mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-10 21:34:36 +00:00
test
# What does this PR do? ## Test Plan # What does this PR do? ## Test Plan # What does this PR do? ## Test Plan Completes the refactoring started in previous commit by: 1. **Fix library client** (critical): Add logic to detect Pydantic model parameters and construct them properly from request bodies. The key fix is to NOT exclude any params when converting the body for Pydantic models - we need all fields to pass to the Pydantic constructor. Before: _convert_body excluded all params, leaving body empty for Pydantic construction After: Check for Pydantic params first, skip exclusion, construct model with full body 2. **Update remaining providers** to use new Pydantic-based signatures: - litellm_openai_mixin: Extract extra fields via __pydantic_extra__ - databricks: Use TYPE_CHECKING import for params type - llama_openai_compat: Use TYPE_CHECKING import for params type - sentence_transformers: Update method signatures to use params 3. **Update unit tests** to use new Pydantic signature: - test_openai_mixin.py: Use OpenAIChatCompletionRequestParams This fixes test failures where the library client was trying to construct Pydantic models with empty dictionaries. The previous fix had a bug: it called _convert_body() which only keeps fields that match function parameter names. For Pydantic methods with signature: openai_chat_completion(params: OpenAIChatCompletionRequestParams) The signature only has 'params', but the body has 'model', 'messages', etc. So _convert_body() returned an empty dict. Fix: Skip _convert_body() entirely for Pydantic params. Use the raw body directly to construct the Pydantic model (after stripping NOT_GIVENs). This properly fixes the ValidationError where required fields were missing. The streaming code path (_call_streaming) had the same issue as non-streaming: it called _convert_body() which returned empty dict for Pydantic params. Applied the same fix as commit 7476c0ae: - Detect Pydantic model parameters before body conversion - Skip _convert_body() for Pydantic params - Construct Pydantic model directly from raw body (after stripping NOT_GIVENs) This fixes streaming endpoints like openai_chat_completion with stream=True. The streaming code path (_call_streaming) had the same issue as non-streaming: it called _convert_body() which returned empty dict for Pydantic params. Applied the same fix as commit 7476c0ae: - Detect Pydantic model parameters before body conversion - Skip _convert_body() for Pydantic params - Construct Pydantic model directly from raw body (after stripping NOT_GIVENs) This fixes streaming endpoints like openai_chat_completion with stream=True.
This commit is contained in:
parent
9e9a827fcd
commit
a70fc60485
295 changed files with 51966 additions and 3051 deletions
|
@ -14,7 +14,7 @@ from typing import (
|
|||
runtime_checkable,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_validator
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent
|
||||
|
@ -995,6 +995,81 @@ class ListOpenAIChatCompletionResponse(BaseModel):
|
|||
object: Literal["list"] = "list"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAICompletionRequestParams(BaseModel):
|
||||
"""Request parameters for OpenAI-compatible completion endpoint.
|
||||
|
||||
This model uses extra="allow" to capture provider-specific parameters
|
||||
(like vLLM's guided_choice) which are passed through as extra_body.
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
|
||||
# Required parameters
|
||||
model: str
|
||||
prompt: str | list[str] | list[int] | list[list[int]]
|
||||
|
||||
# Standard OpenAI completion parameters
|
||||
best_of: int | None = None
|
||||
echo: bool | None = None
|
||||
frequency_penalty: float | None = None
|
||||
logit_bias: dict[str, float] | None = None
|
||||
logprobs: bool | None = None
|
||||
max_tokens: int | None = None
|
||||
n: int | None = None
|
||||
presence_penalty: float | None = None
|
||||
seed: int | None = None
|
||||
stop: str | list[str] | None = None
|
||||
stream: bool | None = None
|
||||
stream_options: dict[str, Any] | None = None
|
||||
temperature: float | None = None
|
||||
top_p: float | None = None
|
||||
user: str | None = None
|
||||
suffix: str | None = None
|
||||
|
||||
# vLLM-specific parameters (documented here but also allowed via extra fields)
|
||||
guided_choice: list[str] | None = None
|
||||
prompt_logprobs: int | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIChatCompletionRequestParams(BaseModel):
|
||||
"""Request parameters for OpenAI-compatible chat completion endpoint.
|
||||
|
||||
This model uses extra="allow" to capture provider-specific parameters
|
||||
which are passed through as extra_body.
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="allow")
|
||||
|
||||
# Required parameters
|
||||
model: str
|
||||
messages: Annotated[list[OpenAIMessageParam], Field(..., min_length=1)]
|
||||
|
||||
# Standard OpenAI chat completion parameters
|
||||
frequency_penalty: float | None = None
|
||||
function_call: str | dict[str, Any] | None = None
|
||||
functions: list[dict[str, Any]] | None = None
|
||||
logit_bias: dict[str, float] | None = None
|
||||
logprobs: bool | None = None
|
||||
max_completion_tokens: int | None = None
|
||||
max_tokens: int | None = None
|
||||
n: int | None = None
|
||||
parallel_tool_calls: bool | None = None
|
||||
presence_penalty: float | None = None
|
||||
response_format: OpenAIResponseFormatParam | None = None
|
||||
seed: int | None = None
|
||||
stop: str | list[str] | None = None
|
||||
stream: bool | None = None
|
||||
stream_options: dict[str, Any] | None = None
|
||||
temperature: float | None = None
|
||||
tool_choice: str | dict[str, Any] | None = None
|
||||
tools: list[dict[str, Any]] | None = None
|
||||
top_logprobs: int | None = None
|
||||
top_p: float | None = None
|
||||
user: str | None = None
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
@trace_protocol
|
||||
class InferenceProvider(Protocol):
|
||||
|
@ -1029,52 +1104,14 @@ class InferenceProvider(Protocol):
|
|||
@webmethod(route="/completions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_completion(
|
||||
self,
|
||||
# Standard OpenAI completion parameters
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
# vLLM-specific parameters
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
# for fill-in-the-middle type completion
|
||||
suffix: str | None = None,
|
||||
params: OpenAICompletionRequestParams,
|
||||
) -> OpenAICompletion:
|
||||
"""Create completion.
|
||||
|
||||
Generate an OpenAI-compatible completion for the given prompt using the specified model.
|
||||
|
||||
:param model: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
|
||||
:param prompt: The prompt to generate a completion for.
|
||||
:param best_of: (Optional) The number of completions to generate.
|
||||
:param echo: (Optional) Whether to echo the prompt.
|
||||
:param frequency_penalty: (Optional) The penalty for repeated tokens.
|
||||
:param logit_bias: (Optional) The logit bias to use.
|
||||
:param logprobs: (Optional) The log probabilities to use.
|
||||
:param max_tokens: (Optional) The maximum number of tokens to generate.
|
||||
:param n: (Optional) The number of completions to generate.
|
||||
:param presence_penalty: (Optional) The penalty for repeated tokens.
|
||||
:param seed: (Optional) The seed to use.
|
||||
:param stop: (Optional) The stop tokens to use.
|
||||
:param stream: (Optional) Whether to stream the response.
|
||||
:param stream_options: (Optional) The stream options to use.
|
||||
:param temperature: (Optional) The temperature to use.
|
||||
:param top_p: (Optional) The top p to use.
|
||||
:param user: (Optional) The user to use.
|
||||
:param suffix: (Optional) The suffix that should be appended to the completion.
|
||||
:param params: Request parameters including model, prompt, and optional parameters.
|
||||
Use params.get_extra_body() to extract provider-specific parameters.
|
||||
:returns: An OpenAICompletion.
|
||||
"""
|
||||
...
|
||||
|
@ -1083,58 +1120,15 @@ class InferenceProvider(Protocol):
|
|||
@webmethod(route="/chat/completions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIChatCompletionRequestParams,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
"""Create chat completions.
|
||||
|
||||
Generate an OpenAI-compatible chat completion for the given messages using the specified model.
|
||||
|
||||
:param model: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
|
||||
:param messages: List of messages in the conversation.
|
||||
:param frequency_penalty: (Optional) The penalty for repeated tokens.
|
||||
:param function_call: (Optional) The function call to use.
|
||||
:param functions: (Optional) List of functions to use.
|
||||
:param logit_bias: (Optional) The logit bias to use.
|
||||
:param logprobs: (Optional) The log probabilities to use.
|
||||
:param max_completion_tokens: (Optional) The maximum number of tokens to generate.
|
||||
:param max_tokens: (Optional) The maximum number of tokens to generate.
|
||||
:param n: (Optional) The number of completions to generate.
|
||||
:param parallel_tool_calls: (Optional) Whether to parallelize tool calls.
|
||||
:param presence_penalty: (Optional) The penalty for repeated tokens.
|
||||
:param response_format: (Optional) The response format to use.
|
||||
:param seed: (Optional) The seed to use.
|
||||
:param stop: (Optional) The stop tokens to use.
|
||||
:param stream: (Optional) Whether to stream the response.
|
||||
:param stream_options: (Optional) The stream options to use.
|
||||
:param temperature: (Optional) The temperature to use.
|
||||
:param tool_choice: (Optional) The tool choice to use.
|
||||
:param tools: (Optional) The tools to use.
|
||||
:param top_logprobs: (Optional) The top log probabilities to use.
|
||||
:param top_p: (Optional) The top p to use.
|
||||
:param user: (Optional) The user to use.
|
||||
:returns: An OpenAIChatCompletion.
|
||||
:param params: Request parameters including model, messages, and optional parameters.
|
||||
Use params.get_extra_body() to extract provider-specific parameters (e.g., chat_template_kwargs for vLLM).
|
||||
:returns: An OpenAIChatCompletion or stream of OpenAIChatCompletionChunk.
|
||||
"""
|
||||
...
|
||||
|
||||
|
|
|
@ -363,6 +363,56 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
|
||||
return body, field_names
|
||||
|
||||
def _prepare_request_body(
|
||||
self, func: Any, body: dict, path: str, method: str, exclude_params: set[str] | None = None
|
||||
) -> dict:
|
||||
"""Prepare request body by converting to Pydantic models or traditional parameters.
|
||||
|
||||
For endpoints with a single Pydantic parameter, constructs the model from the body.
|
||||
For traditional endpoints, converts body to match function parameters.
|
||||
|
||||
Args:
|
||||
func: The function to call
|
||||
body: The request body
|
||||
path: The request path
|
||||
method: The HTTP method
|
||||
exclude_params: Parameters to exclude from conversion
|
||||
|
||||
Returns:
|
||||
The prepared body dict ready to pass to the function
|
||||
"""
|
||||
sig = inspect.signature(func)
|
||||
params_list = [p for p in sig.parameters.values() if p.name != "self"]
|
||||
|
||||
# Check if the method expects a single Pydantic model parameter
|
||||
is_pydantic_param = False
|
||||
if len(params_list) == 1:
|
||||
param = params_list[0]
|
||||
param_type = param.annotation
|
||||
try:
|
||||
if isinstance(param_type, type) and issubclass(param_type, BaseModel):
|
||||
is_pydantic_param = True
|
||||
except (TypeError, AttributeError):
|
||||
pass
|
||||
|
||||
# For Pydantic models, use the raw body directly to construct the model
|
||||
# For traditional methods, convert body to match function parameters
|
||||
if is_pydantic_param:
|
||||
param = params_list[0]
|
||||
param_type = param.annotation
|
||||
# Strip NOT_GIVENs before passing to Pydantic
|
||||
clean_body = {k: v for k, v in body.items() if v is not NOT_GIVEN}
|
||||
|
||||
# If the body has a single key matching the parameter name, unwrap it
|
||||
# This handles cases where the client passes agent_config={...} and we need
|
||||
# to construct AgentConfig from the inner dict, not {"agent_config": {...}}
|
||||
if len(clean_body) == 1 and param.name in clean_body:
|
||||
clean_body = clean_body[param.name]
|
||||
|
||||
return {param.name: param_type(**clean_body)}
|
||||
else:
|
||||
return self._convert_body(path, method, body, exclude_params=exclude_params)
|
||||
|
||||
async def _call_non_streaming(
|
||||
self,
|
||||
*,
|
||||
|
@ -383,7 +433,8 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
|
||||
body, field_names = self._handle_file_uploads(options, body)
|
||||
|
||||
body = self._convert_body(path, options.method, body, exclude_params=set(field_names))
|
||||
# Prepare body for the function call (handles both Pydantic and traditional params)
|
||||
body = self._prepare_request_body(matched_func, body, path, options.method, exclude_params=set(field_names))
|
||||
|
||||
trace_path = webmethod.descriptive_name or route_path
|
||||
await start_trace(trace_path, {"__location__": "library_client"})
|
||||
|
@ -446,7 +497,8 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
func, path_params, route_path, webmethod = find_matching_route(options.method, path, self.route_impls)
|
||||
body |= path_params
|
||||
|
||||
body = self._convert_body(path, options.method, body)
|
||||
# Prepare body for the function call (handles both Pydantic and traditional params)
|
||||
body = self._prepare_request_body(func, body, path, options.method)
|
||||
|
||||
trace_path = webmethod.descriptive_name or route_path
|
||||
await start_trace(trace_path, {"__location__": "library_client"})
|
||||
|
|
|
@ -31,15 +31,16 @@ from llama_stack.apis.inference import (
|
|||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIChatCompletionToolCallFunction,
|
||||
OpenAIChoice,
|
||||
OpenAIChoiceLogprobs,
|
||||
OpenAICompletion,
|
||||
OpenAICompletionRequestParams,
|
||||
OpenAICompletionWithInputMessages,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
Order,
|
||||
StopReason,
|
||||
ToolPromptFormat,
|
||||
|
@ -181,61 +182,23 @@ class InferenceRouter(Inference):
|
|||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
params: OpenAICompletionRequestParams,
|
||||
) -> OpenAICompletion:
|
||||
logger.debug(
|
||||
f"InferenceRouter.openai_completion: {model=}, {stream=}, {prompt=}",
|
||||
)
|
||||
model_obj = await self._get_model(model, ModelType.llm)
|
||||
params = dict(
|
||||
model=model_obj.identifier,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
guided_choice=guided_choice,
|
||||
prompt_logprobs=prompt_logprobs,
|
||||
suffix=suffix,
|
||||
f"InferenceRouter.openai_completion: model={params.model}, stream={params.stream}, prompt={params.prompt}",
|
||||
)
|
||||
model_obj = await self._get_model(params.model, ModelType.llm)
|
||||
|
||||
# Update params with the resolved model identifier
|
||||
params.model = model_obj.identifier
|
||||
|
||||
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
|
||||
if stream:
|
||||
return await provider.openai_completion(**params)
|
||||
if params.stream:
|
||||
return await provider.openai_completion(params)
|
||||
# TODO: Metrics do NOT work with openai_completion stream=True due to the fact
|
||||
# that we do not return an AsyncIterator, our tests expect a stream of chunks we cannot intercept currently.
|
||||
# response_stream = await provider.openai_completion(**params)
|
||||
|
||||
response = await provider.openai_completion(**params)
|
||||
response = await provider.openai_completion(params)
|
||||
if self.telemetry:
|
||||
metrics = self._construct_metrics(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
|
@ -254,93 +217,49 @@ class InferenceRouter(Inference):
|
|||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: Annotated[list[OpenAIMessageParam], Field(..., min_length=1)],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIChatCompletionRequestParams,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
logger.debug(
|
||||
f"InferenceRouter.openai_chat_completion: {model=}, {stream=}, {messages=}",
|
||||
f"InferenceRouter.openai_chat_completion: model={params.model}, stream={params.stream}, messages={params.messages}",
|
||||
)
|
||||
model_obj = await self._get_model(model, ModelType.llm)
|
||||
model_obj = await self._get_model(params.model, ModelType.llm)
|
||||
|
||||
# Use the OpenAI client for a bit of extra input validation without
|
||||
# exposing the OpenAI client itself as part of our API surface
|
||||
if tool_choice:
|
||||
TypeAdapter(OpenAIChatCompletionToolChoiceOptionParam).validate_python(tool_choice)
|
||||
if tools is None:
|
||||
if params.tool_choice:
|
||||
TypeAdapter(OpenAIChatCompletionToolChoiceOptionParam).validate_python(params.tool_choice)
|
||||
if params.tools is None:
|
||||
raise ValueError("'tool_choice' is only allowed when 'tools' is also provided")
|
||||
if tools:
|
||||
for tool in tools:
|
||||
if params.tools:
|
||||
for tool in params.tools:
|
||||
TypeAdapter(OpenAIChatCompletionToolParam).validate_python(tool)
|
||||
|
||||
# Some providers make tool calls even when tool_choice is "none"
|
||||
# so just clear them both out to avoid unexpected tool calls
|
||||
if tool_choice == "none" and tools is not None:
|
||||
tool_choice = None
|
||||
tools = None
|
||||
if params.tool_choice == "none" and params.tools is not None:
|
||||
params.tool_choice = None
|
||||
params.tools = None
|
||||
|
||||
# Update params with the resolved model identifier
|
||||
params.model = model_obj.identifier
|
||||
|
||||
params = dict(
|
||||
model=model_obj.identifier,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
|
||||
if stream:
|
||||
response_stream = await provider.openai_chat_completion(**params)
|
||||
if params.stream:
|
||||
response_stream = await provider.openai_chat_completion(params)
|
||||
|
||||
# For streaming, the provider returns AsyncIterator[OpenAIChatCompletionChunk]
|
||||
# We need to add metrics to each chunk and store the final completion
|
||||
return self.stream_tokens_and_compute_metrics_openai_chat(
|
||||
response=response_stream,
|
||||
model=model_obj,
|
||||
messages=messages,
|
||||
messages=params.messages,
|
||||
)
|
||||
|
||||
response = await self._nonstream_openai_chat_completion(provider, params)
|
||||
|
||||
# Store the response with the ID that will be returned to the client
|
||||
if self.store:
|
||||
asyncio.create_task(self.store.store_chat_completion(response, messages))
|
||||
asyncio.create_task(self.store.store_chat_completion(response, params.messages))
|
||||
|
||||
if self.telemetry:
|
||||
metrics = self._construct_metrics(
|
||||
|
@ -396,8 +315,10 @@ class InferenceRouter(Inference):
|
|||
return await self.store.get_chat_completion(completion_id)
|
||||
raise NotImplementedError("Get chat completion is not supported: inference store is not configured.")
|
||||
|
||||
async def _nonstream_openai_chat_completion(self, provider: Inference, params: dict) -> OpenAIChatCompletion:
|
||||
response = await provider.openai_chat_completion(**params)
|
||||
async def _nonstream_openai_chat_completion(
|
||||
self, provider: Inference, params: OpenAIChatCompletionRequestParams
|
||||
) -> OpenAIChatCompletion:
|
||||
response = await provider.openai_chat_completion(params)
|
||||
for choice in response.choices:
|
||||
# some providers return an empty list for no tool calls in non-streaming responses
|
||||
# but the OpenAI API returns None. So, set tool_calls to None if it's empty
|
||||
|
|
|
@ -268,21 +268,42 @@ def create_dynamic_typed_route(func: Any, method: str, route: str) -> Callable:
|
|||
if method == "post":
|
||||
# Annotate parameters that are in the path with Path(...) and others with Body(...),
|
||||
# but preserve existing File() and Form() annotations for multipart form data
|
||||
new_params = (
|
||||
[new_params[0]]
|
||||
+ [
|
||||
(
|
||||
def get_body_embed_value(param: inspect.Parameter) -> bool:
|
||||
"""Determine if Body should use embed=True or embed=False.
|
||||
|
||||
For Pydantic BaseModel subclasses, use embed=False so the request body
|
||||
is parsed directly as the model (not nested under param name).
|
||||
For other types, use embed=True.
|
||||
"""
|
||||
# Get the actual type, stripping Optional/Union if present
|
||||
param_type = param.annotation
|
||||
if get_origin(param_type) in (type(None) | type, type | type(None)):
|
||||
# Handle Optional[T] / T | None
|
||||
args = param_type.__args__ if hasattr(param_type, '__args__') else []
|
||||
param_type = next((arg for arg in args if arg is not type(None)), param_type)
|
||||
|
||||
# Check if it's a Pydantic BaseModel
|
||||
try:
|
||||
return not (isinstance(param_type, type) and issubclass(param_type, BaseModel))
|
||||
except TypeError:
|
||||
# Not a class, use default embed=True
|
||||
return True
|
||||
|
||||
original_params = new_params[1:] # Skip request parameter
|
||||
new_params = [new_params[0]] # Keep request parameter
|
||||
|
||||
for param in original_params:
|
||||
if param.name in path_params:
|
||||
new_params.append(
|
||||
param.replace(annotation=Annotated[param.annotation, FastapiPath(..., title=param.name)])
|
||||
if param.name in path_params
|
||||
else (
|
||||
param # Keep original annotation if it's already an Annotated type
|
||||
if get_origin(param.annotation) is Annotated
|
||||
else param.replace(annotation=Annotated[param.annotation, Body(..., embed=True)])
|
||||
)
|
||||
)
|
||||
for param in new_params[1:]
|
||||
]
|
||||
)
|
||||
elif get_origin(param.annotation) is Annotated:
|
||||
new_params.append(param) # Keep existing annotation
|
||||
else:
|
||||
embed = get_body_embed_value(param)
|
||||
new_params.append(
|
||||
param.replace(annotation=Annotated[param.annotation, Body(..., embed=embed)])
|
||||
)
|
||||
|
||||
route_handler.__signature__ = sig.replace(parameters=new_params)
|
||||
|
||||
|
|
|
@ -49,6 +49,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
Message,
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAIDeveloperMessageParam,
|
||||
OpenAIMessageParam,
|
||||
OpenAISystemMessageParam,
|
||||
|
@ -582,7 +583,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
max_tokens = getattr(sampling_params, "max_tokens", None)
|
||||
|
||||
# Use OpenAI chat completion
|
||||
openai_stream = await self.inference_api.openai_chat_completion(
|
||||
params = OpenAIChatCompletionRequestParams(
|
||||
model=self.agent_config.model,
|
||||
messages=openai_messages,
|
||||
tools=openai_tools if openai_tools else None,
|
||||
|
@ -593,6 +594,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
max_tokens=max_tokens,
|
||||
stream=True,
|
||||
)
|
||||
openai_stream = await self.inference_api.openai_chat_completion(params)
|
||||
|
||||
# Convert OpenAI stream back to Llama Stack format
|
||||
response_stream = convert_openai_chat_completion_stream(
|
||||
|
|
|
@ -41,6 +41,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIChoice,
|
||||
OpenAIMessageParam,
|
||||
|
@ -129,7 +130,7 @@ class StreamingResponseOrchestrator:
|
|||
# (some providers don't support non-empty response_format when tools are present)
|
||||
response_format = None if self.ctx.response_format.type == "text" else self.ctx.response_format
|
||||
logger.debug(f"calling openai_chat_completion with tools: {self.ctx.chat_tools}")
|
||||
completion_result = await self.inference_api.openai_chat_completion(
|
||||
params = OpenAIChatCompletionRequestParams(
|
||||
model=self.ctx.model,
|
||||
messages=messages,
|
||||
tools=self.ctx.chat_tools,
|
||||
|
@ -137,6 +138,7 @@ class StreamingResponseOrchestrator:
|
|||
temperature=self.ctx.temperature,
|
||||
response_format=response_format,
|
||||
)
|
||||
completion_result = await self.inference_api.openai_chat_completion(params)
|
||||
|
||||
# Process streaming chunks and build complete response
|
||||
completion_result_data = None
|
||||
|
|
|
@ -22,6 +22,8 @@ from llama_stack.apis.files import Files, OpenAIFilePurpose
|
|||
from llama_stack.apis.inference import (
|
||||
Inference,
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAICompletionRequestParams,
|
||||
OpenAIDeveloperMessageParam,
|
||||
OpenAIMessageParam,
|
||||
OpenAISystemMessageParam,
|
||||
|
@ -601,7 +603,8 @@ class ReferenceBatchesImpl(Batches):
|
|||
# TODO(SECURITY): review body for security issues
|
||||
if request.url == "/v1/chat/completions":
|
||||
request.body["messages"] = [convert_to_openai_message_param(msg) for msg in request.body["messages"]]
|
||||
chat_response = await self.inference_api.openai_chat_completion(**request.body)
|
||||
params = OpenAIChatCompletionRequestParams(**request.body)
|
||||
chat_response = await self.inference_api.openai_chat_completion(params)
|
||||
|
||||
# this is for mypy, we don't allow streaming so we'll get the right type
|
||||
assert hasattr(chat_response, "model_dump_json"), "Chat response must have model_dump_json method"
|
||||
|
@ -615,7 +618,8 @@ class ReferenceBatchesImpl(Batches):
|
|||
},
|
||||
}
|
||||
else: # /v1/completions
|
||||
completion_response = await self.inference_api.openai_completion(**request.body)
|
||||
params = OpenAICompletionRequestParams(**request.body)
|
||||
completion_response = await self.inference_api.openai_completion(params)
|
||||
|
||||
# this is for mypy, we don't allow streaming so we'll get the right type
|
||||
assert hasattr(completion_response, "model_dump_json"), (
|
||||
|
|
|
@ -12,7 +12,14 @@ from llama_stack.apis.agents import Agents, StepType
|
|||
from llama_stack.apis.benchmarks import Benchmark
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.inference import Inference, OpenAISystemMessageParam, OpenAIUserMessageParam, UserMessage
|
||||
from llama_stack.apis.inference import (
|
||||
Inference,
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAICompletionRequestParams,
|
||||
OpenAISystemMessageParam,
|
||||
OpenAIUserMessageParam,
|
||||
UserMessage,
|
||||
)
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
|
||||
from llama_stack.providers.inline.agents.meta_reference.agent_instance import (
|
||||
|
@ -168,11 +175,12 @@ class MetaReferenceEvalImpl(
|
|||
sampling_params["stop"] = candidate.sampling_params.stop
|
||||
|
||||
input_content = json.loads(x[ColumnName.completion_input.value])
|
||||
response = await self.inference_api.openai_completion(
|
||||
params = OpenAICompletionRequestParams(
|
||||
model=candidate.model,
|
||||
prompt=input_content,
|
||||
**sampling_params,
|
||||
)
|
||||
response = await self.inference_api.openai_completion(params)
|
||||
generations.append({ColumnName.generated_answer.value: response.choices[0].text})
|
||||
elif ColumnName.chat_completion_input.value in x:
|
||||
chat_completion_input_json = json.loads(x[ColumnName.chat_completion_input.value])
|
||||
|
@ -187,11 +195,12 @@ class MetaReferenceEvalImpl(
|
|||
messages += [OpenAISystemMessageParam(**x) for x in chat_completion_input_json if x["role"] == "system"]
|
||||
|
||||
messages += input_messages
|
||||
response = await self.inference_api.openai_chat_completion(
|
||||
params = OpenAIChatCompletionRequestParams(
|
||||
model=candidate.model,
|
||||
messages=messages,
|
||||
**sampling_params,
|
||||
)
|
||||
response = await self.inference_api.openai_chat_completion(params)
|
||||
generations.append({ColumnName.generated_answer.value: response.choices[0].message.content})
|
||||
else:
|
||||
raise ValueError("Invalid input row")
|
||||
|
|
|
@ -10,10 +10,13 @@ from typing import Any
|
|||
|
||||
from llama_stack.apis.inference import (
|
||||
InferenceProvider,
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAICompletionRequestParams,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
|
@ -65,7 +68,10 @@ class MetaReferenceInferenceImpl(
|
|||
if self.config.create_distributed_process_group:
|
||||
self.generator.stop()
|
||||
|
||||
async def openai_completion(self, *args, **kwargs):
|
||||
async def openai_completion(
|
||||
self,
|
||||
params: OpenAICompletionRequestParams,
|
||||
) -> OpenAICompletion:
|
||||
raise NotImplementedError("OpenAI completion not supported by meta reference provider")
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
|
@ -150,28 +156,6 @@ class MetaReferenceInferenceImpl(
|
|||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIChatCompletionRequestParams,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
raise NotImplementedError("OpenAI chat completion not supported by meta-reference inference provider")
|
||||
|
|
|
@ -9,6 +9,8 @@ from typing import Any
|
|||
|
||||
from llama_stack.apis.inference import (
|
||||
InferenceProvider,
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAICompletionRequestParams,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIChatCompletion,
|
||||
|
@ -73,56 +75,12 @@ class SentenceTransformersInferenceImpl(
|
|||
|
||||
async def openai_completion(
|
||||
self,
|
||||
# Standard OpenAI completion parameters
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
# vLLM-specific parameters
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
# for fill-in-the-middle type completion
|
||||
suffix: str | None = None,
|
||||
params: OpenAICompletionRequestParams,
|
||||
) -> OpenAICompletion:
|
||||
raise NotImplementedError("OpenAI completion not supported by sentence transformers provider")
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIChatCompletionRequestParams,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
raise NotImplementedError("OpenAI chat completion not supported by sentence transformers provider")
|
||||
|
|
|
@ -10,7 +10,13 @@ from string import Template
|
|||
from typing import Any
|
||||
|
||||
from llama_stack.apis.common.content_types import ImageContentItem, TextContentItem
|
||||
from llama_stack.apis.inference import Inference, Message, UserMessage
|
||||
from llama_stack.apis.inference import (
|
||||
Inference,
|
||||
Message,
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAIUserMessageParam,
|
||||
UserMessage,
|
||||
)
|
||||
from llama_stack.apis.safety import (
|
||||
RunShieldResponse,
|
||||
Safety,
|
||||
|
@ -290,20 +296,21 @@ class LlamaGuardShield:
|
|||
else:
|
||||
shield_input_message = self.build_text_shield_input(messages)
|
||||
|
||||
response = await self.inference_api.openai_chat_completion(
|
||||
params = OpenAIChatCompletionRequestParams(
|
||||
model=self.model,
|
||||
messages=[shield_input_message],
|
||||
stream=False,
|
||||
temperature=0.0, # default is 1, which is too high for safety
|
||||
)
|
||||
response = await self.inference_api.openai_chat_completion(params)
|
||||
content = response.choices[0].message.content
|
||||
content = content.strip()
|
||||
return self.get_shield_response(content)
|
||||
|
||||
def build_text_shield_input(self, messages: list[Message]) -> UserMessage:
|
||||
return UserMessage(content=self.build_prompt(messages))
|
||||
def build_text_shield_input(self, messages: list[Message]) -> OpenAIUserMessageParam:
|
||||
return OpenAIUserMessageParam(role="user", content=self.build_prompt(messages))
|
||||
|
||||
def build_vision_shield_input(self, messages: list[Message]) -> UserMessage:
|
||||
def build_vision_shield_input(self, messages: list[Message]) -> OpenAIUserMessageParam:
|
||||
conversation = []
|
||||
most_recent_img = None
|
||||
|
||||
|
@ -335,7 +342,7 @@ class LlamaGuardShield:
|
|||
prompt.append(most_recent_img)
|
||||
prompt.append(self.build_prompt(conversation[::-1]))
|
||||
|
||||
return UserMessage(content=prompt)
|
||||
return OpenAIUserMessageParam(role="user", content=prompt)
|
||||
|
||||
def build_prompt(self, messages: list[Message]) -> str:
|
||||
categories = self.get_safety_categories()
|
||||
|
@ -377,11 +384,12 @@ class LlamaGuardShield:
|
|||
# TODO: Add Image based support for OpenAI Moderations
|
||||
shield_input_message = self.build_text_shield_input(messages)
|
||||
|
||||
response = await self.inference_api.openai_chat_completion(
|
||||
params = OpenAIChatCompletionRequestParams(
|
||||
model=self.model,
|
||||
messages=[shield_input_message],
|
||||
stream=False,
|
||||
)
|
||||
response = await self.inference_api.openai_chat_completion(params)
|
||||
content = response.choices[0].message.content
|
||||
content = content.strip()
|
||||
return self.get_moderation_object(content)
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
import re
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.inference import Inference, OpenAIChatCompletionRequestParams
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
|
||||
|
@ -55,7 +55,7 @@ class LlmAsJudgeScoringFn(RegisteredBaseScoringFn):
|
|||
generated_answer=generated_answer,
|
||||
)
|
||||
|
||||
judge_response = await self.inference_api.openai_chat_completion(
|
||||
params = OpenAIChatCompletionRequestParams(
|
||||
model=fn_def.params.judge_model,
|
||||
messages=[
|
||||
{
|
||||
|
@ -64,6 +64,7 @@ class LlmAsJudgeScoringFn(RegisteredBaseScoringFn):
|
|||
}
|
||||
],
|
||||
)
|
||||
judge_response = await self.inference_api.openai_chat_completion(params)
|
||||
content = judge_response.choices[0].message.content
|
||||
rating_regexes = fn_def.params.judge_score_regexes
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
from jinja2 import Template
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.inference import OpenAIUserMessageParam
|
||||
from llama_stack.apis.inference import OpenAIChatCompletionRequestParams, OpenAIUserMessageParam
|
||||
from llama_stack.apis.tools.rag_tool import (
|
||||
DefaultRAGQueryGeneratorConfig,
|
||||
LLMRAGQueryGeneratorConfig,
|
||||
|
@ -65,11 +65,12 @@ async def llm_rag_query_generator(
|
|||
|
||||
model = config.model
|
||||
message = OpenAIUserMessageParam(content=rendered_content)
|
||||
response = await inference_api.openai_chat_completion(
|
||||
params = OpenAIChatCompletionRequestParams(
|
||||
model=model,
|
||||
messages=[message],
|
||||
stream=False,
|
||||
)
|
||||
response = await inference_api.openai_chat_completion(params)
|
||||
|
||||
query = response.choices[0].message.content
|
||||
|
||||
|
|
|
@ -13,6 +13,8 @@ from botocore.client import BaseClient
|
|||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
Inference,
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAICompletionRequestParams,
|
||||
OpenAIEmbeddingsResponse,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
|
@ -135,56 +137,12 @@ class BedrockInferenceAdapter(
|
|||
|
||||
async def openai_completion(
|
||||
self,
|
||||
# Standard OpenAI completion parameters
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
# vLLM-specific parameters
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
# for fill-in-the-middle type completion
|
||||
suffix: str | None = None,
|
||||
params: OpenAICompletionRequestParams,
|
||||
) -> OpenAICompletion:
|
||||
raise NotImplementedError("OpenAI completion not supported by the Bedrock provider")
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIChatCompletionRequestParams,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
raise NotImplementedError("OpenAI chat completion not supported by the Bedrock provider")
|
||||
|
|
|
@ -5,11 +5,14 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import Iterable
|
||||
from typing import Any
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from databricks.sdk import WorkspaceClient
|
||||
|
||||
from llama_stack.apis.inference import OpenAICompletion
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from llama_stack.apis.inference import OpenAICompletionRequestParams
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
|
@ -43,25 +46,6 @@ class DatabricksInferenceAdapter(OpenAIMixin):
|
|||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
params: "OpenAICompletionRequestParams",
|
||||
) -> OpenAICompletion:
|
||||
raise NotImplementedError()
|
||||
|
|
|
@ -3,9 +3,12 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from llama_stack.apis.inference.inference import OpenAICompletion, OpenAIEmbeddingsResponse
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from llama_stack.apis.inference import OpenAICompletionRequestParams
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.remote.inference.llama_openai_compat.config import LlamaCompatConfig
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
@ -34,26 +37,7 @@ class LlamaCompatInferenceAdapter(OpenAIMixin):
|
|||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
params: "OpenAICompletionRequestParams",
|
||||
) -> OpenAICompletion:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
|
|
@ -13,15 +13,14 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAICompletion,
|
||||
OpenAICompletionRequestParams,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.core.library_client import convert_pydantic_to_json_value
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
||||
|
||||
from .config import PassthroughImplConfig
|
||||
|
||||
|
@ -80,110 +79,33 @@ class PassthroughInferenceAdapter(Inference):
|
|||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
params: OpenAICompletionRequestParams,
|
||||
) -> OpenAICompletion:
|
||||
client = self._get_client()
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
model_obj = await self.model_store.get_model(params.model)
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
guided_choice=guided_choice,
|
||||
prompt_logprobs=prompt_logprobs,
|
||||
)
|
||||
# Update model with provider resource ID
|
||||
params.model = model_obj.provider_resource_id
|
||||
|
||||
return await client.inference.openai_completion(**params)
|
||||
# Convert Pydantic model to dict, including extra fields
|
||||
request_params = params.model_dump(exclude_none=True)
|
||||
|
||||
return await client.inference.openai_completion(**request_params)
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIChatCompletionRequestParams,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
client = self._get_client()
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
model_obj = await self.model_store.get_model(params.model)
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
# Update model with provider resource ID
|
||||
params.model = model_obj.provider_resource_id
|
||||
|
||||
return await client.inference.openai_chat_completion(**params)
|
||||
# Convert Pydantic model to dict, including extra fields
|
||||
request_params = params.model_dump(exclude_none=True)
|
||||
|
||||
return await client.inference.openai_chat_completion(**request_params)
|
||||
|
||||
def cast_value_to_json_dict(self, request_params: dict[str, Any]) -> dict[str, Any]:
|
||||
json_params = {}
|
||||
|
|
|
@ -57,6 +57,7 @@ class RunpodInferenceAdapter(OpenAIMixin):
|
|||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""Override to add RunPod-specific stream_options requirement."""
|
||||
if stream and not stream_options:
|
||||
|
@ -86,4 +87,5 @@ class RunpodInferenceAdapter(OpenAIMixin):
|
|||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
**kwargs,
|
||||
)
|
||||
|
|
|
@ -102,6 +102,7 @@ class VLLMInferenceAdapter(OpenAIMixin):
|
|||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
max_tokens = max_tokens or self.config.max_tokens
|
||||
|
||||
|
@ -136,4 +137,5 @@ class VLLMInferenceAdapter(OpenAIMixin):
|
|||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
**kwargs,
|
||||
)
|
||||
|
|
|
@ -17,7 +17,9 @@ from llama_stack.apis.inference import (
|
|||
JsonSchemaResponseFormat,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAICompletion,
|
||||
OpenAICompletionRequestParams,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
|
@ -227,116 +229,88 @@ class LiteLLMOpenAIMixin(
|
|||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
params: OpenAICompletionRequestParams,
|
||||
) -> OpenAICompletion:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model_obj = await self.model_store.get_model(params.model)
|
||||
|
||||
# Extract extra fields
|
||||
extra_body = dict(params.__pydantic_extra__ or {})
|
||||
|
||||
request_params = await prepare_openai_completion_params(
|
||||
model=self.get_litellm_model_name(model_obj.provider_resource_id),
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
guided_choice=guided_choice,
|
||||
prompt_logprobs=prompt_logprobs,
|
||||
prompt=params.prompt,
|
||||
best_of=params.best_of,
|
||||
echo=params.echo,
|
||||
frequency_penalty=params.frequency_penalty,
|
||||
logit_bias=params.logit_bias,
|
||||
logprobs=params.logprobs,
|
||||
max_tokens=params.max_tokens,
|
||||
n=params.n,
|
||||
presence_penalty=params.presence_penalty,
|
||||
seed=params.seed,
|
||||
stop=params.stop,
|
||||
stream=params.stream,
|
||||
stream_options=params.stream_options,
|
||||
temperature=params.temperature,
|
||||
top_p=params.top_p,
|
||||
user=params.user,
|
||||
guided_choice=params.guided_choice,
|
||||
prompt_logprobs=params.prompt_logprobs,
|
||||
suffix=params.suffix,
|
||||
api_key=self.get_api_key(),
|
||||
api_base=self.api_base,
|
||||
**extra_body,
|
||||
)
|
||||
return await litellm.atext_completion(**params)
|
||||
return await litellm.atext_completion(**request_params)
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
params: OpenAIChatCompletionRequestParams,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
# Add usage tracking for streaming when telemetry is active
|
||||
from llama_stack.providers.utils.telemetry.tracing import get_current_span
|
||||
|
||||
if stream and get_current_span() is not None:
|
||||
stream_options = params.stream_options
|
||||
if params.stream and get_current_span() is not None:
|
||||
if stream_options is None:
|
||||
stream_options = {"include_usage": True}
|
||||
elif "include_usage" not in stream_options:
|
||||
stream_options = {**stream_options, "include_usage": True}
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
|
||||
model_obj = await self.model_store.get_model(params.model)
|
||||
|
||||
# Extract extra fields
|
||||
extra_body = dict(params.__pydantic_extra__ or {})
|
||||
|
||||
request_params = await prepare_openai_completion_params(
|
||||
model=self.get_litellm_model_name(model_obj.provider_resource_id),
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
messages=params.messages,
|
||||
frequency_penalty=params.frequency_penalty,
|
||||
function_call=params.function_call,
|
||||
functions=params.functions,
|
||||
logit_bias=params.logit_bias,
|
||||
logprobs=params.logprobs,
|
||||
max_completion_tokens=params.max_completion_tokens,
|
||||
max_tokens=params.max_tokens,
|
||||
n=params.n,
|
||||
parallel_tool_calls=params.parallel_tool_calls,
|
||||
presence_penalty=params.presence_penalty,
|
||||
response_format=params.response_format,
|
||||
seed=params.seed,
|
||||
stop=params.stop,
|
||||
stream=params.stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
temperature=params.temperature,
|
||||
tool_choice=params.tool_choice,
|
||||
tools=params.tools,
|
||||
top_logprobs=params.top_logprobs,
|
||||
top_p=params.top_p,
|
||||
user=params.user,
|
||||
api_key=self.get_api_key(),
|
||||
api_base=self.api_base,
|
||||
**extra_body,
|
||||
)
|
||||
return await litellm.acompletion(**params)
|
||||
return await litellm.acompletion(**request_params)
|
||||
|
||||
async def check_model_availability(self, model: str) -> bool:
|
||||
"""
|
||||
|
|
|
@ -8,7 +8,7 @@ import base64
|
|||
import uuid
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import AsyncIterator, Iterable
|
||||
from typing import Any
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from openai import NOT_GIVEN, AsyncOpenAI
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
@ -22,8 +22,13 @@ from llama_stack.apis.inference import (
|
|||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIChatCompletionRequestParams,
|
||||
OpenAICompletionRequestParams,
|
||||
)
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.log import get_logger
|
||||
|
@ -227,96 +232,57 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
|
|||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
params: "OpenAICompletionRequestParams",
|
||||
) -> OpenAICompletion:
|
||||
"""
|
||||
Direct OpenAI completion API call.
|
||||
"""
|
||||
# Handle parameters that are not supported by OpenAI API, but may be by the provider
|
||||
# prompt_logprobs is supported by vLLM
|
||||
# guided_choice is supported by vLLM
|
||||
# TODO: test coverage
|
||||
extra_body: dict[str, Any] = {}
|
||||
if prompt_logprobs is not None and prompt_logprobs >= 0:
|
||||
extra_body["prompt_logprobs"] = prompt_logprobs
|
||||
if guided_choice:
|
||||
extra_body["guided_choice"] = guided_choice
|
||||
# Extract extra fields using Pydantic's built-in __pydantic_extra__
|
||||
extra_body = dict(params.__pydantic_extra__ or {})
|
||||
|
||||
# Add vLLM-specific parameters to extra_body if they are set
|
||||
# (these are explicitly defined in the model but still go to extra_body)
|
||||
if params.prompt_logprobs is not None and params.prompt_logprobs >= 0:
|
||||
extra_body["prompt_logprobs"] = params.prompt_logprobs
|
||||
if params.guided_choice:
|
||||
extra_body["guided_choice"] = params.guided_choice
|
||||
|
||||
# TODO: fix openai_completion to return type compatible with OpenAI's API response
|
||||
resp = await self.client.completions.create(
|
||||
**await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(model),
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
suffix=suffix,
|
||||
model=await self._get_provider_model_id(params.model),
|
||||
prompt=params.prompt,
|
||||
best_of=params.best_of,
|
||||
echo=params.echo,
|
||||
frequency_penalty=params.frequency_penalty,
|
||||
logit_bias=params.logit_bias,
|
||||
logprobs=params.logprobs,
|
||||
max_tokens=params.max_tokens,
|
||||
n=params.n,
|
||||
presence_penalty=params.presence_penalty,
|
||||
seed=params.seed,
|
||||
stop=params.stop,
|
||||
stream=params.stream,
|
||||
stream_options=params.stream_options,
|
||||
temperature=params.temperature,
|
||||
top_p=params.top_p,
|
||||
user=params.user,
|
||||
suffix=params.suffix,
|
||||
),
|
||||
extra_body=extra_body,
|
||||
extra_body=extra_body if extra_body else None,
|
||||
)
|
||||
|
||||
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
|
||||
return await self._maybe_overwrite_id(resp, params.stream) # type: ignore[no-any-return]
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
params: "OpenAIChatCompletionRequestParams",
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
"""
|
||||
Direct OpenAI chat completion API call.
|
||||
"""
|
||||
messages = params.messages
|
||||
|
||||
if self.download_images:
|
||||
|
||||
async def _localize_image_url(m: OpenAIMessageParam) -> OpenAIMessageParam:
|
||||
|
@ -335,35 +301,40 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
|
|||
|
||||
messages = [await _localize_image_url(m) for m in messages]
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(model),
|
||||
request_params = await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(params.model),
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
frequency_penalty=params.frequency_penalty,
|
||||
function_call=params.function_call,
|
||||
functions=params.functions,
|
||||
logit_bias=params.logit_bias,
|
||||
logprobs=params.logprobs,
|
||||
max_completion_tokens=params.max_completion_tokens,
|
||||
max_tokens=params.max_tokens,
|
||||
n=params.n,
|
||||
parallel_tool_calls=params.parallel_tool_calls,
|
||||
presence_penalty=params.presence_penalty,
|
||||
response_format=params.response_format,
|
||||
seed=params.seed,
|
||||
stop=params.stop,
|
||||
stream=params.stream,
|
||||
stream_options=params.stream_options,
|
||||
temperature=params.temperature,
|
||||
tool_choice=params.tool_choice,
|
||||
tools=params.tools,
|
||||
top_logprobs=params.top_logprobs,
|
||||
top_p=params.top_p,
|
||||
user=params.user,
|
||||
)
|
||||
|
||||
resp = await self.client.chat.completions.create(**params)
|
||||
# Extract any additional provider-specific parameters using Pydantic's __pydantic_extra__
|
||||
extra_body = dict(params.__pydantic_extra__ or {})
|
||||
|
||||
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
|
||||
resp = await self.client.chat.completions.create(
|
||||
**request_params, extra_body=extra_body if extra_body else None
|
||||
)
|
||||
|
||||
return await self._maybe_overwrite_id(resp, params.stream) # type: ignore[no-any-return]
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue