mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-07 11:08:20 +00:00
mark tests
This commit is contained in:
parent
583de3d80c
commit
aaa5974dce
2 changed files with 24 additions and 5 deletions
|
@ -16,12 +16,15 @@ from ..datasets.test_datasets import data_url_from_file
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("scoring_fn_id", ["basic::equality"])
|
@pytest.mark.parametrize("scoring_fn_id", ["basic::equality"])
|
||||||
|
@pytest.mark.skip(reason="TODO(xiyan): fix this")
|
||||||
def test_evaluate_rows(llama_stack_client, text_model_id, scoring_fn_id):
|
def test_evaluate_rows(llama_stack_client, text_model_id, scoring_fn_id):
|
||||||
dataset = llama_stack_client.datasets.register(
|
dataset = llama_stack_client.datasets.register(
|
||||||
purpose="eval/messages-answer",
|
purpose="eval/messages-answer",
|
||||||
source={
|
source={
|
||||||
"type": "uri",
|
"type": "uri",
|
||||||
"uri": data_url_from_file(Path(__file__).parent.parent / "datasets" / "test_dataset.csv"),
|
"uri": data_url_from_file(
|
||||||
|
Path(__file__).parent.parent / "datasets" / "test_dataset.csv"
|
||||||
|
),
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
response = llama_stack_client.datasets.list()
|
response = llama_stack_client.datasets.list()
|
||||||
|
@ -65,12 +68,15 @@ def test_evaluate_rows(llama_stack_client, text_model_id, scoring_fn_id):
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("scoring_fn_id", ["basic::subset_of"])
|
@pytest.mark.parametrize("scoring_fn_id", ["basic::subset_of"])
|
||||||
|
@pytest.mark.skip(reason="TODO(xiyan): fix this")
|
||||||
def test_evaluate_benchmark(llama_stack_client, text_model_id, scoring_fn_id):
|
def test_evaluate_benchmark(llama_stack_client, text_model_id, scoring_fn_id):
|
||||||
dataset = llama_stack_client.datasets.register(
|
dataset = llama_stack_client.datasets.register(
|
||||||
purpose="eval/messages-answer",
|
purpose="eval/messages-answer",
|
||||||
source={
|
source={
|
||||||
"type": "uri",
|
"type": "uri",
|
||||||
"uri": data_url_from_file(Path(__file__).parent.parent / "datasets" / "test_dataset.csv"),
|
"uri": data_url_from_file(
|
||||||
|
Path(__file__).parent.parent / "datasets" / "test_dataset.csv"
|
||||||
|
),
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
benchmark_id = str(uuid.uuid4())
|
benchmark_id = str(uuid.uuid4())
|
||||||
|
@ -93,10 +99,14 @@ def test_evaluate_benchmark(llama_stack_client, text_model_id, scoring_fn_id):
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
assert response.job_id == "0"
|
assert response.job_id == "0"
|
||||||
job_status = llama_stack_client.eval.jobs.status(job_id=response.job_id, benchmark_id=benchmark_id)
|
job_status = llama_stack_client.eval.jobs.status(
|
||||||
|
job_id=response.job_id, benchmark_id=benchmark_id
|
||||||
|
)
|
||||||
assert job_status and job_status == "completed"
|
assert job_status and job_status == "completed"
|
||||||
|
|
||||||
eval_response = llama_stack_client.eval.jobs.retrieve(job_id=response.job_id, benchmark_id=benchmark_id)
|
eval_response = llama_stack_client.eval.jobs.retrieve(
|
||||||
|
job_id=response.job_id, benchmark_id=benchmark_id
|
||||||
|
)
|
||||||
assert eval_response is not None
|
assert eval_response is not None
|
||||||
assert len(eval_response.generations) == 5
|
assert len(eval_response.generations) == 5
|
||||||
assert scoring_fn_id in eval_response.scores
|
assert scoring_fn_id in eval_response.scores
|
||||||
|
|
|
@ -43,12 +43,14 @@ def register_scoring_function(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skip(reason="TODO(xiyan): fix this")
|
||||||
def test_scoring_functions_list(llama_stack_client):
|
def test_scoring_functions_list(llama_stack_client):
|
||||||
response = llama_stack_client.scoring_functions.list()
|
response = llama_stack_client.scoring_functions.list()
|
||||||
assert isinstance(response, list)
|
assert isinstance(response, list)
|
||||||
assert len(response) > 0
|
assert len(response) > 0
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skip(reason="TODO(xiyan): fix this")
|
||||||
def test_scoring_functions_register(
|
def test_scoring_functions_register(
|
||||||
llama_stack_client,
|
llama_stack_client,
|
||||||
sample_scoring_fn_id,
|
sample_scoring_fn_id,
|
||||||
|
@ -81,6 +83,7 @@ def test_scoring_functions_register(
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("scoring_fn_id", ["basic::equality"])
|
@pytest.mark.parametrize("scoring_fn_id", ["basic::equality"])
|
||||||
|
@pytest.mark.skip(reason="TODO(xiyan): fix this")
|
||||||
def test_scoring_score(llama_stack_client, scoring_fn_id):
|
def test_scoring_score(llama_stack_client, scoring_fn_id):
|
||||||
# scoring individual rows
|
# scoring individual rows
|
||||||
df = pd.read_csv(Path(__file__).parent.parent / "datasets" / "test_dataset.csv")
|
df = pd.read_csv(Path(__file__).parent.parent / "datasets" / "test_dataset.csv")
|
||||||
|
@ -100,6 +103,7 @@ def test_scoring_score(llama_stack_client, scoring_fn_id):
|
||||||
assert len(response.results[x].score_rows) == len(rows)
|
assert len(response.results[x].score_rows) == len(rows)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skip(reason="TODO(xiyan): fix this")
|
||||||
def test_scoring_score_with_params_llm_as_judge(
|
def test_scoring_score_with_params_llm_as_judge(
|
||||||
llama_stack_client,
|
llama_stack_client,
|
||||||
sample_judge_prompt_template,
|
sample_judge_prompt_template,
|
||||||
|
@ -139,6 +143,7 @@ def test_scoring_score_with_params_llm_as_judge(
|
||||||
"braintrust",
|
"braintrust",
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
@pytest.mark.skip(reason="TODO(xiyan): fix this")
|
||||||
def test_scoring_score_with_aggregation_functions(
|
def test_scoring_score_with_aggregation_functions(
|
||||||
llama_stack_client,
|
llama_stack_client,
|
||||||
sample_judge_prompt_template,
|
sample_judge_prompt_template,
|
||||||
|
@ -149,7 +154,11 @@ def test_scoring_score_with_aggregation_functions(
|
||||||
df = pd.read_csv(Path(__file__).parent.parent / "datasets" / "test_dataset.csv")
|
df = pd.read_csv(Path(__file__).parent.parent / "datasets" / "test_dataset.csv")
|
||||||
rows = df.to_dict(orient="records")
|
rows = df.to_dict(orient="records")
|
||||||
|
|
||||||
scoring_fns_list = [x for x in llama_stack_client.scoring_functions.list() if x.provider_id == provider_id]
|
scoring_fns_list = [
|
||||||
|
x
|
||||||
|
for x in llama_stack_client.scoring_functions.list()
|
||||||
|
if x.provider_id == provider_id
|
||||||
|
]
|
||||||
if len(scoring_fns_list) == 0:
|
if len(scoring_fns_list) == 0:
|
||||||
pytest.skip(f"No scoring functions found for provider {provider_id}, skipping")
|
pytest.skip(f"No scoring functions found for provider {provider_id}, skipping")
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue