mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-11 21:48:36 +00:00
test
# What does this PR do? ## Test Plan # What does this PR do? ## Test Plan # What does this PR do? ## Test Plan Completes the refactoring started in previous commit by: 1. **Fix library client** (critical): Add logic to detect Pydantic model parameters and construct them properly from request bodies. The key fix is to NOT exclude any params when converting the body for Pydantic models - we need all fields to pass to the Pydantic constructor. Before: _convert_body excluded all params, leaving body empty for Pydantic construction After: Check for Pydantic params first, skip exclusion, construct model with full body 2. **Update remaining providers** to use new Pydantic-based signatures: - litellm_openai_mixin: Extract extra fields via __pydantic_extra__ - databricks: Use TYPE_CHECKING import for params type - llama_openai_compat: Use TYPE_CHECKING import for params type - sentence_transformers: Update method signatures to use params 3. **Update unit tests** to use new Pydantic signature: - test_openai_mixin.py: Use OpenAIChatCompletionRequestParams This fixes test failures where the library client was trying to construct Pydantic models with empty dictionaries. The previous fix had a bug: it called _convert_body() which only keeps fields that match function parameter names. For Pydantic methods with signature: openai_chat_completion(params: OpenAIChatCompletionRequestParams) The signature only has 'params', but the body has 'model', 'messages', etc. So _convert_body() returned an empty dict. Fix: Skip _convert_body() entirely for Pydantic params. Use the raw body directly to construct the Pydantic model (after stripping NOT_GIVENs). This properly fixes the ValidationError where required fields were missing. The streaming code path (_call_streaming) had the same issue as non-streaming: it called _convert_body() which returned empty dict for Pydantic params. Applied the same fix as commit 7476c0ae: - Detect Pydantic model parameters before body conversion - Skip _convert_body() for Pydantic params - Construct Pydantic model directly from raw body (after stripping NOT_GIVENs) This fixes streaming endpoints like openai_chat_completion with stream=True. The streaming code path (_call_streaming) had the same issue as non-streaming: it called _convert_body() which returned empty dict for Pydantic params. Applied the same fix as commit 7476c0ae: - Detect Pydantic model parameters before body conversion - Skip _convert_body() for Pydantic params - Construct Pydantic model directly from raw body (after stripping NOT_GIVENs) This fixes streaming endpoints like openai_chat_completion with stream=True.
This commit is contained in:
parent
9e9a827fcd
commit
a70fc60485
295 changed files with 51966 additions and 3051 deletions
|
@ -12,7 +12,7 @@ from unittest.mock import AsyncMock, MagicMock, Mock, PropertyMock, patch
|
|||
import pytest
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.inference import Model, OpenAIUserMessageParam
|
||||
from llama_stack.apis.inference import Model, OpenAIChatCompletionRequestParams, OpenAIUserMessageParam
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.core.request_headers import request_provider_data_context
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
|
@ -271,7 +271,8 @@ class TestOpenAIMixinImagePreprocessing:
|
|||
with patch("llama_stack.providers.utils.inference.openai_mixin.localize_image_content") as mock_localize:
|
||||
mock_localize.return_value = (b"fake_image_data", "jpeg")
|
||||
|
||||
await mixin.openai_chat_completion(model="test-model", messages=[message])
|
||||
params = OpenAIChatCompletionRequestParams(model="test-model", messages=[message])
|
||||
await mixin.openai_chat_completion(params)
|
||||
|
||||
mock_localize.assert_called_once_with("http://example.com/image.jpg")
|
||||
|
||||
|
@ -303,7 +304,8 @@ class TestOpenAIMixinImagePreprocessing:
|
|||
|
||||
with patch.object(type(mixin), "client", new_callable=PropertyMock, return_value=mock_client):
|
||||
with patch("llama_stack.providers.utils.inference.openai_mixin.localize_image_content") as mock_localize:
|
||||
await mixin.openai_chat_completion(model="test-model", messages=[message])
|
||||
params = OpenAIChatCompletionRequestParams(model="test-model", messages=[message])
|
||||
await mixin.openai_chat_completion(params)
|
||||
|
||||
mock_localize.assert_not_called()
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue