mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
feat: Add a new template for dell
(#978)
- Added new template `dell` and its documentation - Update docs - [minor] uv fix i came across - codegen for all templates Tested with ```bash export INFERENCE_PORT=8181 export DEH_URL=http://0.0.0.0:$INFERENCE_PORT export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct export CHROMADB_HOST=localhost export CHROMADB_PORT=6601 export CHROMA_URL=[http://$CHROMADB_HOST:$CHROMADB_PORT](about:blank) export CUDA_VISIBLE_DEVICES=0 export LLAMA_STACK_PORT=8321 # build the stack template llama stack build --template=dell # start the TGI inference server podman run --rm -it --network host -v $HOME/.cache/huggingface:/data -e HF_TOKEN=$HF_TOKEN -p $INFERENCE_PORT:$INFERENCE_PORT --gpus $CUDA_VISIBLE_DEVICES [ghcr.io/huggingface/text-generation-inference](http://ghcr.io/huggingface/text-generation-inference) --dtype bfloat16 --usage-stats off --sharded false --cuda-memory-fraction 0.7 --model-id $INFERENCE_MODEL --port $INFERENCE_PORT --hostname 0.0.0.0 # start chroma-db for vector-io ( aka RAG ) podman run --rm -it --network host --name chromadb -v .:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest --port $CHROMADB_PORT --host $(hostname) # build docker llama stack build --template=dell --image-type=container # run llama stack server ( via docker ) podman run -it \ --network host \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ~/.llama:/root/.llama \ # NOTE: mount the llama-stack / llama-model directories if testing local changes -v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \ localhost/distribution-dell:dev \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env DEH_URL=$DEH_URL \ --env CHROMA_URL=$CHROMA_URL # test the server cd <PATH_TO_LLAMA_STACK_REPO> LLAMA_STACK_BASE_URL=http://0.0.0.0:$LLAMA_STACK_PORT pytest -s -v tests/client-sdk/agents/test_agents.py ``` --------- Co-authored-by: Hardik Shah <hjshah@fb.com>
This commit is contained in:
parent
dd1265bea7
commit
a84e7669f0
24 changed files with 1113 additions and 289 deletions
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# NVIDIA Distribution
|
||||
|
||||
The `llamastack/distribution-nvidia` distribution consists of the following provider configurations.
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# Bedrock Distribution
|
||||
|
||||
```{toctree}
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# Cerebras Distribution
|
||||
|
||||
The `llamastack/distribution-cerebras` distribution consists of the following provider configurations.
|
||||
|
|
186
docs/source/distributions/self_hosted_distro/dell.md
Normal file
186
docs/source/distributions/self_hosted_distro/dell.md
Normal file
|
@ -0,0 +1,186 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
||||
# Dell Distribution of Llama Stack
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-dell` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::tgi` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI or Dell Enterprise Hub container for running inference.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `DEH_URL`: URL for the Dell inference server (default: `http://0.0.0.0:8181`)
|
||||
- `DEH_SAFETY_URL`: URL for the Dell safety inference server (default: `http://0.0.0.0:8282`)
|
||||
- `CHROMA_URL`: URL for the Chroma server (default: `http://localhost:6601`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
|
||||
|
||||
## Setting up Inference server using Dell Enterprise Hub's custom TGI container.
|
||||
|
||||
NOTE: This is a placeholder to run inference with TGI. This will be updated to use [Dell Enterprise Hub's containers](https://dell.huggingface.co/authenticated/models) once verified.
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8181
|
||||
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
||||
export CHROMADB_HOST=localhost
|
||||
export CHROMADB_PORT=6601
|
||||
export CHROMA_URL=http://$CHROMADB_HOST:$CHROMADB_PORT
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
export LLAMA_STACK_PORT=8321
|
||||
|
||||
docker run --rm -it \
|
||||
--network host \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-e HF_TOKEN=$HF_TOKEN \
|
||||
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $INFERENCE_MODEL \
|
||||
--port $INFERENCE_PORT --hostname 0.0.0.0
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
export SAFETY_INFERENCE_PORT=8282
|
||||
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
docker run --rm -it \
|
||||
--network host \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-e HF_TOKEN=$HF_TOKEN \
|
||||
-p $SAFETY_INFERENCE_PORT:$SAFETY_INFERENCE_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $SAFETY_MODEL \
|
||||
--hostname 0.0.0.0 \
|
||||
--port $SAFETY_INFERENCE_PORT
|
||||
```
|
||||
|
||||
## Dell distribution relies on ChromaDB for vector database usage
|
||||
|
||||
You can start a chroma-db easily using docker.
|
||||
```bash
|
||||
# This is where the indices are persisted
|
||||
mkdir -p $HOME/chromadb
|
||||
|
||||
podman run --rm -it \
|
||||
--network host \
|
||||
--name chromadb \
|
||||
-v $HOME/chromadb:/chroma/chroma \
|
||||
-e IS_PERSISTENT=TRUE \
|
||||
chromadb/chroma:latest \
|
||||
--port $CHROMADB_PORT \
|
||||
--host $CHROMADB_HOST
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
docker run -it \
|
||||
--network host \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v $HOME/.llama:/root/.llama \
|
||||
# NOTE: mount the llama-stack / llama-model directories if testing local changes else not needed
|
||||
-v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \
|
||||
# localhost/distribution-dell:dev if building / testing locally
|
||||
llamastack/distribution-dell\
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
# You need a local checkout of llama-stack to run this, get it using
|
||||
# git clone https://github.com/meta-llama/llama-stack.git
|
||||
cd /path/to/llama-stack
|
||||
|
||||
export SAFETY_INFERENCE_PORT=8282
|
||||
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v $HOME/.llama:/root/.llama \
|
||||
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-dell \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template dell --image-type conda
|
||||
llama stack run dell
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run ./run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
@ -82,7 +83,7 @@ docker run \
|
|||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template meta-reference-gpu --image-type conda
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
@ -82,7 +83,7 @@ docker run \
|
|||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template meta-reference-quantized-gpu --image-type conda
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
@ -103,7 +104,7 @@ docker run \
|
|||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
@ -131,7 +132,7 @@ docker run \
|
|||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
@ -122,7 +123,7 @@ docker run \
|
|||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
llama stack build --template tgi --image-type conda
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
---
|
||||
orphan: true
|
||||
---
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue