mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-29 04:18:46 +00:00
fold openai responses into the Agents API
This commit is contained in:
parent
207224a811
commit
abd6280cb8
25 changed files with 967 additions and 199 deletions
|
|
@ -38,6 +38,13 @@ from llama_stack.apis.safety import SafetyViolation
|
|||
from llama_stack.apis.tools import ToolDef
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
from .openai_responses import (
|
||||
OpenAIResponseInputMessage,
|
||||
OpenAIResponseInputTool,
|
||||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectStream,
|
||||
)
|
||||
|
||||
|
||||
class Attachment(BaseModel):
|
||||
"""An attachment to an agent turn.
|
||||
|
|
@ -593,3 +600,39 @@ class Agents(Protocol):
|
|||
:returns: A ListAgentSessionsResponse.
|
||||
"""
|
||||
...
|
||||
|
||||
# We situate the OpenAI Responses API in the Agents API just like we did things
|
||||
# for Inference. The Responses API, in its intent, serves the same purpose as
|
||||
# the Agents API above -- it is essentially a lightweight "agentic loop" with
|
||||
# integrated tool calling.
|
||||
#
|
||||
# Both of these APIs are inherently stateful.
|
||||
|
||||
@webmethod(route="/openai/v1/responses/{id}", method="GET")
|
||||
async def get_openai_response(
|
||||
self,
|
||||
id: str,
|
||||
) -> OpenAIResponseObject:
|
||||
"""Retrieve an OpenAI response by its ID.
|
||||
|
||||
:param id: The ID of the OpenAI response to retrieve.
|
||||
:returns: An OpenAIResponseObject.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/responses", method="POST")
|
||||
async def create_openai_response(
|
||||
self,
|
||||
input: Union[str, List[OpenAIResponseInputMessage]],
|
||||
model: str,
|
||||
previous_response_id: Optional[str] = None,
|
||||
store: Optional[bool] = True,
|
||||
stream: Optional[bool] = False,
|
||||
tools: Optional[List[OpenAIResponseInputTool]] = None,
|
||||
) -> Union[OpenAIResponseObject, AsyncIterator[OpenAIResponseObjectStream]]:
|
||||
"""Create a new OpenAI response.
|
||||
|
||||
:param input: Input message(s) to create the response.
|
||||
:param model: The underlying LLM used for completions.
|
||||
:param previous_response_id: (Optional) if specified, the new response will be a continuation of the previous response. This can be used to easily fork-off new responses from existing responses.
|
||||
"""
|
||||
|
|
|
|||
|
|
@ -4,12 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncIterator, List, Literal, Optional, Protocol, Union, runtime_checkable
|
||||
from typing import List, Literal, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -104,7 +104,7 @@ class OpenAIResponseInputMessageContentText(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputMessageContentImage(BaseModel):
|
||||
detail: Literal["low", "high", "auto"] = "auto"
|
||||
detail: Literal["low"] | Literal["high"] | Literal["auto"] = "auto"
|
||||
type: Literal["input_image"] = "input_image"
|
||||
# TODO: handle file_id
|
||||
image_url: Optional[str] = None
|
||||
|
|
@ -121,13 +121,13 @@ register_schema(OpenAIResponseInputMessageContent, name="OpenAIResponseInputMess
|
|||
@json_schema_type
|
||||
class OpenAIResponseInputMessage(BaseModel):
|
||||
content: Union[str, List[OpenAIResponseInputMessageContent]]
|
||||
role: Literal["system", "developer", "user", "assistant"]
|
||||
role: Literal["system"] | Literal["developer"] | Literal["user"] | Literal["assistant"]
|
||||
type: Optional[Literal["message"]] = "message"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseInputToolWebSearch(BaseModel):
|
||||
type: Literal["web_search", "web_search_preview_2025_03_11"] = "web_search"
|
||||
type: Literal["web_search"] | Literal["web_search_preview_2025_03_11"] = "web_search"
|
||||
# TODO: actually use search_context_size somewhere...
|
||||
search_context_size: Optional[str] = Field(default="medium", pattern="^low|medium|high$")
|
||||
# TODO: add user_location
|
||||
|
|
@ -138,27 +138,3 @@ OpenAIResponseInputTool = Annotated[
|
|||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseInputTool, name="OpenAIResponseInputTool")
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class OpenAIResponses(Protocol):
|
||||
"""
|
||||
OpenAI Responses API implementation.
|
||||
"""
|
||||
|
||||
@webmethod(route="/openai/v1/responses/{id}", method="GET")
|
||||
async def get_openai_response(
|
||||
self,
|
||||
id: str,
|
||||
) -> OpenAIResponseObject: ...
|
||||
|
||||
@webmethod(route="/openai/v1/responses", method="POST")
|
||||
async def create_openai_response(
|
||||
self,
|
||||
input: Union[str, List[OpenAIResponseInputMessage]],
|
||||
model: str,
|
||||
previous_response_id: Optional[str] = None,
|
||||
store: Optional[bool] = True,
|
||||
stream: Optional[bool] = False,
|
||||
tools: Optional[List[OpenAIResponseInputTool]] = None,
|
||||
) -> Union[OpenAIResponseObject, AsyncIterator[OpenAIResponseObjectStream]]: ...
|
||||
|
|
@ -24,7 +24,6 @@ class Api(Enum):
|
|||
eval = "eval"
|
||||
post_training = "post_training"
|
||||
tool_runtime = "tool_runtime"
|
||||
openai_responses = "openai_responses"
|
||||
|
||||
telemetry = "telemetry"
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .openai_responses import * # noqa: F401 F403
|
||||
|
|
@ -16,7 +16,6 @@ from llama_stack.apis.files import Files
|
|||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.inspect import Inspect
|
||||
from llama_stack.apis.models import Models
|
||||
from llama_stack.apis.openai_responses.openai_responses import OpenAIResponses
|
||||
from llama_stack.apis.post_training import PostTraining
|
||||
from llama_stack.apis.providers import Providers as ProvidersAPI
|
||||
from llama_stack.apis.safety import Safety
|
||||
|
|
@ -81,7 +80,6 @@ def api_protocol_map() -> Dict[Api, Any]:
|
|||
Api.tool_groups: ToolGroups,
|
||||
Api.tool_runtime: ToolRuntime,
|
||||
Api.files: Files,
|
||||
Api.openai_responses: OpenAIResponses,
|
||||
}
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -149,8 +149,6 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
p.benchmark_store = self
|
||||
elif api == Api.tool_runtime:
|
||||
p.tool_store = self
|
||||
elif api == Api.openai_responses:
|
||||
p.model_store = self
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
for p in self.impls_by_provider_id.values():
|
||||
|
|
|
|||
|
|
@ -23,6 +23,9 @@ from llama_stack.apis.agents import (
|
|||
Document,
|
||||
ListAgentSessionsResponse,
|
||||
ListAgentsResponse,
|
||||
OpenAIResponseInputMessage,
|
||||
OpenAIResponseInputTool,
|
||||
OpenAIResponseObject,
|
||||
Session,
|
||||
Turn,
|
||||
)
|
||||
|
|
@ -40,6 +43,7 @@ from llama_stack.providers.utils.kvstore import InmemoryKVStoreImpl, kvstore_imp
|
|||
|
||||
from .agent_instance import ChatAgent
|
||||
from .config import MetaReferenceAgentsImplConfig
|
||||
from .openai_responses import OpenAIResponsesImpl
|
||||
|
||||
logger = logging.getLogger()
|
||||
logger.setLevel(logging.INFO)
|
||||
|
|
@ -63,9 +67,16 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
self.tool_groups_api = tool_groups_api
|
||||
|
||||
self.in_memory_store = InmemoryKVStoreImpl()
|
||||
self.openai_responses_impl = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.persistence_store = await kvstore_impl(self.config.persistence_store)
|
||||
self.openai_responses_impl = OpenAIResponsesImpl(
|
||||
self.persistence_store,
|
||||
inference_api=self.inference_api,
|
||||
tool_groups_api=self.tool_groups_api,
|
||||
tool_runtime_api=self.tool_runtime_api,
|
||||
)
|
||||
|
||||
# check if "bwrap" is available
|
||||
if not shutil.which("bwrap"):
|
||||
|
|
@ -244,3 +255,23 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
agent_id: str,
|
||||
) -> ListAgentSessionsResponse:
|
||||
pass
|
||||
|
||||
# OpenAI responses
|
||||
async def get_openai_response(
|
||||
self,
|
||||
id: str,
|
||||
) -> OpenAIResponseObject:
|
||||
return await self.openai_responses_impl.get_openai_response(id)
|
||||
|
||||
async def create_openai_response(
|
||||
self,
|
||||
input: Union[str, List[OpenAIResponseInputMessage]],
|
||||
model: str,
|
||||
previous_response_id: Optional[str] = None,
|
||||
store: Optional[bool] = True,
|
||||
stream: Optional[bool] = False,
|
||||
tools: Optional[List[OpenAIResponseInputTool]] = None,
|
||||
) -> OpenAIResponseObject:
|
||||
return await self.openai_responses_impl.create_openai_response(
|
||||
input, model, previous_response_id, store, stream, tools
|
||||
)
|
||||
|
|
|
|||
|
|
@ -10,6 +10,20 @@ from typing import AsyncIterator, List, Optional, Union, cast
|
|||
|
||||
from openai.types.chat import ChatCompletionToolParam
|
||||
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
OpenAIResponseInputMessage,
|
||||
OpenAIResponseInputMessageContentImage,
|
||||
OpenAIResponseInputMessageContentText,
|
||||
OpenAIResponseInputTool,
|
||||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseObjectStreamResponseCompleted,
|
||||
OpenAIResponseObjectStreamResponseCreated,
|
||||
OpenAIResponseOutput,
|
||||
OpenAIResponseOutputMessage,
|
||||
OpenAIResponseOutputMessageContentOutputText,
|
||||
OpenAIResponseOutputMessageWebSearchToolCall,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
Inference,
|
||||
OpenAIAssistantMessageParam,
|
||||
|
|
@ -24,29 +38,11 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIToolMessageParam,
|
||||
OpenAIUserMessageParam,
|
||||
)
|
||||
from llama_stack.apis.models.models import Models, ModelType
|
||||
from llama_stack.apis.openai_responses import OpenAIResponses
|
||||
from llama_stack.apis.openai_responses.openai_responses import (
|
||||
OpenAIResponseInputMessage,
|
||||
OpenAIResponseInputMessageContentImage,
|
||||
OpenAIResponseInputMessageContentText,
|
||||
OpenAIResponseInputTool,
|
||||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseObjectStreamResponseCompleted,
|
||||
OpenAIResponseObjectStreamResponseCreated,
|
||||
OpenAIResponseOutput,
|
||||
OpenAIResponseOutputMessage,
|
||||
OpenAIResponseOutputMessageContentOutputText,
|
||||
OpenAIResponseOutputMessageWebSearchToolCall,
|
||||
)
|
||||
from llama_stack.apis.tools.tools import ToolGroups, ToolInvocationResult, ToolRuntime
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
|
||||
from .config import OpenAIResponsesImplConfig
|
||||
from llama_stack.providers.utils.kvstore import KVStore
|
||||
|
||||
logger = get_logger(name=__name__, category="openai_responses")
|
||||
|
||||
|
|
@ -80,34 +76,25 @@ async def _openai_choices_to_output_messages(choices: List[OpenAIChoice]) -> Lis
|
|||
return output_messages
|
||||
|
||||
|
||||
class OpenAIResponsesImpl(OpenAIResponses):
|
||||
class OpenAIResponsesImpl:
|
||||
def __init__(
|
||||
self,
|
||||
config: OpenAIResponsesImplConfig,
|
||||
models_api: Models,
|
||||
persistence_store: KVStore,
|
||||
inference_api: Inference,
|
||||
tool_groups_api: ToolGroups,
|
||||
tool_runtime_api: ToolRuntime,
|
||||
):
|
||||
self.config = config
|
||||
self.models_api = models_api
|
||||
self.persistence_store = persistence_store
|
||||
self.inference_api = inference_api
|
||||
self.tool_groups_api = tool_groups_api
|
||||
self.tool_runtime_api = tool_runtime_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
logger.debug("OpenAIResponsesImpl.shutdown")
|
||||
pass
|
||||
|
||||
async def get_openai_response(
|
||||
self,
|
||||
id: str,
|
||||
) -> OpenAIResponseObject:
|
||||
key = f"{OPENAI_RESPONSES_PREFIX}{id}"
|
||||
response_json = await self.kvstore.get(key=key)
|
||||
response_json = await self.persistence_store.get(key=key)
|
||||
if response_json is None:
|
||||
raise ValueError(f"OpenAI response with id '{id}' not found")
|
||||
return OpenAIResponseObject.model_validate_json(response_json)
|
||||
|
|
@ -122,11 +109,6 @@ class OpenAIResponsesImpl(OpenAIResponses):
|
|||
tools: Optional[List[OpenAIResponseInputTool]] = None,
|
||||
):
|
||||
stream = False if stream is None else stream
|
||||
model_obj = await self.models_api.get_model(model)
|
||||
if model_obj is None:
|
||||
raise ValueError(f"Model '{model}' not found")
|
||||
if model_obj.model_type == ModelType.embedding:
|
||||
raise ValueError(f"Model '{model}' is an embedding model and does not support chat completions")
|
||||
|
||||
messages: List[OpenAIMessageParam] = []
|
||||
if previous_response_id:
|
||||
|
|
@ -155,7 +137,7 @@ class OpenAIResponsesImpl(OpenAIResponses):
|
|||
|
||||
chat_tools = await self._convert_response_tools_to_chat_tools(tools) if tools else None
|
||||
chat_response = await self.inference_api.openai_chat_completion(
|
||||
model=model_obj.identifier,
|
||||
model=model,
|
||||
messages=messages,
|
||||
tools=chat_tools,
|
||||
stream=stream,
|
||||
|
|
@ -198,14 +180,14 @@ class OpenAIResponsesImpl(OpenAIResponses):
|
|||
output_messages: List[OpenAIResponseOutput] = []
|
||||
if chat_response.choices[0].finish_reason == "tool_calls":
|
||||
output_messages.extend(
|
||||
await self._execute_tool_and_return_final_output(model_obj.identifier, stream, chat_response, messages)
|
||||
await self._execute_tool_and_return_final_output(model, stream, chat_response, messages)
|
||||
)
|
||||
else:
|
||||
output_messages.extend(await _openai_choices_to_output_messages(chat_response.choices))
|
||||
response = OpenAIResponseObject(
|
||||
created_at=chat_response.created,
|
||||
id=f"resp-{uuid.uuid4()}",
|
||||
model=model_obj.identifier,
|
||||
model=model,
|
||||
object="response",
|
||||
status="completed",
|
||||
output=output_messages,
|
||||
|
|
@ -214,7 +196,7 @@ class OpenAIResponsesImpl(OpenAIResponses):
|
|||
if store:
|
||||
# Store in kvstore
|
||||
key = f"{OPENAI_RESPONSES_PREFIX}{response.id}"
|
||||
await self.kvstore.set(
|
||||
await self.persistence_store.set(
|
||||
key=key,
|
||||
value=response.model_dump_json(),
|
||||
)
|
||||
|
|
@ -1,21 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from llama_stack.apis.datatypes import Api
|
||||
|
||||
from .config import OpenAIResponsesImplConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: OpenAIResponsesImplConfig, deps: Dict[Api, Any]):
|
||||
from .openai_responses import OpenAIResponsesImpl
|
||||
|
||||
impl = OpenAIResponsesImpl(
|
||||
config, deps[Api.models], deps[Api.inference], deps[Api.tool_groups], deps[Api.tool_runtime]
|
||||
)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
@ -1,24 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
|
||||
|
||||
class OpenAIResponsesImplConfig(BaseModel):
|
||||
kvstore: KVStoreConfig
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
return {
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="openai_responses.db",
|
||||
)
|
||||
}
|
||||
|
|
@ -1,27 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
|
||||
|
||||
|
||||
def available_providers() -> List[ProviderSpec]:
|
||||
return [
|
||||
InlineProviderSpec(
|
||||
api=Api.openai_responses,
|
||||
provider_type="inline::openai-responses",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.inline.openai_responses",
|
||||
config_class="llama_stack.providers.inline.openai_responses.config.OpenAIResponsesImplConfig",
|
||||
api_dependencies=[
|
||||
Api.models,
|
||||
Api.inference,
|
||||
Api.tool_groups,
|
||||
Api.tool_runtime,
|
||||
],
|
||||
),
|
||||
]
|
||||
|
|
@ -478,6 +478,8 @@ class JsonSchemaGenerator:
|
|||
}
|
||||
return ret
|
||||
elif origin_type is Literal:
|
||||
if len(typing.get_args(typ)) != 1:
|
||||
print(f"Literal type {typ} has {len(typing.get_args(typ))} arguments")
|
||||
(literal_value,) = typing.get_args(typ) # unpack value of literal type
|
||||
schema = self.type_to_schema(type(literal_value))
|
||||
schema["const"] = literal_value
|
||||
|
|
|
|||
|
|
@ -24,8 +24,6 @@ distribution_spec:
|
|||
- inline::braintrust
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
openai_responses:
|
||||
- inline::openai-responses
|
||||
tool_runtime:
|
||||
- remote::brave-search
|
||||
- remote::tavily-search
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@ apis:
|
|||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- openai_responses
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
|
|
@ -92,14 +91,6 @@ providers:
|
|||
service_name: "${env.OTEL_SERVICE_NAME:\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/remote-vllm/trace_store.db}
|
||||
openai_responses:
|
||||
- provider_id: openai-responses
|
||||
provider_type: inline::openai-responses
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/openai_responses.db
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@ apis:
|
|||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- openai_responses
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
|
|
@ -85,14 +84,6 @@ providers:
|
|||
service_name: "${env.OTEL_SERVICE_NAME:\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/remote-vllm/trace_store.db}
|
||||
openai_responses:
|
||||
- provider_id: openai-responses
|
||||
provider_type: inline::openai-responses
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/openai_responses.db
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
|
|
|
|||
|
|
@ -31,7 +31,6 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"openai_responses": ["inline::openai-responses"],
|
||||
"tool_runtime": [
|
||||
"remote::brave-search",
|
||||
"remote::tavily-search",
|
||||
|
|
|
|||
|
|
@ -24,8 +24,6 @@ distribution_spec:
|
|||
- inline::basic
|
||||
- inline::llm-as-judge
|
||||
- inline::braintrust
|
||||
openai_responses:
|
||||
- inline::openai-responses
|
||||
tool_runtime:
|
||||
- remote::brave-search
|
||||
- remote::tavily-search
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@ apis:
|
|||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- openai_responses
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
|
|
@ -88,14 +87,6 @@ providers:
|
|||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
openai_responses:
|
||||
- provider_id: openai-responses
|
||||
provider_type: inline::openai-responses
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/together}/openai_responses.db
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@ apis:
|
|||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- openai_responses
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
|
|
@ -83,14 +82,6 @@ providers:
|
|||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
openai_responses:
|
||||
- provider_id: openai-responses
|
||||
provider_type: inline::openai-responses
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/together}/openai_responses.db
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
|
|
|
|||
|
|
@ -36,7 +36,6 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"eval": ["inline::meta-reference"],
|
||||
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||
"openai_responses": ["inline::openai-responses"],
|
||||
"tool_runtime": [
|
||||
"remote::brave-search",
|
||||
"remote::tavily-search",
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue