feat: Add a new template for dell (#978)

- Added new template `dell` and its documentation 
- Update docs 
- [minor] uv fix i came across 
- codegen for all templates 

Tested with 

```bash
export INFERENCE_PORT=8181
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
export CHROMADB_HOST=localhost
export CHROMADB_PORT=6601
export CHROMA_URL=[http://$CHROMADB_HOST:$CHROMADB_PORT](about:blank)
export CUDA_VISIBLE_DEVICES=0
export LLAMA_STACK_PORT=8321

# build the stack template 
llama stack build --template=dell 

# start the TGI inference server 
podman run --rm -it --network host -v $HOME/.cache/huggingface:/data -e HF_TOKEN=$HF_TOKEN -p $INFERENCE_PORT:$INFERENCE_PORT --gpus $CUDA_VISIBLE_DEVICES [ghcr.io/huggingface/text-generation-inference](http://ghcr.io/huggingface/text-generation-inference) --dtype bfloat16 --usage-stats off --sharded false --cuda-memory-fraction 0.7 --model-id $INFERENCE_MODEL --port $INFERENCE_PORT --hostname 0.0.0.0

# start chroma-db for vector-io ( aka RAG )
podman run --rm -it --network host --name chromadb -v .:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest --port $CHROMADB_PORT --host $(hostname)

# build docker 
llama stack build --template=dell --image-type=container

# run llama stack server ( via docker )
podman run -it \
--network host \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
# NOTE: mount the llama-stack / llama-model directories if testing local changes 
-v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \ localhost/distribution-dell:dev \
--port $LLAMA_STACK_PORT  \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env DEH_URL=$DEH_URL \
--env CHROMA_URL=$CHROMA_URL

# test the server 
cd <PATH_TO_LLAMA_STACK_REPO>
LLAMA_STACK_BASE_URL=http://0.0.0.0:$LLAMA_STACK_PORT pytest -s -v tests/client-sdk/agents/test_agents.py

```

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
This commit is contained in:
Hardik Shah 2025-02-06 14:14:39 -08:00 committed by GitHub
parent dd1265bea7
commit a84e7669f0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
24 changed files with 1113 additions and 289 deletions

View file

@ -1,3 +1,4 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# NVIDIA Distribution
The `llamastack/distribution-nvidia` distribution consists of the following provider configurations.

View file

@ -1,3 +1,4 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Bedrock Distribution
```{toctree}

View file

@ -1,3 +1,4 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Cerebras Distribution
The `llamastack/distribution-cerebras` distribution consists of the following provider configurations.

View file

@ -0,0 +1,186 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
---
orphan: true
---
# Dell Distribution of Llama Stack
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-dell` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::tgi` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
You can use this distribution if you have GPUs and want to run an independent TGI or Dell Enterprise Hub container for running inference.
### Environment Variables
The following environment variables can be configured:
- `DEH_URL`: URL for the Dell inference server (default: `http://0.0.0.0:8181`)
- `DEH_SAFETY_URL`: URL for the Dell safety inference server (default: `http://0.0.0.0:8282`)
- `CHROMA_URL`: URL for the Chroma server (default: `http://localhost:6601`)
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
## Setting up Inference server using Dell Enterprise Hub's custom TGI container.
NOTE: This is a placeholder to run inference with TGI. This will be updated to use [Dell Enterprise Hub's containers](https://dell.huggingface.co/authenticated/models) once verified.
```bash
export INFERENCE_PORT=8181
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
export CHROMADB_HOST=localhost
export CHROMADB_PORT=6601
export CHROMA_URL=http://$CHROMADB_HOST:$CHROMADB_PORT
export CUDA_VISIBLE_DEVICES=0
export LLAMA_STACK_PORT=8321
docker run --rm -it \
--network host \
-v $HOME/.cache/huggingface:/data \
-e HF_TOKEN=$HF_TOKEN \
-p $INFERENCE_PORT:$INFERENCE_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
ghcr.io/huggingface/text-generation-inference \
--dtype bfloat16 \
--usage-stats off \
--sharded false \
--cuda-memory-fraction 0.7 \
--model-id $INFERENCE_MODEL \
--port $INFERENCE_PORT --hostname 0.0.0.0
```
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
```bash
export SAFETY_INFERENCE_PORT=8282
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
docker run --rm -it \
--network host \
-v $HOME/.cache/huggingface:/data \
-e HF_TOKEN=$HF_TOKEN \
-p $SAFETY_INFERENCE_PORT:$SAFETY_INFERENCE_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
ghcr.io/huggingface/text-generation-inference \
--dtype bfloat16 \
--usage-stats off \
--sharded false \
--cuda-memory-fraction 0.7 \
--model-id $SAFETY_MODEL \
--hostname 0.0.0.0 \
--port $SAFETY_INFERENCE_PORT
```
## Dell distribution relies on ChromaDB for vector database usage
You can start a chroma-db easily using docker.
```bash
# This is where the indices are persisted
mkdir -p $HOME/chromadb
podman run --rm -it \
--network host \
--name chromadb \
-v $HOME/chromadb:/chroma/chroma \
-e IS_PERSISTENT=TRUE \
chromadb/chroma:latest \
--port $CHROMADB_PORT \
--host $CHROMADB_HOST
```
## Running Llama Stack
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
docker run -it \
--network host \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v $HOME/.llama:/root/.llama \
# NOTE: mount the llama-stack / llama-model directories if testing local changes else not needed
-v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \
# localhost/distribution-dell:dev if building / testing locally
llamastack/distribution-dell\
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env DEH_URL=$DEH_URL \
--env CHROMA_URL=$CHROMA_URL
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
export SAFETY_INFERENCE_PORT=8282
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v $HOME/.llama:/root/.llama \
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-dell \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env DEH_URL=$DEH_URL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
--env CHROMA_URL=$CHROMA_URL
```
### Via Conda
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack build --template dell --image-type conda
llama stack run dell
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env DEH_URL=$DEH_URL \
--env CHROMA_URL=$CHROMA_URL
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env DEH_URL=$DEH_URL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
--env CHROMA_URL=$CHROMA_URL
```

View file

@ -1,3 +1,4 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
---
orphan: true
---

View file

@ -1,3 +1,4 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
---
orphan: true
---
@ -82,7 +83,7 @@ docker run \
### Via Conda
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack build --template meta-reference-gpu --image-type conda

View file

@ -1,3 +1,4 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
---
orphan: true
---
@ -82,7 +83,7 @@ docker run \
### Via Conda
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack build --template meta-reference-quantized-gpu --image-type conda

View file

@ -1,3 +1,4 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
---
orphan: true
---
@ -103,7 +104,7 @@ docker run \
### Via Conda
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
export LLAMA_STACK_PORT=5001

View file

@ -1,3 +1,4 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
---
orphan: true
---
@ -131,7 +132,7 @@ docker run \
### Via Conda
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
export INFERENCE_PORT=8000

View file

@ -1,3 +1,4 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
---
orphan: true
---

View file

@ -1,3 +1,4 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
---
orphan: true
---
@ -122,7 +123,7 @@ docker run \
### Via Conda
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack build --template tgi --image-type conda

View file

@ -1,3 +1,4 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
---
orphan: true
---