mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-07 02:58:21 +00:00
update doc.md
This commit is contained in:
parent
0d006bb341
commit
aa6138e0ca
3 changed files with 162 additions and 81 deletions
|
@ -26,15 +26,15 @@ The `llamastack/distribution-dell` distribution consists of the following provid
|
|||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI or Dell Enterprise Hub container for running inference.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `DEH_URL`: URL for the Dell inference server (default: `http://0.0.0.0:8080`)
|
||||
- `DEH_SAFETY_URL`: URL for the Dell safety inference server (default: `http://0.0.0.0:8081`)
|
||||
- `CHROMA_URL`: URL for the Chroma server (default: `http://0.0.0.0:8000`)
|
||||
- `DEH_URL`: URL for the Dell inference server (default: `http://0.0.0.0:8181`)
|
||||
- `DEH_SAFETY_URL`: URL for the Dell safety inference server (default: `http://0.0.0.0:8282`)
|
||||
- `CHROMA_URL`: URL for the Chroma server (default: `http://localhost:6601`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
|
||||
|
@ -44,40 +44,69 @@ The following environment variables can be configured:
|
|||
Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker:
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8080
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export INFERENCE_PORT=8181
|
||||
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
||||
export CHROMADB_HOST=localhost
|
||||
export CHROMADB_PORT=6601
|
||||
export CHROMA_URL=http://$CHROMADB_HOST:$CHROMADB_PORT
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
export LLAMA_STACK_PORT=8321
|
||||
|
||||
docker run --rm -it \
|
||||
--network host \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-e HF_TOKEN=$HF_TOKEN \
|
||||
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
ghcr.io/huggingface/text-generation-inference \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $INFERENCE_MODEL \
|
||||
--port $INFERENCE_PORT
|
||||
--port $INFERENCE_PORT --hostname 0.0.0.0
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_INFERENCE_PORT=8282
|
||||
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
docker run --rm -it \
|
||||
--network host \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-e HF_TOKEN=$HF_TOKEN \
|
||||
-p $SAFETY_PORT:$SAFETY_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
ghcr.io/huggingface/text-generation-inference \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $SAFETY_MODEL \
|
||||
--port $SAFETY_PORT
|
||||
--hostname 0.0.0.0 \
|
||||
--port $SAFETY_INFERENCE_PORT
|
||||
```
|
||||
|
||||
## Dell distribution relies on ChromDB for vector database usage
|
||||
|
||||
You can start a chrom-db easily using docker.
|
||||
```bash
|
||||
# This is where the indices are persisted
|
||||
mkdir -p chromadb
|
||||
|
||||
podman run --rm -it \
|
||||
--network host \
|
||||
--name chromadb \
|
||||
-v ./chromadb:/chroma/chroma \
|
||||
-e IS_PERSISTENT=TRUE \
|
||||
chromadb/chroma:latest \
|
||||
--port $CHROMADB_PORT \
|
||||
--host $CHROMADB_HOST
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
@ -89,14 +118,19 @@ Now you are ready to run Llama Stack with TGI as the inference provider. You can
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
docker run -it \
|
||||
--network host \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
# NOTE: mount the llama-stack / llama-model directories if testing local changes else not needed
|
||||
-v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \
|
||||
# localhost/distribution-dell:dev if building / testing locally
|
||||
llamastack/distribution-dell\
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
@ -106,6 +140,10 @@ If you are using Llama Stack Safety / Shield APIs, use:
|
|||
# git clone https://github.com/meta-llama/llama-stack.git
|
||||
cd /path/to/llama-stack
|
||||
|
||||
export SAFETY_INFERENCE_PORT=8282
|
||||
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
|
@ -115,9 +153,10 @@ docker run \
|
|||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT
|
||||
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
@ -126,10 +165,11 @@ Make sure you have done `pip install llama-stack` and have the Llama Stack CLI a
|
|||
|
||||
```bash
|
||||
llama stack build --template dell --image-type conda
|
||||
llama stack run ./run.yaml
|
||||
llama stack run dell
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
@ -138,7 +178,8 @@ If you are using Llama Stack Safety / Shield APIs, use:
|
|||
llama stack run ./run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT
|
||||
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
||||
|
|
|
@ -128,16 +128,15 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"DEH_URL": (
|
||||
"http://0.0.0.0:8080",
|
||||
"http://0.0.0.0:8181",
|
||||
"URL for the Dell inference server",
|
||||
),
|
||||
"DEH_SAFETY_URL": (
|
||||
"http://0.0.0.0:8081",
|
||||
"http://0.0.0.0:8282",
|
||||
"URL for the Dell safety inference server",
|
||||
),
|
||||
"CHROMA_URL": (
|
||||
# http://host.containers.internal:8000 if running via docker
|
||||
"http://0.0.0.0:8000",
|
||||
"http://localhost:6601",
|
||||
"URL for the Chroma server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
|
|
|
@ -15,7 +15,7 @@ The `llamastack/distribution-{{ name }}` distribution consists of the following
|
|||
|
||||
{{ providers_table }}
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI or Dell Enterprise Hub container for running inference.
|
||||
|
||||
{% if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
@ -33,40 +33,69 @@ The following environment variables can be configured:
|
|||
Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker:
|
||||
|
||||
```bash
|
||||
export INFERENCE_PORT=8080
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export INFERENCE_PORT=8181
|
||||
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
||||
export CHROMADB_HOST=localhost
|
||||
export CHROMADB_PORT=6601
|
||||
export CHROMA_URL=http://$CHROMADB_HOST:$CHROMADB_PORT
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
export LLAMA_STACK_PORT=8321
|
||||
|
||||
docker run --rm -it \
|
||||
--network host \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-e HF_TOKEN=$HF_TOKEN \
|
||||
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
ghcr.io/huggingface/text-generation-inference \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $INFERENCE_MODEL \
|
||||
--port $INFERENCE_PORT
|
||||
--port $INFERENCE_PORT --hostname 0.0.0.0
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
||||
|
||||
```bash
|
||||
export SAFETY_PORT=8081
|
||||
export SAFETY_INFERENCE_PORT=8282
|
||||
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
export CUDA_VISIBLE_DEVICES=1
|
||||
|
||||
docker run --rm -it \
|
||||
--network host \
|
||||
-v $HOME/.cache/huggingface:/data \
|
||||
-e HF_TOKEN=$HF_TOKEN \
|
||||
-p $SAFETY_PORT:$SAFETY_PORT \
|
||||
--gpus $CUDA_VISIBLE_DEVICES \
|
||||
ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
ghcr.io/huggingface/text-generation-inference \
|
||||
--dtype bfloat16 \
|
||||
--usage-stats off \
|
||||
--sharded false \
|
||||
--cuda-memory-fraction 0.7 \
|
||||
--model-id $SAFETY_MODEL \
|
||||
--port $SAFETY_PORT
|
||||
--hostname 0.0.0.0 \
|
||||
--port $SAFETY_INFERENCE_PORT
|
||||
```
|
||||
|
||||
## Dell distribution relies on ChromDB for vector database usage
|
||||
|
||||
You can start a chrom-db easily using docker.
|
||||
```bash
|
||||
# This is where the indices are persisted
|
||||
mkdir -p chromadb
|
||||
|
||||
podman run --rm -it \
|
||||
--network host \
|
||||
--name chromadb \
|
||||
-v ./chromadb:/chroma/chroma \
|
||||
-e IS_PERSISTENT=TRUE \
|
||||
chromadb/chroma:latest \
|
||||
--port $CHROMADB_PORT \
|
||||
--host $CHROMADB_HOST
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
@ -78,14 +107,19 @@ Now you are ready to run Llama Stack with TGI as the inference provider. You can
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
docker run -it \
|
||||
--network host \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
# NOTE: mount the llama-stack / llama-model directories if testing local changes else not needed
|
||||
-v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \
|
||||
# localhost/distribution-dell:dev if building / testing locally
|
||||
llamastack/distribution-{{ name }}\
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
@ -95,6 +129,10 @@ If you are using Llama Stack Safety / Shield APIs, use:
|
|||
# git clone https://github.com/meta-llama/llama-stack.git
|
||||
cd /path/to/llama-stack
|
||||
|
||||
export SAFETY_INFERENCE_PORT=8282
|
||||
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
||||
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
|
@ -104,9 +142,10 @@ docker run \
|
|||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT
|
||||
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
@ -115,10 +154,11 @@ Make sure you have done `pip install llama-stack` and have the Llama Stack CLI a
|
|||
|
||||
```bash
|
||||
llama stack build --template {{ name }} --image-type conda
|
||||
llama stack run ./run.yaml
|
||||
llama stack run {{ name }}
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
@ -127,7 +167,8 @@ If you are using Llama Stack Safety / Shield APIs, use:
|
|||
llama stack run ./run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT \
|
||||
--env DEH_URL=$DEH_URL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT
|
||||
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
||||
--env CHROMA_URL=$CHROMA_URL
|
||||
```
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue