mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
feat: use kv store for metadata
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
This commit is contained in:
parent
655468bbaf
commit
a879b6c12e
4 changed files with 96 additions and 131 deletions
|
@ -9,15 +9,24 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QdrantVectorIOConfig(BaseModel):
|
||||
path: str
|
||||
kvstore: KVStoreConfig
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
|
||||
return {
|
||||
"path": "${env.QDRANT_PATH:=~/.llama/" + __distro_dir__ + "}/" + "qdrant.db",
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="qdrant_store.db",
|
||||
),
|
||||
}
|
||||
|
|
|
@ -8,6 +8,10 @@ from typing import Any
|
|||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
|
@ -23,9 +27,14 @@ class QdrantVectorIOConfig(BaseModel):
|
|||
prefix: str | None = None
|
||||
timeout: int | None = None
|
||||
host: str | None = None
|
||||
kvstore: KVStoreConfig
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs: Any) -> dict[str, Any]:
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": "${env.QDRANT_API_KEY}",
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="qdrant_store.db",
|
||||
),
|
||||
}
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
@ -22,6 +23,7 @@ from llama_stack.apis.vector_io import (
|
|||
)
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
|
||||
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
EmbeddingIndex,
|
||||
|
@ -32,7 +34,13 @@ from .config import QdrantVectorIOConfig as RemoteQdrantVectorIOConfig
|
|||
|
||||
log = logging.getLogger(__name__)
|
||||
CHUNK_ID_KEY = "_chunk_id"
|
||||
OPENAI_VECTOR_STORES_METADATA_COLLECTION = "openai_vector_stores_metadata"
|
||||
|
||||
# KV store prefixes for OpenAI vector stores
|
||||
OPENAI_VECTOR_STORES_PREFIX = "openai_vector_stores:"
|
||||
OPENAI_VECTOR_STORES_FILES_PREFIX = "openai_vector_stores_files:"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = "openai_vector_stores_files_contents:"
|
||||
|
||||
VECTOR_DBS_PREFIX = "vector_dbs:"
|
||||
|
||||
|
||||
def convert_id(_id: str) -> str:
|
||||
|
@ -160,11 +168,28 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self.inference_api = inference_api
|
||||
self.files_api = files_api
|
||||
self.vector_db_store = None
|
||||
self.kvstore: KVStore | None = None
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
|
||||
# Load existing OpenAI vector stores using the mixin method
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
|
||||
# Load existing vector DBs from kvstore
|
||||
start_key = VECTOR_DBS_PREFIX
|
||||
end_key = f"{VECTOR_DBS_PREFIX}\xff"
|
||||
stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key)
|
||||
|
||||
for vector_db_data in stored_vector_dbs:
|
||||
vector_db = VectorDB.model_validate_json(vector_db_data)
|
||||
index = VectorDBWithIndex(
|
||||
vector_db,
|
||||
QdrantIndex(self.client, vector_db.identifier),
|
||||
self.inference_api,
|
||||
)
|
||||
self.cache[vector_db.identifier] = index
|
||||
|
||||
# Load OpenAI vector stores as before
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
|
@ -172,154 +197,73 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
|
||||
# OpenAI Vector Store Mixin abstract method implementations
|
||||
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
|
||||
"""Save vector store metadata to Qdrant collection metadata."""
|
||||
# Store metadata in a special collection for vector store metadata
|
||||
metadata_collection = OPENAI_VECTOR_STORES_METADATA_COLLECTION
|
||||
|
||||
# Create metadata collection if it doesn't exist
|
||||
if not await self.client.collection_exists(metadata_collection):
|
||||
# Use default distance metric for metadata collection
|
||||
distance = models.Distance.COSINE
|
||||
|
||||
await self.client.create_collection(
|
||||
collection_name=metadata_collection,
|
||||
vectors_config=models.VectorParams(size=1, distance=distance),
|
||||
)
|
||||
|
||||
# Store metadata as a point with dummy vector
|
||||
await self.client.upsert(
|
||||
collection_name=metadata_collection,
|
||||
points=[
|
||||
models.PointStruct(
|
||||
id=convert_id(store_id),
|
||||
vector=[0.0], # Dummy vector
|
||||
payload={"metadata": store_info},
|
||||
)
|
||||
],
|
||||
)
|
||||
"""Save vector store metadata to kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(store_info))
|
||||
|
||||
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
|
||||
"""Load all vector store metadata from Qdrant."""
|
||||
metadata_collection = OPENAI_VECTOR_STORES_METADATA_COLLECTION
|
||||
|
||||
if not await self.client.collection_exists(metadata_collection):
|
||||
return {}
|
||||
|
||||
# Get all points from metadata collection
|
||||
points = await self.client.scroll(
|
||||
collection_name=metadata_collection,
|
||||
limit=1000, # Reasonable limit for metadata
|
||||
with_payload=True,
|
||||
)
|
||||
"""Load all vector store metadata from kvstore."""
|
||||
assert self.kvstore is not None
|
||||
start_key = OPENAI_VECTOR_STORES_PREFIX
|
||||
end_key = f"{OPENAI_VECTOR_STORES_PREFIX}\xff"
|
||||
stored_openai_stores = await self.kvstore.values_in_range(start_key, end_key)
|
||||
|
||||
stores = {}
|
||||
for point in points[0]: # points[0] contains the actual points
|
||||
if point.payload and "metadata" in point.payload:
|
||||
store_info = point.payload["metadata"]
|
||||
stores[store_info["id"]] = store_info
|
||||
|
||||
for store_data in stored_openai_stores:
|
||||
store_info = json.loads(store_data)
|
||||
stores[store_info["id"]] = store_info
|
||||
return stores
|
||||
|
||||
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
|
||||
"""Update vector store metadata in Qdrant."""
|
||||
await self._save_openai_vector_store(store_id, store_info)
|
||||
"""Update vector store metadata in kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(store_info))
|
||||
|
||||
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
|
||||
"""Delete vector store metadata from Qdrant."""
|
||||
metadata_collection = OPENAI_VECTOR_STORES_METADATA_COLLECTION
|
||||
|
||||
if await self.client.collection_exists(metadata_collection):
|
||||
await self.client.delete(
|
||||
collection_name=metadata_collection, points_selector=models.PointIdsList(points=[convert_id(store_id)])
|
||||
)
|
||||
"""Delete vector store metadata from kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.delete(key)
|
||||
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
"""Save vector store file metadata to Qdrant collection metadata."""
|
||||
# Store file metadata in a special collection for vector store file metadata
|
||||
file_metadata_collection = f"{OPENAI_VECTOR_STORES_METADATA_COLLECTION}_files"
|
||||
|
||||
# Create file metadata collection if it doesn't exist
|
||||
if not await self.client.collection_exists(file_metadata_collection):
|
||||
distance = models.Distance.COSINE
|
||||
await self.client.create_collection(
|
||||
collection_name=file_metadata_collection,
|
||||
vectors_config=models.VectorParams(size=1, distance=distance),
|
||||
)
|
||||
|
||||
# Store file metadata as a point with dummy vector
|
||||
file_key = f"{store_id}:{file_id}"
|
||||
await self.client.upsert(
|
||||
collection_name=file_metadata_collection,
|
||||
points=[
|
||||
models.PointStruct(
|
||||
id=convert_id(file_key),
|
||||
vector=[0.0], # Dummy vector
|
||||
payload={"file_info": file_info, "file_contents": file_contents},
|
||||
)
|
||||
],
|
||||
)
|
||||
"""Save vector store file metadata to kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(file_info))
|
||||
content_key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=content_key, value=json.dumps(file_contents))
|
||||
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
"""Load vector store file metadata from Qdrant."""
|
||||
file_metadata_collection = f"{OPENAI_VECTOR_STORES_METADATA_COLLECTION}_files"
|
||||
|
||||
if not await self.client.collection_exists(file_metadata_collection):
|
||||
return {}
|
||||
|
||||
file_key = f"{store_id}:{file_id}"
|
||||
points = await self.client.retrieve(
|
||||
collection_name=file_metadata_collection,
|
||||
ids=[convert_id(file_key)],
|
||||
with_payload=True,
|
||||
)
|
||||
|
||||
if points and points[0].payload and "file_info" in points[0].payload:
|
||||
return points[0].payload["file_info"]
|
||||
return {}
|
||||
"""Load vector store file metadata from kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
stored_data = await self.kvstore.get(key)
|
||||
return json.loads(stored_data) if stored_data else {}
|
||||
|
||||
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
|
||||
"""Load vector store file contents from Qdrant."""
|
||||
file_metadata_collection = f"{OPENAI_VECTOR_STORES_METADATA_COLLECTION}_files"
|
||||
|
||||
if not await self.client.collection_exists(file_metadata_collection):
|
||||
return []
|
||||
|
||||
file_key = f"{store_id}:{file_id}"
|
||||
points = await self.client.retrieve(
|
||||
collection_name=file_metadata_collection,
|
||||
ids=[convert_id(file_key)],
|
||||
with_payload=True,
|
||||
)
|
||||
|
||||
if points and points[0].payload and "file_contents" in points[0].payload:
|
||||
return points[0].payload["file_contents"]
|
||||
return []
|
||||
"""Load vector store file contents from kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
|
||||
stored_data = await self.kvstore.get(key)
|
||||
return json.loads(stored_data) if stored_data else []
|
||||
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
"""Update vector store file metadata in Qdrant."""
|
||||
file_metadata_collection = f"{OPENAI_VECTOR_STORES_METADATA_COLLECTION}_files"
|
||||
|
||||
if not await self.client.collection_exists(file_metadata_collection):
|
||||
return
|
||||
|
||||
# Get existing file contents
|
||||
existing_contents = await self._load_openai_vector_store_file_contents(store_id, file_id)
|
||||
|
||||
# Update with new file info but keep existing contents
|
||||
await self._save_openai_vector_store_file(store_id, file_id, file_info, existing_contents)
|
||||
"""Update vector store file metadata in kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(file_info))
|
||||
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
"""Delete vector store file metadata from Qdrant."""
|
||||
file_metadata_collection = f"{OPENAI_VECTOR_STORES_METADATA_COLLECTION}_files"
|
||||
|
||||
if await self.client.collection_exists(file_metadata_collection):
|
||||
file_key = f"{store_id}:{file_id}"
|
||||
await self.client.delete(
|
||||
collection_name=file_metadata_collection,
|
||||
points_selector=models.PointIdsList(points=[convert_id(file_key)]),
|
||||
)
|
||||
"""Delete vector store file metadata from kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.delete(key)
|
||||
content_key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.delete(content_key)
|
||||
|
||||
async def register_vector_db(
|
||||
self,
|
||||
|
|
|
@ -24,6 +24,7 @@ from llama_stack.providers.inline.vector_io.qdrant.config import (
|
|||
from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
|
||||
QdrantVectorIOAdapter,
|
||||
)
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
|
||||
# This test is a unit test for the QdrantVectorIOAdapter class. This should only contain
|
||||
# tests which are specific to this class. More general (API-level) tests should be placed in
|
||||
|
@ -37,7 +38,9 @@ from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
|
|||
|
||||
@pytest.fixture
|
||||
def qdrant_config(tmp_path) -> InlineQdrantVectorIOConfig:
|
||||
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"))
|
||||
kvstore_config = SqliteKVStoreConfig(db_name=os.path.join(tmp_path, "test_kvstore.db"))
|
||||
|
||||
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"), kvstore=kvstore_config)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue