chore: remove nested imports (#2515)

# What does this PR do?

* Given that our API packages use "import *" in `__init.py__` we don't
need to do `from llama_stack.apis.models.models` but simply from
llama_stack.apis.models. The decision to use `import *` is debatable and
should probably be revisited at one point.

* Remove unneeded Ruff F401 rule
* Consolidate Ruff F403 rule in the pyprojectfrom
llama_stack.apis.models.models

Signed-off-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
Sébastien Han 2025-06-26 04:31:05 +02:00 committed by GitHub
parent 2d9fd041eb
commit ac5fd57387
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
82 changed files with 143 additions and 164 deletions

View file

@ -45,7 +45,7 @@ from llama_stack.apis.agents.openai_responses import (
WebSearchToolTypes,
)
from llama_stack.apis.common.content_types import TextContentItem
from llama_stack.apis.inference.inference import (
from llama_stack.apis.inference import (
Inference,
OpenAIAssistantMessageParam,
OpenAIChatCompletion,
@ -584,7 +584,7 @@ class OpenAIResponsesImpl:
from llama_stack.apis.agents.openai_responses import (
MCPListToolsTool,
)
from llama_stack.apis.tools.tools import Tool
from llama_stack.apis.tools import Tool
mcp_tool_to_server = {}

View file

@ -208,7 +208,7 @@ class MetaReferenceEvalImpl(
for scoring_fn_id in scoring_functions
}
else:
scoring_functions_dict = {scoring_fn_id: None for scoring_fn_id in scoring_functions}
scoring_functions_dict = dict.fromkeys(scoring_functions)
score_response = await self.scoring_api.score(
input_rows=score_input_rows, scoring_functions=scoring_functions_dict

View file

@ -7,7 +7,7 @@ from typing import Any
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.inference.inference import Inference
from llama_stack.apis.inference import Inference
from llama_stack.apis.scoring import (
ScoreBatchResponse,
ScoreResponse,

View file

@ -6,7 +6,7 @@
import re
from typing import Any
from llama_stack.apis.inference.inference import Inference, UserMessage
from llama_stack.apis.inference import Inference, UserMessage
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn

View file

@ -16,8 +16,7 @@ import numpy as np
from numpy.typing import NDArray
from llama_stack.apis.files import Files
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.inference.inference import Inference
from llama_stack.apis.inference import Inference, InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
Chunk,

View file

@ -15,8 +15,8 @@ import numpy as np
import sqlite_vec
from numpy.typing import NDArray
from llama_stack.apis.files.files import Files
from llama_stack.apis.inference.inference import Inference
from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
Chunk,
@ -64,7 +64,7 @@ def _normalize_scores(scores: dict[str, float]) -> dict[str, float]:
score_range = max_score - min_score
if score_range > 0:
return {doc_id: (score - min_score) / score_range for doc_id, score in scores.items()}
return {doc_id: 1.0 for doc_id in scores}
return dict.fromkeys(scores, 1.0)
def _weighted_rerank(