feat: use kv store for metadata

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
This commit is contained in:
Varsha Prasad Narsing 2025-06-26 17:06:57 -07:00
parent 655468bbaf
commit a879b6c12e
4 changed files with 96 additions and 131 deletions

View file

@ -9,15 +9,24 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class QdrantVectorIOConfig(BaseModel):
path: str
kvstore: KVStoreConfig
@classmethod
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
return {
"path": "${env.QDRANT_PATH:=~/.llama/" + __distro_dir__ + "}/" + "qdrant.db",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="qdrant_store.db",
),
}

View file

@ -8,6 +8,10 @@ from typing import Any
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.schema_utils import json_schema_type
@ -23,9 +27,14 @@ class QdrantVectorIOConfig(BaseModel):
prefix: str | None = None
timeout: int | None = None
host: str | None = None
kvstore: KVStoreConfig
@classmethod
def sample_run_config(cls, **kwargs: Any) -> dict[str, Any]:
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"api_key": "${env.QDRANT_API_KEY}",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="qdrant_store.db",
),
}

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import logging
import uuid
from typing import Any
@ -22,6 +23,7 @@ from llama_stack.apis.vector_io import (
)
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
EmbeddingIndex,
@ -32,7 +34,13 @@ from .config import QdrantVectorIOConfig as RemoteQdrantVectorIOConfig
log = logging.getLogger(__name__)
CHUNK_ID_KEY = "_chunk_id"
OPENAI_VECTOR_STORES_METADATA_COLLECTION = "openai_vector_stores_metadata"
# KV store prefixes for OpenAI vector stores
OPENAI_VECTOR_STORES_PREFIX = "openai_vector_stores:"
OPENAI_VECTOR_STORES_FILES_PREFIX = "openai_vector_stores_files:"
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = "openai_vector_stores_files_contents:"
VECTOR_DBS_PREFIX = "vector_dbs:"
def convert_id(_id: str) -> str:
@ -160,11 +168,28 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
self.inference_api = inference_api
self.files_api = files_api
self.vector_db_store = None
self.kvstore: KVStore | None = None
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
async def initialize(self) -> None:
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
# Load existing OpenAI vector stores using the mixin method
self.kvstore = await kvstore_impl(self.config.kvstore)
# Load existing vector DBs from kvstore
start_key = VECTOR_DBS_PREFIX
end_key = f"{VECTOR_DBS_PREFIX}\xff"
stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key)
for vector_db_data in stored_vector_dbs:
vector_db = VectorDB.model_validate_json(vector_db_data)
index = VectorDBWithIndex(
vector_db,
QdrantIndex(self.client, vector_db.identifier),
self.inference_api,
)
self.cache[vector_db.identifier] = index
# Load OpenAI vector stores as before
self.openai_vector_stores = await self._load_openai_vector_stores()
async def shutdown(self) -> None:
@ -172,154 +197,73 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
# OpenAI Vector Store Mixin abstract method implementations
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Save vector store metadata to Qdrant collection metadata."""
# Store metadata in a special collection for vector store metadata
metadata_collection = OPENAI_VECTOR_STORES_METADATA_COLLECTION
# Create metadata collection if it doesn't exist
if not await self.client.collection_exists(metadata_collection):
# Use default distance metric for metadata collection
distance = models.Distance.COSINE
await self.client.create_collection(
collection_name=metadata_collection,
vectors_config=models.VectorParams(size=1, distance=distance),
)
# Store metadata as a point with dummy vector
await self.client.upsert(
collection_name=metadata_collection,
points=[
models.PointStruct(
id=convert_id(store_id),
vector=[0.0], # Dummy vector
payload={"metadata": store_info},
)
],
)
"""Save vector store metadata to kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.set(key=key, value=json.dumps(store_info))
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
"""Load all vector store metadata from Qdrant."""
metadata_collection = OPENAI_VECTOR_STORES_METADATA_COLLECTION
if not await self.client.collection_exists(metadata_collection):
return {}
# Get all points from metadata collection
points = await self.client.scroll(
collection_name=metadata_collection,
limit=1000, # Reasonable limit for metadata
with_payload=True,
)
"""Load all vector store metadata from kvstore."""
assert self.kvstore is not None
start_key = OPENAI_VECTOR_STORES_PREFIX
end_key = f"{OPENAI_VECTOR_STORES_PREFIX}\xff"
stored_openai_stores = await self.kvstore.values_in_range(start_key, end_key)
stores = {}
for point in points[0]: # points[0] contains the actual points
if point.payload and "metadata" in point.payload:
store_info = point.payload["metadata"]
stores[store_info["id"]] = store_info
for store_data in stored_openai_stores:
store_info = json.loads(store_data)
stores[store_info["id"]] = store_info
return stores
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Update vector store metadata in Qdrant."""
await self._save_openai_vector_store(store_id, store_info)
"""Update vector store metadata in kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.set(key=key, value=json.dumps(store_info))
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
"""Delete vector store metadata from Qdrant."""
metadata_collection = OPENAI_VECTOR_STORES_METADATA_COLLECTION
if await self.client.collection_exists(metadata_collection):
await self.client.delete(
collection_name=metadata_collection, points_selector=models.PointIdsList(points=[convert_id(store_id)])
)
"""Delete vector store metadata from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.delete(key)
async def _save_openai_vector_store_file(
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
) -> None:
"""Save vector store file metadata to Qdrant collection metadata."""
# Store file metadata in a special collection for vector store file metadata
file_metadata_collection = f"{OPENAI_VECTOR_STORES_METADATA_COLLECTION}_files"
# Create file metadata collection if it doesn't exist
if not await self.client.collection_exists(file_metadata_collection):
distance = models.Distance.COSINE
await self.client.create_collection(
collection_name=file_metadata_collection,
vectors_config=models.VectorParams(size=1, distance=distance),
)
# Store file metadata as a point with dummy vector
file_key = f"{store_id}:{file_id}"
await self.client.upsert(
collection_name=file_metadata_collection,
points=[
models.PointStruct(
id=convert_id(file_key),
vector=[0.0], # Dummy vector
payload={"file_info": file_info, "file_contents": file_contents},
)
],
)
"""Save vector store file metadata to kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
await self.kvstore.set(key=key, value=json.dumps(file_info))
content_key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
await self.kvstore.set(key=content_key, value=json.dumps(file_contents))
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
"""Load vector store file metadata from Qdrant."""
file_metadata_collection = f"{OPENAI_VECTOR_STORES_METADATA_COLLECTION}_files"
if not await self.client.collection_exists(file_metadata_collection):
return {}
file_key = f"{store_id}:{file_id}"
points = await self.client.retrieve(
collection_name=file_metadata_collection,
ids=[convert_id(file_key)],
with_payload=True,
)
if points and points[0].payload and "file_info" in points[0].payload:
return points[0].payload["file_info"]
return {}
"""Load vector store file metadata from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
stored_data = await self.kvstore.get(key)
return json.loads(stored_data) if stored_data else {}
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
"""Load vector store file contents from Qdrant."""
file_metadata_collection = f"{OPENAI_VECTOR_STORES_METADATA_COLLECTION}_files"
if not await self.client.collection_exists(file_metadata_collection):
return []
file_key = f"{store_id}:{file_id}"
points = await self.client.retrieve(
collection_name=file_metadata_collection,
ids=[convert_id(file_key)],
with_payload=True,
)
if points and points[0].payload and "file_contents" in points[0].payload:
return points[0].payload["file_contents"]
return []
"""Load vector store file contents from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
stored_data = await self.kvstore.get(key)
return json.loads(stored_data) if stored_data else []
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
"""Update vector store file metadata in Qdrant."""
file_metadata_collection = f"{OPENAI_VECTOR_STORES_METADATA_COLLECTION}_files"
if not await self.client.collection_exists(file_metadata_collection):
return
# Get existing file contents
existing_contents = await self._load_openai_vector_store_file_contents(store_id, file_id)
# Update with new file info but keep existing contents
await self._save_openai_vector_store_file(store_id, file_id, file_info, existing_contents)
"""Update vector store file metadata in kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
await self.kvstore.set(key=key, value=json.dumps(file_info))
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
"""Delete vector store file metadata from Qdrant."""
file_metadata_collection = f"{OPENAI_VECTOR_STORES_METADATA_COLLECTION}_files"
if await self.client.collection_exists(file_metadata_collection):
file_key = f"{store_id}:{file_id}"
await self.client.delete(
collection_name=file_metadata_collection,
points_selector=models.PointIdsList(points=[convert_id(file_key)]),
)
"""Delete vector store file metadata from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
await self.kvstore.delete(key)
content_key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
await self.kvstore.delete(content_key)
async def register_vector_db(
self,

View file

@ -24,6 +24,7 @@ from llama_stack.providers.inline.vector_io.qdrant.config import (
from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
QdrantVectorIOAdapter,
)
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
# This test is a unit test for the QdrantVectorIOAdapter class. This should only contain
# tests which are specific to this class. More general (API-level) tests should be placed in
@ -37,7 +38,9 @@ from llama_stack.providers.remote.vector_io.qdrant.qdrant import (
@pytest.fixture
def qdrant_config(tmp_path) -> InlineQdrantVectorIOConfig:
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"))
kvstore_config = SqliteKVStoreConfig(db_name=os.path.join(tmp_path, "test_kvstore.db"))
return InlineQdrantVectorIOConfig(path=os.path.join(tmp_path, "qdrant.db"), kvstore=kvstore_config)
@pytest.fixture(scope="session")