# What does this PR do?


## Test Plan
# What does this PR do?


## Test Plan
# What does this PR do?


## Test Plan
Completes the refactoring started in previous commit by:

1. **Fix library client** (critical): Add logic to detect Pydantic model parameters
   and construct them properly from request bodies. The key fix is to NOT exclude
   any params when converting the body for Pydantic models - we need all fields
   to pass to the Pydantic constructor.

   Before: _convert_body excluded all params, leaving body empty for Pydantic construction
   After: Check for Pydantic params first, skip exclusion, construct model with full body

2. **Update remaining providers** to use new Pydantic-based signatures:
   - litellm_openai_mixin: Extract extra fields via __pydantic_extra__
   - databricks: Use TYPE_CHECKING import for params type
   - llama_openai_compat: Use TYPE_CHECKING import for params type
   - sentence_transformers: Update method signatures to use params

3. **Update unit tests** to use new Pydantic signature:
   - test_openai_mixin.py: Use OpenAIChatCompletionRequestParams

This fixes test failures where the library client was trying to construct
Pydantic models with empty dictionaries.
The previous fix had a bug: it called _convert_body() which only keeps fields
that match function parameter names. For Pydantic methods with signature:
  openai_chat_completion(params: OpenAIChatCompletionRequestParams)

The signature only has 'params', but the body has 'model', 'messages', etc.
So _convert_body() returned an empty dict.

Fix: Skip _convert_body() entirely for Pydantic params. Use the raw body
directly to construct the Pydantic model (after stripping NOT_GIVENs).

This properly fixes the ValidationError where required fields were missing.
The streaming code path (_call_streaming) had the same issue as non-streaming:
it called _convert_body() which returned empty dict for Pydantic params.

Applied the same fix as commit 7476c0ae:
- Detect Pydantic model parameters before body conversion
- Skip _convert_body() for Pydantic params
- Construct Pydantic model directly from raw body (after stripping NOT_GIVENs)

This fixes streaming endpoints like openai_chat_completion with stream=True.
The streaming code path (_call_streaming) had the same issue as non-streaming:
it called _convert_body() which returned empty dict for Pydantic params.

Applied the same fix as commit 7476c0ae:
- Detect Pydantic model parameters before body conversion
- Skip _convert_body() for Pydantic params
- Construct Pydantic model directly from raw body (after stripping NOT_GIVENs)

This fixes streaming endpoints like openai_chat_completion with stream=True.
This commit is contained in:
Eric Huang 2025-10-09 13:53:17 -07:00
parent 9e9a827fcd
commit a70fc60485
295 changed files with 51966 additions and 3051 deletions

View file

@ -268,21 +268,42 @@ def create_dynamic_typed_route(func: Any, method: str, route: str) -> Callable:
if method == "post":
# Annotate parameters that are in the path with Path(...) and others with Body(...),
# but preserve existing File() and Form() annotations for multipart form data
new_params = (
[new_params[0]]
+ [
(
def get_body_embed_value(param: inspect.Parameter) -> bool:
"""Determine if Body should use embed=True or embed=False.
For Pydantic BaseModel subclasses, use embed=False so the request body
is parsed directly as the model (not nested under param name).
For other types, use embed=True.
"""
# Get the actual type, stripping Optional/Union if present
param_type = param.annotation
if get_origin(param_type) in (type(None) | type, type | type(None)):
# Handle Optional[T] / T | None
args = param_type.__args__ if hasattr(param_type, '__args__') else []
param_type = next((arg for arg in args if arg is not type(None)), param_type)
# Check if it's a Pydantic BaseModel
try:
return not (isinstance(param_type, type) and issubclass(param_type, BaseModel))
except TypeError:
# Not a class, use default embed=True
return True
original_params = new_params[1:] # Skip request parameter
new_params = [new_params[0]] # Keep request parameter
for param in original_params:
if param.name in path_params:
new_params.append(
param.replace(annotation=Annotated[param.annotation, FastapiPath(..., title=param.name)])
if param.name in path_params
else (
param # Keep original annotation if it's already an Annotated type
if get_origin(param.annotation) is Annotated
else param.replace(annotation=Annotated[param.annotation, Body(..., embed=True)])
)
)
for param in new_params[1:]
]
)
elif get_origin(param.annotation) is Annotated:
new_params.append(param) # Keep existing annotation
else:
embed = get_body_embed_value(param)
new_params.append(
param.replace(annotation=Annotated[param.annotation, Body(..., embed=embed)])
)
route_handler.__signature__ = sig.replace(parameters=new_params)