verify dockers

This commit is contained in:
Xi Yan 2024-10-21 17:23:44 -07:00
parent cf27d19dd5
commit abde9c1888
11 changed files with 116 additions and 38 deletions

View file

@ -11,13 +11,8 @@ The `llamastack/distribution-meta-reference-gpu` distribution consists of the fo
### Start the Distribution (Single Node GPU)
> [!NOTE]
> This assumes you have access to GPU to start a TGI server with access to your GPU.
> This assumes you have access to GPU to start a local server with access to your GPU.
> [!NOTE]
> For GPU inference, you need to set these environment variables for specifying local directory containing your model checkpoints, and enable GPU inference to start running docker container.
```
export LLAMA_CHECKPOINT_DIR=~/.llama
```
> [!NOTE]
> `~/.llama` should be the path containing downloaded weights of Llama models.
@ -26,8 +21,8 @@ export LLAMA_CHECKPOINT_DIR=~/.llama
To download and start running a pre-built docker container, you may use the following commands:
```
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama --gpus=all llamastack/llamastack-local-gpu
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.yaml --gpus=all distribution-meta-reference-gpu --yaml_config /root/my-run.yaml
```
### Alternative (Build and start distribution locally via conda)
- You may checkout the [Getting Started](../../docs/getting_started.md) for more details on starting up a meta-reference distribution.
- You may checkout the [Getting Started](../../docs/getting_started.md) for more details on building locally via conda and starting up a meta-reference distribution.

View file

@ -1,4 +1,4 @@
name: distribution-meta-reference-gpu
name: meta-reference-gpu
distribution_spec:
description: Use code from `llama_stack` itself to serve all llama stack APIs
providers:

View file

@ -71,10 +71,10 @@ ollama run <model_id>
**Via Docker**
```
docker run --network host -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./ollama-run.yaml:/root/llamastack-run-ollama.yaml --gpus=all llamastack-local-cpu --yaml_config /root/llamastack-run-ollama.yaml
docker run --network host -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./gpu/run.yaml:/root/llamastack-run-ollama.yaml --gpus=all distribution-ollama --yaml_config /root/llamastack-run-ollama.yaml
```
Make sure in you `ollama-run.yaml` file, you inference provider is pointing to the correct Ollama endpoint. E.g.
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Ollama endpoint. E.g.
```
inference:
- provider_id: ollama0

View file

@ -1,4 +1,4 @@
name: distribution-ollama
name: ollama
distribution_spec:
description: Use ollama for running LLM inference
providers:
@ -10,4 +10,4 @@ distribution_spec:
safety: meta-reference
agents: meta-reference
telemetry: meta-reference
image_type: conda
image_type: docker

View file

@ -1,4 +1,4 @@
name: distribution-tgi
name: tgi
distribution_spec:
description: Use TGI for running LLM inference
providers:
@ -10,4 +10,4 @@ distribution_spec:
safety: meta-reference
agents: meta-reference
telemetry: meta-reference
image_type: conda
image_type: docker

View file

@ -6,28 +6,7 @@ services:
- $HOME/.cache/huggingface:/data
ports:
- "5009:5009"
devices:
- nvidia.com/gpu=all
environment:
- CUDA_VISIBLE_DEVICES=0
- HF_HOME=/data
- HF_DATASETS_CACHE=/data
- HF_MODULES_CACHE=/data
- HF_HUB_CACHE=/data
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.1-8B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
deploy:
resources:
reservations:
devices:
- driver: nvidia
# that's the closest analogue to --gpus; provide
# an integer amount of devices or 'all'
count: 1
# Devices are reserved using a list of capabilities, making
# capabilities the only required field. A device MUST
# satisfy all the requested capabilities for a successful
# reservation.
capabilities: [gpu]
runtime: nvidia
healthcheck:
test: ["CMD", "curl", "-f", "http://text-generation-inference:5009/health"]

View file

@ -0,0 +1,104 @@
# Together Distribution
### Connect to a Llama Stack Together Endpoint
- You may connect to a hosted endpoint `https://llama-stack.together.ai`, serving a Llama Stack distribution
### Start a Together distribution
```
```
# TGI Distribution
The `llamastack/distribution-tgi` distribution consists of the following provider configurations.
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
| **Provider(s)** | remote::tgi | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
### Start the Distribution (Single Node GPU)
> [!NOTE]
> This assumes you have access to GPU to start a TGI server with access to your GPU.
```
$ cd llama_stack/distribution/docker/tgi
$ ls
compose.yaml tgi-run.yaml
$ docker compose up
```
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
```
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
```
To kill the server
```
docker compose down
```
### Start the Distribution (Single Node CPU)
> [!NOTE]
> This assumes you have an hosted endpoint compatible with TGI server.
```
$ cd llama-stack/distribution/tgi/cpu
$ ls
compose.yaml run.yaml
$ docker compose up
```
Replace <ENTER_YOUR_TGI_HOSTED_ENDPOINT> in `run.yaml` file with your TGI endpoint.
```
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: <ENTER_YOUR_TGI_HOSTED_ENDPOINT>
```
### (Alternative) TGI server + llama stack run (Single Node GPU)
If you wish to separately spin up a TGI server, and connect with Llama Stack, you may use the following commands.
#### (optional) Start TGI server locally
- Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint.
```
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.1-8B-Instruct --port 5009
```
#### Start Llama Stack server pointing to TGI server
```
docker run --network host -it -p 5000:5000 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack-local-cpu --yaml_config /root/my-run.yaml
```
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Together URL server endpoint. E.g.
```
inference:
- provider_id: together
provider_type: remote::together
config:
url: https://api.together.xyz/v1
```
**Via Conda**
```bash
llama stack build --config ./build.yaml
# -- modify run.yaml to a valid Together server endpoint
llama stack run ./run.yaml
```

View file

View file

View file

@ -15,7 +15,7 @@ special_pip_deps="$6"
set -euo pipefail
build_name="$1"
image_name="llamastack-$build_name"
image_name="distribution-$build_name"
docker_base=$2
build_file_path=$3
host_build_dir=$4

View file

@ -55,7 +55,7 @@ def available_providers() -> List[ProviderSpec]:
api=Api.inference,
adapter=AdapterSpec(
adapter_type="ollama",
pip_packages=["ollama"],
pip_packages=["ollama", "aiohttp"],
config_class="llama_stack.providers.adapters.inference.ollama.OllamaImplConfig",
module="llama_stack.providers.adapters.inference.ollama",
),