mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
a
This commit is contained in:
parent
b1b93088c5
commit
a9d8fdef90
4 changed files with 319 additions and 63 deletions
|
@ -229,8 +229,8 @@ Before finalizing documentation, verify:
|
||||||
[x] 8. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/vector_dbs/vector_dbs.py` - Vector database management
|
[x] 8. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/vector_dbs/vector_dbs.py` - Vector database management
|
||||||
[x] 9. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/files/files.py` - File management
|
[x] 9. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/files/files.py` - File management
|
||||||
[x] 10. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/datasets/datasets.py` - Dataset management
|
[x] 10. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/datasets/datasets.py` - Dataset management
|
||||||
11. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/datasetio/datasetio.py` - Dataset I/O operations
|
[x] 11. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/datasetio/datasetio.py` - Dataset I/O operations
|
||||||
12. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/post_training/post_training.py` - Training and fine-tuning
|
[x] 12. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/post_training/post_training.py` - Training and fine-tuning
|
||||||
13. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/eval/eval.py` - Evaluation framework
|
13. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/eval/eval.py` - Evaluation framework
|
||||||
14. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/scoring/scoring.py` - Scoring system
|
14. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/scoring/scoring.py` - Scoring system
|
||||||
15. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/scoring_functions/scoring_functions.py` - Scoring function definitions
|
15. `/Users/saip/Documents/GitHub/llama-stack/llama_stack/apis/scoring_functions/scoring_functions.py` - Scoring function definitions
|
||||||
|
|
167
docs/_static/llama-stack-spec.html
vendored
167
docs/_static/llama-stack-spec.html
vendored
|
@ -11252,13 +11252,15 @@
|
||||||
"type": "object",
|
"type": "object",
|
||||||
"properties": {
|
"properties": {
|
||||||
"job_uuid": {
|
"job_uuid": {
|
||||||
"type": "string"
|
"type": "string",
|
||||||
|
"description": "Unique identifier for the training job"
|
||||||
},
|
},
|
||||||
"checkpoints": {
|
"checkpoints": {
|
||||||
"type": "array",
|
"type": "array",
|
||||||
"items": {
|
"items": {
|
||||||
"$ref": "#/components/schemas/Checkpoint"
|
"$ref": "#/components/schemas/Checkpoint"
|
||||||
}
|
},
|
||||||
|
"description": "List of model checkpoints created during training"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"additionalProperties": false,
|
"additionalProperties": false,
|
||||||
|
@ -11273,7 +11275,8 @@
|
||||||
"type": "object",
|
"type": "object",
|
||||||
"properties": {
|
"properties": {
|
||||||
"job_uuid": {
|
"job_uuid": {
|
||||||
"type": "string"
|
"type": "string",
|
||||||
|
"description": "Unique identifier for the training job"
|
||||||
},
|
},
|
||||||
"status": {
|
"status": {
|
||||||
"type": "string",
|
"type": "string",
|
||||||
|
@ -11284,19 +11287,22 @@
|
||||||
"scheduled",
|
"scheduled",
|
||||||
"cancelled"
|
"cancelled"
|
||||||
],
|
],
|
||||||
"title": "JobStatus"
|
"description": "Current status of the training job"
|
||||||
},
|
},
|
||||||
"scheduled_at": {
|
"scheduled_at": {
|
||||||
"type": "string",
|
"type": "string",
|
||||||
"format": "date-time"
|
"format": "date-time",
|
||||||
|
"description": "(Optional) Timestamp when the job was scheduled"
|
||||||
},
|
},
|
||||||
"started_at": {
|
"started_at": {
|
||||||
"type": "string",
|
"type": "string",
|
||||||
"format": "date-time"
|
"format": "date-time",
|
||||||
|
"description": "(Optional) Timestamp when the job execution began"
|
||||||
},
|
},
|
||||||
"completed_at": {
|
"completed_at": {
|
||||||
"type": "string",
|
"type": "string",
|
||||||
"format": "date-time"
|
"format": "date-time",
|
||||||
|
"description": "(Optional) Timestamp when the job finished, if completed"
|
||||||
},
|
},
|
||||||
"resources_allocated": {
|
"resources_allocated": {
|
||||||
"type": "object",
|
"type": "object",
|
||||||
|
@ -11321,13 +11327,15 @@
|
||||||
"type": "object"
|
"type": "object"
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
}
|
},
|
||||||
|
"description": "(Optional) Information about computational resources allocated to the job"
|
||||||
},
|
},
|
||||||
"checkpoints": {
|
"checkpoints": {
|
||||||
"type": "array",
|
"type": "array",
|
||||||
"items": {
|
"items": {
|
||||||
"$ref": "#/components/schemas/Checkpoint"
|
"$ref": "#/components/schemas/Checkpoint"
|
||||||
}
|
},
|
||||||
|
"description": "List of model checkpoints created during training"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"additionalProperties": false,
|
"additionalProperties": false,
|
||||||
|
@ -14644,16 +14652,20 @@
|
||||||
"type": "object",
|
"type": "object",
|
||||||
"properties": {
|
"properties": {
|
||||||
"reward_scale": {
|
"reward_scale": {
|
||||||
"type": "number"
|
"type": "number",
|
||||||
|
"description": "Scaling factor for the reward signal"
|
||||||
},
|
},
|
||||||
"reward_clip": {
|
"reward_clip": {
|
||||||
"type": "number"
|
"type": "number",
|
||||||
|
"description": "Maximum absolute value for reward clipping"
|
||||||
},
|
},
|
||||||
"epsilon": {
|
"epsilon": {
|
||||||
"type": "number"
|
"type": "number",
|
||||||
|
"description": "Small value added for numerical stability"
|
||||||
},
|
},
|
||||||
"gamma": {
|
"gamma": {
|
||||||
"type": "number"
|
"type": "number",
|
||||||
|
"description": "Discount factor for future rewards"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"additionalProperties": false,
|
"additionalProperties": false,
|
||||||
|
@ -14663,33 +14675,41 @@
|
||||||
"epsilon",
|
"epsilon",
|
||||||
"gamma"
|
"gamma"
|
||||||
],
|
],
|
||||||
"title": "DPOAlignmentConfig"
|
"title": "DPOAlignmentConfig",
|
||||||
|
"description": "Configuration for Direct Preference Optimization (DPO) alignment."
|
||||||
},
|
},
|
||||||
"DataConfig": {
|
"DataConfig": {
|
||||||
"type": "object",
|
"type": "object",
|
||||||
"properties": {
|
"properties": {
|
||||||
"dataset_id": {
|
"dataset_id": {
|
||||||
"type": "string"
|
"type": "string",
|
||||||
|
"description": "Unique identifier for the training dataset"
|
||||||
},
|
},
|
||||||
"batch_size": {
|
"batch_size": {
|
||||||
"type": "integer"
|
"type": "integer",
|
||||||
|
"description": "Number of samples per training batch"
|
||||||
},
|
},
|
||||||
"shuffle": {
|
"shuffle": {
|
||||||
"type": "boolean"
|
"type": "boolean",
|
||||||
|
"description": "Whether to shuffle the dataset during training"
|
||||||
},
|
},
|
||||||
"data_format": {
|
"data_format": {
|
||||||
"$ref": "#/components/schemas/DatasetFormat"
|
"$ref": "#/components/schemas/DatasetFormat",
|
||||||
|
"description": "Format of the dataset (instruct or dialog)"
|
||||||
},
|
},
|
||||||
"validation_dataset_id": {
|
"validation_dataset_id": {
|
||||||
"type": "string"
|
"type": "string",
|
||||||
|
"description": "(Optional) Unique identifier for the validation dataset"
|
||||||
},
|
},
|
||||||
"packed": {
|
"packed": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
"default": false
|
"default": false,
|
||||||
|
"description": "(Optional) Whether to pack multiple samples into a single sequence for efficiency"
|
||||||
},
|
},
|
||||||
"train_on_input": {
|
"train_on_input": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
"default": false
|
"default": false,
|
||||||
|
"description": "(Optional) Whether to compute loss on input tokens as well as output tokens"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"additionalProperties": false,
|
"additionalProperties": false,
|
||||||
|
@ -14699,7 +14719,8 @@
|
||||||
"shuffle",
|
"shuffle",
|
||||||
"data_format"
|
"data_format"
|
||||||
],
|
],
|
||||||
"title": "DataConfig"
|
"title": "DataConfig",
|
||||||
|
"description": "Configuration for training data and data loading."
|
||||||
},
|
},
|
||||||
"DatasetFormat": {
|
"DatasetFormat": {
|
||||||
"type": "string",
|
"type": "string",
|
||||||
|
@ -14707,45 +14728,55 @@
|
||||||
"instruct",
|
"instruct",
|
||||||
"dialog"
|
"dialog"
|
||||||
],
|
],
|
||||||
"title": "DatasetFormat"
|
"title": "DatasetFormat",
|
||||||
|
"description": "Format of the training dataset."
|
||||||
},
|
},
|
||||||
"EfficiencyConfig": {
|
"EfficiencyConfig": {
|
||||||
"type": "object",
|
"type": "object",
|
||||||
"properties": {
|
"properties": {
|
||||||
"enable_activation_checkpointing": {
|
"enable_activation_checkpointing": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
"default": false
|
"default": false,
|
||||||
|
"description": "(Optional) Whether to use activation checkpointing to reduce memory usage"
|
||||||
},
|
},
|
||||||
"enable_activation_offloading": {
|
"enable_activation_offloading": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
"default": false
|
"default": false,
|
||||||
|
"description": "(Optional) Whether to offload activations to CPU to save GPU memory"
|
||||||
},
|
},
|
||||||
"memory_efficient_fsdp_wrap": {
|
"memory_efficient_fsdp_wrap": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
"default": false
|
"default": false,
|
||||||
|
"description": "(Optional) Whether to use memory-efficient FSDP wrapping"
|
||||||
},
|
},
|
||||||
"fsdp_cpu_offload": {
|
"fsdp_cpu_offload": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
"default": false
|
"default": false,
|
||||||
|
"description": "(Optional) Whether to offload FSDP parameters to CPU"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"additionalProperties": false,
|
"additionalProperties": false,
|
||||||
"title": "EfficiencyConfig"
|
"title": "EfficiencyConfig",
|
||||||
|
"description": "Configuration for memory and compute efficiency optimizations."
|
||||||
},
|
},
|
||||||
"OptimizerConfig": {
|
"OptimizerConfig": {
|
||||||
"type": "object",
|
"type": "object",
|
||||||
"properties": {
|
"properties": {
|
||||||
"optimizer_type": {
|
"optimizer_type": {
|
||||||
"$ref": "#/components/schemas/OptimizerType"
|
"$ref": "#/components/schemas/OptimizerType",
|
||||||
|
"description": "Type of optimizer to use (adam, adamw, or sgd)"
|
||||||
},
|
},
|
||||||
"lr": {
|
"lr": {
|
||||||
"type": "number"
|
"type": "number",
|
||||||
|
"description": "Learning rate for the optimizer"
|
||||||
},
|
},
|
||||||
"weight_decay": {
|
"weight_decay": {
|
||||||
"type": "number"
|
"type": "number",
|
||||||
|
"description": "Weight decay coefficient for regularization"
|
||||||
},
|
},
|
||||||
"num_warmup_steps": {
|
"num_warmup_steps": {
|
||||||
"type": "integer"
|
"type": "integer",
|
||||||
|
"description": "Number of steps for learning rate warmup"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"additionalProperties": false,
|
"additionalProperties": false,
|
||||||
|
@ -14755,7 +14786,8 @@
|
||||||
"weight_decay",
|
"weight_decay",
|
||||||
"num_warmup_steps"
|
"num_warmup_steps"
|
||||||
],
|
],
|
||||||
"title": "OptimizerConfig"
|
"title": "OptimizerConfig",
|
||||||
|
"description": "Configuration parameters for the optimization algorithm."
|
||||||
},
|
},
|
||||||
"OptimizerType": {
|
"OptimizerType": {
|
||||||
"type": "string",
|
"type": "string",
|
||||||
|
@ -14764,38 +14796,47 @@
|
||||||
"adamw",
|
"adamw",
|
||||||
"sgd"
|
"sgd"
|
||||||
],
|
],
|
||||||
"title": "OptimizerType"
|
"title": "OptimizerType",
|
||||||
|
"description": "Available optimizer algorithms for training."
|
||||||
},
|
},
|
||||||
"TrainingConfig": {
|
"TrainingConfig": {
|
||||||
"type": "object",
|
"type": "object",
|
||||||
"properties": {
|
"properties": {
|
||||||
"n_epochs": {
|
"n_epochs": {
|
||||||
"type": "integer"
|
"type": "integer",
|
||||||
|
"description": "Number of training epochs to run"
|
||||||
},
|
},
|
||||||
"max_steps_per_epoch": {
|
"max_steps_per_epoch": {
|
||||||
"type": "integer",
|
"type": "integer",
|
||||||
"default": 1
|
"default": 1,
|
||||||
|
"description": "Maximum number of steps to run per epoch"
|
||||||
},
|
},
|
||||||
"gradient_accumulation_steps": {
|
"gradient_accumulation_steps": {
|
||||||
"type": "integer",
|
"type": "integer",
|
||||||
"default": 1
|
"default": 1,
|
||||||
|
"description": "Number of steps to accumulate gradients before updating"
|
||||||
},
|
},
|
||||||
"max_validation_steps": {
|
"max_validation_steps": {
|
||||||
"type": "integer",
|
"type": "integer",
|
||||||
"default": 1
|
"default": 1,
|
||||||
|
"description": "(Optional) Maximum number of validation steps per epoch"
|
||||||
},
|
},
|
||||||
"data_config": {
|
"data_config": {
|
||||||
"$ref": "#/components/schemas/DataConfig"
|
"$ref": "#/components/schemas/DataConfig",
|
||||||
|
"description": "(Optional) Configuration for data loading and formatting"
|
||||||
},
|
},
|
||||||
"optimizer_config": {
|
"optimizer_config": {
|
||||||
"$ref": "#/components/schemas/OptimizerConfig"
|
"$ref": "#/components/schemas/OptimizerConfig",
|
||||||
|
"description": "(Optional) Configuration for the optimization algorithm"
|
||||||
},
|
},
|
||||||
"efficiency_config": {
|
"efficiency_config": {
|
||||||
"$ref": "#/components/schemas/EfficiencyConfig"
|
"$ref": "#/components/schemas/EfficiencyConfig",
|
||||||
|
"description": "(Optional) Configuration for memory and compute optimizations"
|
||||||
},
|
},
|
||||||
"dtype": {
|
"dtype": {
|
||||||
"type": "string",
|
"type": "string",
|
||||||
"default": "bf16"
|
"default": "bf16",
|
||||||
|
"description": "(Optional) Data type for model parameters (bf16, fp16, fp32)"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"additionalProperties": false,
|
"additionalProperties": false,
|
||||||
|
@ -14804,7 +14845,8 @@
|
||||||
"max_steps_per_epoch",
|
"max_steps_per_epoch",
|
||||||
"gradient_accumulation_steps"
|
"gradient_accumulation_steps"
|
||||||
],
|
],
|
||||||
"title": "TrainingConfig"
|
"title": "TrainingConfig",
|
||||||
|
"description": "Comprehensive configuration for the training process."
|
||||||
},
|
},
|
||||||
"PreferenceOptimizeRequest": {
|
"PreferenceOptimizeRequest": {
|
||||||
"type": "object",
|
"type": "object",
|
||||||
|
@ -16101,33 +16143,41 @@
|
||||||
"type": {
|
"type": {
|
||||||
"type": "string",
|
"type": "string",
|
||||||
"const": "LoRA",
|
"const": "LoRA",
|
||||||
"default": "LoRA"
|
"default": "LoRA",
|
||||||
|
"description": "Algorithm type identifier, always \"LoRA\""
|
||||||
},
|
},
|
||||||
"lora_attn_modules": {
|
"lora_attn_modules": {
|
||||||
"type": "array",
|
"type": "array",
|
||||||
"items": {
|
"items": {
|
||||||
"type": "string"
|
"type": "string"
|
||||||
}
|
},
|
||||||
|
"description": "List of attention module names to apply LoRA to"
|
||||||
},
|
},
|
||||||
"apply_lora_to_mlp": {
|
"apply_lora_to_mlp": {
|
||||||
"type": "boolean"
|
"type": "boolean",
|
||||||
|
"description": "Whether to apply LoRA to MLP layers"
|
||||||
},
|
},
|
||||||
"apply_lora_to_output": {
|
"apply_lora_to_output": {
|
||||||
"type": "boolean"
|
"type": "boolean",
|
||||||
|
"description": "Whether to apply LoRA to output projection layers"
|
||||||
},
|
},
|
||||||
"rank": {
|
"rank": {
|
||||||
"type": "integer"
|
"type": "integer",
|
||||||
|
"description": "Rank of the LoRA adaptation (lower rank = fewer parameters)"
|
||||||
},
|
},
|
||||||
"alpha": {
|
"alpha": {
|
||||||
"type": "integer"
|
"type": "integer",
|
||||||
|
"description": "LoRA scaling parameter that controls adaptation strength"
|
||||||
},
|
},
|
||||||
"use_dora": {
|
"use_dora": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
"default": false
|
"default": false,
|
||||||
|
"description": "(Optional) Whether to use DoRA (Weight-Decomposed Low-Rank Adaptation)"
|
||||||
},
|
},
|
||||||
"quantize_base": {
|
"quantize_base": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
"default": false
|
"default": false,
|
||||||
|
"description": "(Optional) Whether to quantize the base model weights"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"additionalProperties": false,
|
"additionalProperties": false,
|
||||||
|
@ -16139,7 +16189,8 @@
|
||||||
"rank",
|
"rank",
|
||||||
"alpha"
|
"alpha"
|
||||||
],
|
],
|
||||||
"title": "LoraFinetuningConfig"
|
"title": "LoraFinetuningConfig",
|
||||||
|
"description": "Configuration for Low-Rank Adaptation (LoRA) fine-tuning."
|
||||||
},
|
},
|
||||||
"QATFinetuningConfig": {
|
"QATFinetuningConfig": {
|
||||||
"type": "object",
|
"type": "object",
|
||||||
|
@ -16147,13 +16198,16 @@
|
||||||
"type": {
|
"type": {
|
||||||
"type": "string",
|
"type": "string",
|
||||||
"const": "QAT",
|
"const": "QAT",
|
||||||
"default": "QAT"
|
"default": "QAT",
|
||||||
|
"description": "Algorithm type identifier, always \"QAT\""
|
||||||
},
|
},
|
||||||
"quantizer_name": {
|
"quantizer_name": {
|
||||||
"type": "string"
|
"type": "string",
|
||||||
|
"description": "Name of the quantization algorithm to use"
|
||||||
},
|
},
|
||||||
"group_size": {
|
"group_size": {
|
||||||
"type": "integer"
|
"type": "integer",
|
||||||
|
"description": "Size of groups for grouped quantization"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"additionalProperties": false,
|
"additionalProperties": false,
|
||||||
|
@ -16162,7 +16216,8 @@
|
||||||
"quantizer_name",
|
"quantizer_name",
|
||||||
"group_size"
|
"group_size"
|
||||||
],
|
],
|
||||||
"title": "QATFinetuningConfig"
|
"title": "QATFinetuningConfig",
|
||||||
|
"description": "Configuration for Quantization-Aware Training (QAT) fine-tuning."
|
||||||
},
|
},
|
||||||
"SupervisedFineTuneRequest": {
|
"SupervisedFineTuneRequest": {
|
||||||
"type": "object",
|
"type": "object",
|
||||||
|
|
100
docs/_static/llama-stack-spec.yaml
vendored
100
docs/_static/llama-stack-spec.yaml
vendored
|
@ -8064,10 +8064,13 @@ components:
|
||||||
properties:
|
properties:
|
||||||
job_uuid:
|
job_uuid:
|
||||||
type: string
|
type: string
|
||||||
|
description: Unique identifier for the training job
|
||||||
checkpoints:
|
checkpoints:
|
||||||
type: array
|
type: array
|
||||||
items:
|
items:
|
||||||
$ref: '#/components/schemas/Checkpoint'
|
$ref: '#/components/schemas/Checkpoint'
|
||||||
|
description: >-
|
||||||
|
List of model checkpoints created during training
|
||||||
additionalProperties: false
|
additionalProperties: false
|
||||||
required:
|
required:
|
||||||
- job_uuid
|
- job_uuid
|
||||||
|
@ -8079,6 +8082,7 @@ components:
|
||||||
properties:
|
properties:
|
||||||
job_uuid:
|
job_uuid:
|
||||||
type: string
|
type: string
|
||||||
|
description: Unique identifier for the training job
|
||||||
status:
|
status:
|
||||||
type: string
|
type: string
|
||||||
enum:
|
enum:
|
||||||
|
@ -8087,16 +8091,22 @@ components:
|
||||||
- failed
|
- failed
|
||||||
- scheduled
|
- scheduled
|
||||||
- cancelled
|
- cancelled
|
||||||
title: JobStatus
|
description: Current status of the training job
|
||||||
scheduled_at:
|
scheduled_at:
|
||||||
type: string
|
type: string
|
||||||
format: date-time
|
format: date-time
|
||||||
|
description: >-
|
||||||
|
(Optional) Timestamp when the job was scheduled
|
||||||
started_at:
|
started_at:
|
||||||
type: string
|
type: string
|
||||||
format: date-time
|
format: date-time
|
||||||
|
description: >-
|
||||||
|
(Optional) Timestamp when the job execution began
|
||||||
completed_at:
|
completed_at:
|
||||||
type: string
|
type: string
|
||||||
format: date-time
|
format: date-time
|
||||||
|
description: >-
|
||||||
|
(Optional) Timestamp when the job finished, if completed
|
||||||
resources_allocated:
|
resources_allocated:
|
||||||
type: object
|
type: object
|
||||||
additionalProperties:
|
additionalProperties:
|
||||||
|
@ -8107,10 +8117,15 @@ components:
|
||||||
- type: string
|
- type: string
|
||||||
- type: array
|
- type: array
|
||||||
- type: object
|
- type: object
|
||||||
|
description: >-
|
||||||
|
(Optional) Information about computational resources allocated to the
|
||||||
|
job
|
||||||
checkpoints:
|
checkpoints:
|
||||||
type: array
|
type: array
|
||||||
items:
|
items:
|
||||||
$ref: '#/components/schemas/Checkpoint'
|
$ref: '#/components/schemas/Checkpoint'
|
||||||
|
description: >-
|
||||||
|
List of model checkpoints created during training
|
||||||
additionalProperties: false
|
additionalProperties: false
|
||||||
required:
|
required:
|
||||||
- job_uuid
|
- job_uuid
|
||||||
|
@ -10491,12 +10506,18 @@ components:
|
||||||
properties:
|
properties:
|
||||||
reward_scale:
|
reward_scale:
|
||||||
type: number
|
type: number
|
||||||
|
description: Scaling factor for the reward signal
|
||||||
reward_clip:
|
reward_clip:
|
||||||
type: number
|
type: number
|
||||||
|
description: >-
|
||||||
|
Maximum absolute value for reward clipping
|
||||||
epsilon:
|
epsilon:
|
||||||
type: number
|
type: number
|
||||||
|
description: >-
|
||||||
|
Small value added for numerical stability
|
||||||
gamma:
|
gamma:
|
||||||
type: number
|
type: number
|
||||||
|
description: Discount factor for future rewards
|
||||||
additionalProperties: false
|
additionalProperties: false
|
||||||
required:
|
required:
|
||||||
- reward_scale
|
- reward_scale
|
||||||
|
@ -10504,25 +10525,41 @@ components:
|
||||||
- epsilon
|
- epsilon
|
||||||
- gamma
|
- gamma
|
||||||
title: DPOAlignmentConfig
|
title: DPOAlignmentConfig
|
||||||
|
description: >-
|
||||||
|
Configuration for Direct Preference Optimization (DPO) alignment.
|
||||||
DataConfig:
|
DataConfig:
|
||||||
type: object
|
type: object
|
||||||
properties:
|
properties:
|
||||||
dataset_id:
|
dataset_id:
|
||||||
type: string
|
type: string
|
||||||
|
description: >-
|
||||||
|
Unique identifier for the training dataset
|
||||||
batch_size:
|
batch_size:
|
||||||
type: integer
|
type: integer
|
||||||
|
description: Number of samples per training batch
|
||||||
shuffle:
|
shuffle:
|
||||||
type: boolean
|
type: boolean
|
||||||
|
description: >-
|
||||||
|
Whether to shuffle the dataset during training
|
||||||
data_format:
|
data_format:
|
||||||
$ref: '#/components/schemas/DatasetFormat'
|
$ref: '#/components/schemas/DatasetFormat'
|
||||||
|
description: >-
|
||||||
|
Format of the dataset (instruct or dialog)
|
||||||
validation_dataset_id:
|
validation_dataset_id:
|
||||||
type: string
|
type: string
|
||||||
|
description: >-
|
||||||
|
(Optional) Unique identifier for the validation dataset
|
||||||
packed:
|
packed:
|
||||||
type: boolean
|
type: boolean
|
||||||
default: false
|
default: false
|
||||||
|
description: >-
|
||||||
|
(Optional) Whether to pack multiple samples into a single sequence for
|
||||||
|
efficiency
|
||||||
train_on_input:
|
train_on_input:
|
||||||
type: boolean
|
type: boolean
|
||||||
default: false
|
default: false
|
||||||
|
description: >-
|
||||||
|
(Optional) Whether to compute loss on input tokens as well as output tokens
|
||||||
additionalProperties: false
|
additionalProperties: false
|
||||||
required:
|
required:
|
||||||
- dataset_id
|
- dataset_id
|
||||||
|
@ -10530,40 +10567,59 @@ components:
|
||||||
- shuffle
|
- shuffle
|
||||||
- data_format
|
- data_format
|
||||||
title: DataConfig
|
title: DataConfig
|
||||||
|
description: >-
|
||||||
|
Configuration for training data and data loading.
|
||||||
DatasetFormat:
|
DatasetFormat:
|
||||||
type: string
|
type: string
|
||||||
enum:
|
enum:
|
||||||
- instruct
|
- instruct
|
||||||
- dialog
|
- dialog
|
||||||
title: DatasetFormat
|
title: DatasetFormat
|
||||||
|
description: Format of the training dataset.
|
||||||
EfficiencyConfig:
|
EfficiencyConfig:
|
||||||
type: object
|
type: object
|
||||||
properties:
|
properties:
|
||||||
enable_activation_checkpointing:
|
enable_activation_checkpointing:
|
||||||
type: boolean
|
type: boolean
|
||||||
default: false
|
default: false
|
||||||
|
description: >-
|
||||||
|
(Optional) Whether to use activation checkpointing to reduce memory usage
|
||||||
enable_activation_offloading:
|
enable_activation_offloading:
|
||||||
type: boolean
|
type: boolean
|
||||||
default: false
|
default: false
|
||||||
|
description: >-
|
||||||
|
(Optional) Whether to offload activations to CPU to save GPU memory
|
||||||
memory_efficient_fsdp_wrap:
|
memory_efficient_fsdp_wrap:
|
||||||
type: boolean
|
type: boolean
|
||||||
default: false
|
default: false
|
||||||
|
description: >-
|
||||||
|
(Optional) Whether to use memory-efficient FSDP wrapping
|
||||||
fsdp_cpu_offload:
|
fsdp_cpu_offload:
|
||||||
type: boolean
|
type: boolean
|
||||||
default: false
|
default: false
|
||||||
|
description: >-
|
||||||
|
(Optional) Whether to offload FSDP parameters to CPU
|
||||||
additionalProperties: false
|
additionalProperties: false
|
||||||
title: EfficiencyConfig
|
title: EfficiencyConfig
|
||||||
|
description: >-
|
||||||
|
Configuration for memory and compute efficiency optimizations.
|
||||||
OptimizerConfig:
|
OptimizerConfig:
|
||||||
type: object
|
type: object
|
||||||
properties:
|
properties:
|
||||||
optimizer_type:
|
optimizer_type:
|
||||||
$ref: '#/components/schemas/OptimizerType'
|
$ref: '#/components/schemas/OptimizerType'
|
||||||
|
description: >-
|
||||||
|
Type of optimizer to use (adam, adamw, or sgd)
|
||||||
lr:
|
lr:
|
||||||
type: number
|
type: number
|
||||||
|
description: Learning rate for the optimizer
|
||||||
weight_decay:
|
weight_decay:
|
||||||
type: number
|
type: number
|
||||||
|
description: >-
|
||||||
|
Weight decay coefficient for regularization
|
||||||
num_warmup_steps:
|
num_warmup_steps:
|
||||||
type: integer
|
type: integer
|
||||||
|
description: Number of steps for learning rate warmup
|
||||||
additionalProperties: false
|
additionalProperties: false
|
||||||
required:
|
required:
|
||||||
- optimizer_type
|
- optimizer_type
|
||||||
|
@ -10571,6 +10627,8 @@ components:
|
||||||
- weight_decay
|
- weight_decay
|
||||||
- num_warmup_steps
|
- num_warmup_steps
|
||||||
title: OptimizerConfig
|
title: OptimizerConfig
|
||||||
|
description: >-
|
||||||
|
Configuration parameters for the optimization algorithm.
|
||||||
OptimizerType:
|
OptimizerType:
|
||||||
type: string
|
type: string
|
||||||
enum:
|
enum:
|
||||||
|
@ -10578,35 +10636,53 @@ components:
|
||||||
- adamw
|
- adamw
|
||||||
- sgd
|
- sgd
|
||||||
title: OptimizerType
|
title: OptimizerType
|
||||||
|
description: >-
|
||||||
|
Available optimizer algorithms for training.
|
||||||
TrainingConfig:
|
TrainingConfig:
|
||||||
type: object
|
type: object
|
||||||
properties:
|
properties:
|
||||||
n_epochs:
|
n_epochs:
|
||||||
type: integer
|
type: integer
|
||||||
|
description: Number of training epochs to run
|
||||||
max_steps_per_epoch:
|
max_steps_per_epoch:
|
||||||
type: integer
|
type: integer
|
||||||
default: 1
|
default: 1
|
||||||
|
description: Maximum number of steps to run per epoch
|
||||||
gradient_accumulation_steps:
|
gradient_accumulation_steps:
|
||||||
type: integer
|
type: integer
|
||||||
default: 1
|
default: 1
|
||||||
|
description: >-
|
||||||
|
Number of steps to accumulate gradients before updating
|
||||||
max_validation_steps:
|
max_validation_steps:
|
||||||
type: integer
|
type: integer
|
||||||
default: 1
|
default: 1
|
||||||
|
description: >-
|
||||||
|
(Optional) Maximum number of validation steps per epoch
|
||||||
data_config:
|
data_config:
|
||||||
$ref: '#/components/schemas/DataConfig'
|
$ref: '#/components/schemas/DataConfig'
|
||||||
|
description: >-
|
||||||
|
(Optional) Configuration for data loading and formatting
|
||||||
optimizer_config:
|
optimizer_config:
|
||||||
$ref: '#/components/schemas/OptimizerConfig'
|
$ref: '#/components/schemas/OptimizerConfig'
|
||||||
|
description: >-
|
||||||
|
(Optional) Configuration for the optimization algorithm
|
||||||
efficiency_config:
|
efficiency_config:
|
||||||
$ref: '#/components/schemas/EfficiencyConfig'
|
$ref: '#/components/schemas/EfficiencyConfig'
|
||||||
|
description: >-
|
||||||
|
(Optional) Configuration for memory and compute optimizations
|
||||||
dtype:
|
dtype:
|
||||||
type: string
|
type: string
|
||||||
default: bf16
|
default: bf16
|
||||||
|
description: >-
|
||||||
|
(Optional) Data type for model parameters (bf16, fp16, fp32)
|
||||||
additionalProperties: false
|
additionalProperties: false
|
||||||
required:
|
required:
|
||||||
- n_epochs
|
- n_epochs
|
||||||
- max_steps_per_epoch
|
- max_steps_per_epoch
|
||||||
- gradient_accumulation_steps
|
- gradient_accumulation_steps
|
||||||
title: TrainingConfig
|
title: TrainingConfig
|
||||||
|
description: >-
|
||||||
|
Comprehensive configuration for the training process.
|
||||||
PreferenceOptimizeRequest:
|
PreferenceOptimizeRequest:
|
||||||
type: object
|
type: object
|
||||||
properties:
|
properties:
|
||||||
|
@ -11535,24 +11611,38 @@ components:
|
||||||
type: string
|
type: string
|
||||||
const: LoRA
|
const: LoRA
|
||||||
default: LoRA
|
default: LoRA
|
||||||
|
description: Algorithm type identifier, always "LoRA"
|
||||||
lora_attn_modules:
|
lora_attn_modules:
|
||||||
type: array
|
type: array
|
||||||
items:
|
items:
|
||||||
type: string
|
type: string
|
||||||
|
description: >-
|
||||||
|
List of attention module names to apply LoRA to
|
||||||
apply_lora_to_mlp:
|
apply_lora_to_mlp:
|
||||||
type: boolean
|
type: boolean
|
||||||
|
description: Whether to apply LoRA to MLP layers
|
||||||
apply_lora_to_output:
|
apply_lora_to_output:
|
||||||
type: boolean
|
type: boolean
|
||||||
|
description: >-
|
||||||
|
Whether to apply LoRA to output projection layers
|
||||||
rank:
|
rank:
|
||||||
type: integer
|
type: integer
|
||||||
|
description: >-
|
||||||
|
Rank of the LoRA adaptation (lower rank = fewer parameters)
|
||||||
alpha:
|
alpha:
|
||||||
type: integer
|
type: integer
|
||||||
|
description: >-
|
||||||
|
LoRA scaling parameter that controls adaptation strength
|
||||||
use_dora:
|
use_dora:
|
||||||
type: boolean
|
type: boolean
|
||||||
default: false
|
default: false
|
||||||
|
description: >-
|
||||||
|
(Optional) Whether to use DoRA (Weight-Decomposed Low-Rank Adaptation)
|
||||||
quantize_base:
|
quantize_base:
|
||||||
type: boolean
|
type: boolean
|
||||||
default: false
|
default: false
|
||||||
|
description: >-
|
||||||
|
(Optional) Whether to quantize the base model weights
|
||||||
additionalProperties: false
|
additionalProperties: false
|
||||||
required:
|
required:
|
||||||
- type
|
- type
|
||||||
|
@ -11562,6 +11652,8 @@ components:
|
||||||
- rank
|
- rank
|
||||||
- alpha
|
- alpha
|
||||||
title: LoraFinetuningConfig
|
title: LoraFinetuningConfig
|
||||||
|
description: >-
|
||||||
|
Configuration for Low-Rank Adaptation (LoRA) fine-tuning.
|
||||||
QATFinetuningConfig:
|
QATFinetuningConfig:
|
||||||
type: object
|
type: object
|
||||||
properties:
|
properties:
|
||||||
|
@ -11569,16 +11661,22 @@ components:
|
||||||
type: string
|
type: string
|
||||||
const: QAT
|
const: QAT
|
||||||
default: QAT
|
default: QAT
|
||||||
|
description: Algorithm type identifier, always "QAT"
|
||||||
quantizer_name:
|
quantizer_name:
|
||||||
type: string
|
type: string
|
||||||
|
description: >-
|
||||||
|
Name of the quantization algorithm to use
|
||||||
group_size:
|
group_size:
|
||||||
type: integer
|
type: integer
|
||||||
|
description: Size of groups for grouped quantization
|
||||||
additionalProperties: false
|
additionalProperties: false
|
||||||
required:
|
required:
|
||||||
- type
|
- type
|
||||||
- quantizer_name
|
- quantizer_name
|
||||||
- group_size
|
- group_size
|
||||||
title: QATFinetuningConfig
|
title: QATFinetuningConfig
|
||||||
|
description: >-
|
||||||
|
Configuration for Quantization-Aware Training (QAT) fine-tuning.
|
||||||
SupervisedFineTuneRequest:
|
SupervisedFineTuneRequest:
|
||||||
type: object
|
type: object
|
||||||
properties:
|
properties:
|
||||||
|
|
|
@ -18,6 +18,12 @@ from llama_stack.schema_utils import json_schema_type, register_schema, webmetho
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class OptimizerType(Enum):
|
class OptimizerType(Enum):
|
||||||
|
"""Available optimizer algorithms for training.
|
||||||
|
|
||||||
|
:cvar adam: Adaptive Moment Estimation optimizer
|
||||||
|
:cvar adamw: AdamW optimizer with weight decay
|
||||||
|
:cvar sgd: Stochastic Gradient Descent optimizer
|
||||||
|
"""
|
||||||
adam = "adam"
|
adam = "adam"
|
||||||
adamw = "adamw"
|
adamw = "adamw"
|
||||||
sgd = "sgd"
|
sgd = "sgd"
|
||||||
|
@ -25,12 +31,27 @@ class OptimizerType(Enum):
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class DatasetFormat(Enum):
|
class DatasetFormat(Enum):
|
||||||
|
"""Format of the training dataset.
|
||||||
|
|
||||||
|
:cvar instruct: Instruction-following format with prompt and completion
|
||||||
|
:cvar dialog: Multi-turn conversation format with messages
|
||||||
|
"""
|
||||||
instruct = "instruct"
|
instruct = "instruct"
|
||||||
dialog = "dialog"
|
dialog = "dialog"
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class DataConfig(BaseModel):
|
class DataConfig(BaseModel):
|
||||||
|
"""Configuration for training data and data loading.
|
||||||
|
|
||||||
|
:param dataset_id: Unique identifier for the training dataset
|
||||||
|
:param batch_size: Number of samples per training batch
|
||||||
|
:param shuffle: Whether to shuffle the dataset during training
|
||||||
|
:param data_format: Format of the dataset (instruct or dialog)
|
||||||
|
:param validation_dataset_id: (Optional) Unique identifier for the validation dataset
|
||||||
|
:param packed: (Optional) Whether to pack multiple samples into a single sequence for efficiency
|
||||||
|
:param train_on_input: (Optional) Whether to compute loss on input tokens as well as output tokens
|
||||||
|
"""
|
||||||
dataset_id: str
|
dataset_id: str
|
||||||
batch_size: int
|
batch_size: int
|
||||||
shuffle: bool
|
shuffle: bool
|
||||||
|
@ -42,6 +63,13 @@ class DataConfig(BaseModel):
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class OptimizerConfig(BaseModel):
|
class OptimizerConfig(BaseModel):
|
||||||
|
"""Configuration parameters for the optimization algorithm.
|
||||||
|
|
||||||
|
:param optimizer_type: Type of optimizer to use (adam, adamw, or sgd)
|
||||||
|
:param lr: Learning rate for the optimizer
|
||||||
|
:param weight_decay: Weight decay coefficient for regularization
|
||||||
|
:param num_warmup_steps: Number of steps for learning rate warmup
|
||||||
|
"""
|
||||||
optimizer_type: OptimizerType
|
optimizer_type: OptimizerType
|
||||||
lr: float
|
lr: float
|
||||||
weight_decay: float
|
weight_decay: float
|
||||||
|
@ -50,6 +78,13 @@ class OptimizerConfig(BaseModel):
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class EfficiencyConfig(BaseModel):
|
class EfficiencyConfig(BaseModel):
|
||||||
|
"""Configuration for memory and compute efficiency optimizations.
|
||||||
|
|
||||||
|
:param enable_activation_checkpointing: (Optional) Whether to use activation checkpointing to reduce memory usage
|
||||||
|
:param enable_activation_offloading: (Optional) Whether to offload activations to CPU to save GPU memory
|
||||||
|
:param memory_efficient_fsdp_wrap: (Optional) Whether to use memory-efficient FSDP wrapping
|
||||||
|
:param fsdp_cpu_offload: (Optional) Whether to offload FSDP parameters to CPU
|
||||||
|
"""
|
||||||
enable_activation_checkpointing: bool | None = False
|
enable_activation_checkpointing: bool | None = False
|
||||||
enable_activation_offloading: bool | None = False
|
enable_activation_offloading: bool | None = False
|
||||||
memory_efficient_fsdp_wrap: bool | None = False
|
memory_efficient_fsdp_wrap: bool | None = False
|
||||||
|
@ -58,6 +93,17 @@ class EfficiencyConfig(BaseModel):
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class TrainingConfig(BaseModel):
|
class TrainingConfig(BaseModel):
|
||||||
|
"""Comprehensive configuration for the training process.
|
||||||
|
|
||||||
|
:param n_epochs: Number of training epochs to run
|
||||||
|
:param max_steps_per_epoch: Maximum number of steps to run per epoch
|
||||||
|
:param gradient_accumulation_steps: Number of steps to accumulate gradients before updating
|
||||||
|
:param max_validation_steps: (Optional) Maximum number of validation steps per epoch
|
||||||
|
:param data_config: (Optional) Configuration for data loading and formatting
|
||||||
|
:param optimizer_config: (Optional) Configuration for the optimization algorithm
|
||||||
|
:param efficiency_config: (Optional) Configuration for memory and compute optimizations
|
||||||
|
:param dtype: (Optional) Data type for model parameters (bf16, fp16, fp32)
|
||||||
|
"""
|
||||||
n_epochs: int
|
n_epochs: int
|
||||||
max_steps_per_epoch: int = 1
|
max_steps_per_epoch: int = 1
|
||||||
gradient_accumulation_steps: int = 1
|
gradient_accumulation_steps: int = 1
|
||||||
|
@ -70,6 +116,17 @@ class TrainingConfig(BaseModel):
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class LoraFinetuningConfig(BaseModel):
|
class LoraFinetuningConfig(BaseModel):
|
||||||
|
"""Configuration for Low-Rank Adaptation (LoRA) fine-tuning.
|
||||||
|
|
||||||
|
:param type: Algorithm type identifier, always "LoRA"
|
||||||
|
:param lora_attn_modules: List of attention module names to apply LoRA to
|
||||||
|
:param apply_lora_to_mlp: Whether to apply LoRA to MLP layers
|
||||||
|
:param apply_lora_to_output: Whether to apply LoRA to output projection layers
|
||||||
|
:param rank: Rank of the LoRA adaptation (lower rank = fewer parameters)
|
||||||
|
:param alpha: LoRA scaling parameter that controls adaptation strength
|
||||||
|
:param use_dora: (Optional) Whether to use DoRA (Weight-Decomposed Low-Rank Adaptation)
|
||||||
|
:param quantize_base: (Optional) Whether to quantize the base model weights
|
||||||
|
"""
|
||||||
type: Literal["LoRA"] = "LoRA"
|
type: Literal["LoRA"] = "LoRA"
|
||||||
lora_attn_modules: list[str]
|
lora_attn_modules: list[str]
|
||||||
apply_lora_to_mlp: bool
|
apply_lora_to_mlp: bool
|
||||||
|
@ -82,6 +139,12 @@ class LoraFinetuningConfig(BaseModel):
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class QATFinetuningConfig(BaseModel):
|
class QATFinetuningConfig(BaseModel):
|
||||||
|
"""Configuration for Quantization-Aware Training (QAT) fine-tuning.
|
||||||
|
|
||||||
|
:param type: Algorithm type identifier, always "QAT"
|
||||||
|
:param quantizer_name: Name of the quantization algorithm to use
|
||||||
|
:param group_size: Size of groups for grouped quantization
|
||||||
|
"""
|
||||||
type: Literal["QAT"] = "QAT"
|
type: Literal["QAT"] = "QAT"
|
||||||
quantizer_name: str
|
quantizer_name: str
|
||||||
group_size: int
|
group_size: int
|
||||||
|
@ -93,7 +156,11 @@ register_schema(AlgorithmConfig, name="AlgorithmConfig")
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class PostTrainingJobLogStream(BaseModel):
|
class PostTrainingJobLogStream(BaseModel):
|
||||||
"""Stream of logs from a finetuning job."""
|
"""Stream of logs from a finetuning job.
|
||||||
|
|
||||||
|
:param job_uuid: Unique identifier for the training job
|
||||||
|
:param log_lines: List of log message strings from the training process
|
||||||
|
"""
|
||||||
|
|
||||||
job_uuid: str
|
job_uuid: str
|
||||||
log_lines: list[str]
|
log_lines: list[str]
|
||||||
|
@ -101,11 +168,22 @@ class PostTrainingJobLogStream(BaseModel):
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class RLHFAlgorithm(Enum):
|
class RLHFAlgorithm(Enum):
|
||||||
|
"""Available reinforcement learning from human feedback algorithms.
|
||||||
|
|
||||||
|
:cvar dpo: Direct Preference Optimization algorithm
|
||||||
|
"""
|
||||||
dpo = "dpo"
|
dpo = "dpo"
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class DPOAlignmentConfig(BaseModel):
|
class DPOAlignmentConfig(BaseModel):
|
||||||
|
"""Configuration for Direct Preference Optimization (DPO) alignment.
|
||||||
|
|
||||||
|
:param reward_scale: Scaling factor for the reward signal
|
||||||
|
:param reward_clip: Maximum absolute value for reward clipping
|
||||||
|
:param epsilon: Small value added for numerical stability
|
||||||
|
:param gamma: Discount factor for future rewards
|
||||||
|
"""
|
||||||
reward_scale: float
|
reward_scale: float
|
||||||
reward_clip: float
|
reward_clip: float
|
||||||
epsilon: float
|
epsilon: float
|
||||||
|
@ -114,7 +192,19 @@ class DPOAlignmentConfig(BaseModel):
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class PostTrainingRLHFRequest(BaseModel):
|
class PostTrainingRLHFRequest(BaseModel):
|
||||||
"""Request to finetune a model."""
|
"""Request to finetune a model using reinforcement learning from human feedback.
|
||||||
|
|
||||||
|
:param job_uuid: Unique identifier for the training job
|
||||||
|
:param finetuned_model: URL or path to the base model to fine-tune
|
||||||
|
:param dataset_id: Unique identifier for the training dataset
|
||||||
|
:param validation_dataset_id: Unique identifier for the validation dataset
|
||||||
|
:param algorithm: RLHF algorithm to use for training
|
||||||
|
:param algorithm_config: Configuration parameters for the RLHF algorithm
|
||||||
|
:param optimizer_config: Configuration parameters for the optimization algorithm
|
||||||
|
:param training_config: Configuration parameters for the training process
|
||||||
|
:param hyperparam_search_config: Configuration for hyperparameter search
|
||||||
|
:param logger_config: Configuration for training logging
|
||||||
|
"""
|
||||||
|
|
||||||
job_uuid: str
|
job_uuid: str
|
||||||
|
|
||||||
|
@ -140,7 +230,16 @@ class PostTrainingJob(BaseModel):
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class PostTrainingJobStatusResponse(BaseModel):
|
class PostTrainingJobStatusResponse(BaseModel):
|
||||||
"""Status of a finetuning job."""
|
"""Status of a finetuning job.
|
||||||
|
|
||||||
|
:param job_uuid: Unique identifier for the training job
|
||||||
|
:param status: Current status of the training job
|
||||||
|
:param scheduled_at: (Optional) Timestamp when the job was scheduled
|
||||||
|
:param started_at: (Optional) Timestamp when the job execution began
|
||||||
|
:param completed_at: (Optional) Timestamp when the job finished, if completed
|
||||||
|
:param resources_allocated: (Optional) Information about computational resources allocated to the job
|
||||||
|
:param checkpoints: List of model checkpoints created during training
|
||||||
|
"""
|
||||||
|
|
||||||
job_uuid: str
|
job_uuid: str
|
||||||
status: JobStatus
|
status: JobStatus
|
||||||
|
@ -160,7 +259,11 @@ class ListPostTrainingJobsResponse(BaseModel):
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class PostTrainingJobArtifactsResponse(BaseModel):
|
class PostTrainingJobArtifactsResponse(BaseModel):
|
||||||
"""Artifacts of a finetuning job."""
|
"""Artifacts of a finetuning job.
|
||||||
|
|
||||||
|
:param job_uuid: Unique identifier for the training job
|
||||||
|
:param checkpoints: List of model checkpoints created during training
|
||||||
|
"""
|
||||||
|
|
||||||
job_uuid: str
|
job_uuid: str
|
||||||
checkpoints: list[Checkpoint] = Field(default_factory=list)
|
checkpoints: list[Checkpoint] = Field(default_factory=list)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue