add rp provider

Signed-off-by: pandyamarut <pandyamarut@gmail.com>
This commit is contained in:
pandyamarut 2024-11-03 19:53:22 -05:00
parent 30a753d80a
commit a814755f47

View file

@ -12,7 +12,8 @@ from llama_models.llama3.api.tokenizer import Tokenizer
from openai import OpenAI from openai import OpenAI
from llama_stack.apis.inference import * # noqa: F403 from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.datatypes import ModelsProtocolPrivate # from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import ( from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options, get_sampling_options,
@ -38,43 +39,21 @@ RUNPOD_SUPPORTED_MODELS = {
"Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct", "Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct",
"Llama3.2-1B": "meta-llama/Llama-3.2-1B", "Llama3.2-1B": "meta-llama/Llama-3.2-1B",
"Llama3.2-3B": "meta-llama/Llama-3.2-3B", "Llama3.2-3B": "meta-llama/Llama-3.2-3B",
"Llama3.2-11B-Vision": "meta-llama/Llama-3.2-11B-Vision",
"Llama3.2-90B-Vision": "meta-llama/Llama-3.2-90B-Vision",
"Llama3.2-1B-Instruct": "meta-llama/Llama-3.2-1B-Instruct",
"Llama3.2-3B-Instruct": "meta-llama/Llama-3.2-3B-Instruct",
"Llama3.2-11B-Vision-Instruct": "meta-llama/Llama-3.2-11B-Vision-Instruct",
"Llama3.2-90B-Vision-Instruct": "meta-llama/Llama-3.2-90B-Vision-Instruct",
"Llama-Guard-3-11B-Vision": "meta-llama/Llama-Guard-3-11B-Vision",
"Llama-Guard-3-1B:int4-mp1": "meta-llama/Llama-Guard-3-1B-INT4",
"Llama-Guard-3-1B": "meta-llama/Llama-Guard-3-1B",
"Llama-Guard-3-8B": "meta-llama/Llama-Guard-3-8B",
"Llama-Guard-3-8B:int8-mp1": "meta-llama/Llama-Guard-3-8B-INT8",
"Prompt-Guard-86M": "meta-llama/Prompt-Guard-86M",
"Llama-Guard-2-8B": "meta-llama/Llama-Guard-2-8B",
} }
class RunpodInferenceAdapter(ModelRegistryHelper, Inference):
class RunpodInferenceAdapter(Inference, ModelsProtocolPrivate):
def __init__(self, config: RunpodImplConfig) -> None: def __init__(self, config: RunpodImplConfig) -> None:
ModelRegistryHelper.__init__(
self, stack_to_provider_models_map=RUNPOD_SUPPORTED_MODELS
)
self.config = config self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance()) self.formatter = ChatFormat(Tokenizer.get_instance())
self.client = None
async def initialize(self) -> None: async def initialize(self) -> None:
self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token) return
async def register_model(self, model: ModelDef) -> None:
raise ValueError("Model registration is not supported for Runpod models")
async def shutdown(self) -> None: async def shutdown(self) -> None:
pass pass
async def list_models(self) -> List[ModelDef]:
return [
ModelDef(identifier=model.id, llama_model=model.id)
for model in self.client.models.list()
]
async def completion( async def completion(
self, self,
model: str, model: str,
@ -83,7 +62,7 @@ class RunpodInferenceAdapter(Inference, ModelsProtocolPrivate):
response_format: Optional[ResponseFormat] = None, response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False, stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None, logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, CompletionResponseStreamChunk]: ) -> AsyncGenerator:
raise NotImplementedError() raise NotImplementedError()
async def chat_completion( async def chat_completion(
@ -108,25 +87,25 @@ class RunpodInferenceAdapter(Inference, ModelsProtocolPrivate):
stream=stream, stream=stream,
logprobs=logprobs, logprobs=logprobs,
) )
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
if stream: if stream:
return self._stream_chat_completion(request, self.client) return self._stream_chat_completion(request, client)
else: else:
return await self._nonstream_chat_completion(request, self.client) return await self._nonstream_chat_completion(request, client)
async def _nonstream_chat_completion( async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI self, request: ChatCompletionRequest, client: OpenAI
) -> ChatCompletionResponse: ) -> ChatCompletionResponse:
params = self._get_params(request) params = self._get_params(request)
r = client.completions.create(**params) r = client.completions.create(**params)
return process_chat_completion_response(request, r, self.formatter) return process_chat_completion_response(r, self.formatter)
async def _stream_chat_completion( async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI self, request: ChatCompletionRequest, client: OpenAI
) -> AsyncGenerator: ) -> AsyncGenerator:
params = self._get_params(request) params = self._get_params(request)
# TODO: Can we use client.completions.acreate() or maybe there is another way to directly create an async
# generator so this wrapper is not necessary?
async def _to_async_generator(): async def _to_async_generator():
s = client.completions.create(**params) s = client.completions.create(**params)
for chunk in s: for chunk in s:
@ -134,13 +113,13 @@ class RunpodInferenceAdapter(Inference, ModelsProtocolPrivate):
stream = _to_async_generator() stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response( async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter stream, self.formatter
): ):
yield chunk yield chunk
def _get_params(self, request: ChatCompletionRequest) -> dict: def _get_params(self, request: ChatCompletionRequest) -> dict:
return { return {
"model": RUNPOD_SUPPORTED_MODELS[request.model], "model": self.map_to_provider_model(request.model),
"prompt": chat_completion_request_to_prompt(request, self.formatter), "prompt": chat_completion_request_to_prompt(request, self.formatter),
"stream": request.stream, "stream": request.stream,
**get_sampling_options(request.sampling_params), **get_sampling_options(request.sampling_params),
@ -151,4 +130,4 @@ class RunpodInferenceAdapter(Inference, ModelsProtocolPrivate):
model: str, model: str,
contents: List[InterleavedTextMedia], contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse: ) -> EmbeddingsResponse:
raise NotImplementedError() raise NotImplementedError()