("Tool calls are not present in the response")
|
||||
|
@ -298,7 +290,6 @@ def process_chat_completion_response(
|
|||
content=json.dumps(tool_calls, default=lambda x: x.model_dump()),
|
||||
),
|
||||
logprobs=None,
|
||||
usage=usage,
|
||||
)
|
||||
else:
|
||||
# Otherwise, return tool calls as normal
|
||||
|
@ -310,7 +301,6 @@ def process_chat_completion_response(
|
|||
content="",
|
||||
),
|
||||
logprobs=None,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
# TODO: This does not work well with tool calls for vLLM remote provider
|
||||
|
@ -345,7 +335,6 @@ def process_chat_completion_response(
|
|||
tool_calls=raw_message.tool_calls,
|
||||
),
|
||||
logprobs=None,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
|
||||
|
@ -657,7 +646,7 @@ async def convert_message_to_openai_dict_new(
|
|||
arguments=json.dumps(tool.arguments),
|
||||
),
|
||||
type="function",
|
||||
).model_dump()
|
||||
)
|
||||
for tool in message.tool_calls
|
||||
]
|
||||
params = {}
|
||||
|
@ -668,7 +657,6 @@ async def convert_message_to_openai_dict_new(
|
|||
content=await _convert_message_content(message.content),
|
||||
**params,
|
||||
)
|
||||
|
||||
elif isinstance(message, ToolResponseMessage):
|
||||
out = OpenAIChatCompletionToolMessage(
|
||||
role="tool",
|
||||
|
@ -1387,7 +1375,6 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
messages = openai_messages_to_messages(messages)
|
||||
|
||||
response_format = _convert_openai_request_response_format(response_format)
|
||||
sampling_params = _convert_openai_sampling_params(
|
||||
max_tokens=max_tokens,
|
||||
|
@ -1414,6 +1401,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
tools=tools,
|
||||
)
|
||||
outstanding_responses.append(response)
|
||||
|
||||
if stream:
|
||||
return OpenAIChatCompletionToLlamaStackMixin._process_stream_response(self, model, outstanding_responses)
|
||||
|
||||
|
@ -1488,22 +1476,12 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
self, model: str, outstanding_responses: list[Awaitable[ChatCompletionResponse]]
|
||||
) -> OpenAIChatCompletion:
|
||||
choices = []
|
||||
total_prompt_tokens = 0
|
||||
total_completion_tokens = 0
|
||||
total_tokens = 0
|
||||
|
||||
for outstanding_response in outstanding_responses:
|
||||
response = await outstanding_response
|
||||
completion_message = response.completion_message
|
||||
message = await convert_message_to_openai_dict_new(completion_message)
|
||||
finish_reason = _convert_stop_reason_to_openai_finish_reason(completion_message.stop_reason)
|
||||
|
||||
# Aggregate usage data
|
||||
if response.usage:
|
||||
total_prompt_tokens += response.usage.prompt_tokens
|
||||
total_completion_tokens += response.usage.completion_tokens
|
||||
total_tokens += response.usage.total_tokens
|
||||
|
||||
choice = OpenAIChatCompletionChoice(
|
||||
index=len(choices),
|
||||
message=message,
|
||||
|
@ -1511,17 +1489,12 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
)
|
||||
choices.append(choice)
|
||||
|
||||
usage = OpenAIChatCompletionUsage(
|
||||
prompt_tokens=total_prompt_tokens, completion_tokens=total_completion_tokens, total_tokens=total_tokens
|
||||
)
|
||||
|
||||
return OpenAIChatCompletion(
|
||||
id=f"chatcmpl-{uuid.uuid4()}",
|
||||
choices=choices,
|
||||
created=int(time.time()),
|
||||
model=model,
|
||||
object="chat.completion",
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
|
||||
|
|
|
@ -13,6 +13,13 @@ import pytest
|
|||
from ..test_cases.test_case import TestCase
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def rate_limit_delay():
|
||||
"""Add delay between tests to avoid rate limiting from providers like Fireworks"""
|
||||
yield
|
||||
time.sleep(30) # 30 second delay after each test
|
||||
|
||||
|
||||
def _normalize_text(text: str) -> str:
|
||||
"""
|
||||
Normalize Unicode text by removing diacritical marks for comparison.
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
import base64
|
||||
import struct
|
||||
import time
|
||||
|
||||
import pytest
|
||||
from openai import OpenAI
|
||||
|
@ -13,6 +14,13 @@ from openai import OpenAI
|
|||
from llama_stack.core.library_client import LlamaStackAsLibraryClient
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def rate_limit_delay():
|
||||
"""Add delay between tests to avoid rate limiting from providers like Fireworks"""
|
||||
yield
|
||||
time.sleep(30) # 30 second delay after each test
|
||||
|
||||
|
||||
def decode_base64_to_floats(base64_string: str) -> list[float]:
|
||||
"""Helper function to decode base64 string to list of float32 values."""
|
||||
embedding_bytes = base64.b64decode(base64_string)
|
||||
|
|
|
@ -112,9 +112,10 @@ SETUP_DEFINITIONS: dict[str, Setup] = {
|
|||
name="fireworks",
|
||||
description="Fireworks provider with a text model",
|
||||
defaults={
|
||||
"text_model": "fireworks/accounts/fireworks/models/llama-v3p1-8b-instruct",
|
||||
"vision_model": "fireworks/accounts/fireworks/models/llama-v3p2-90b-vision-instruct",
|
||||
"text_model": "accounts/fireworks/models/llama-v3p1-8b-instruct",
|
||||
"vision_model": "accounts/fireworks/models/llama-v3p2-90b-vision-instruct",
|
||||
"embedding_model": "nomic-ai/nomic-embed-text-v1.5",
|
||||
# "embedding_model": "accounts/fireworks/models/qwen3-embedding-8b",
|
||||
},
|
||||
),
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue