update resolver to only pass vector_stores section of run config

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

Using Router only from VectorDBs

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

removing model_api from vector store providers

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

fix test

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

updating integration tests

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>

special handling for replay mode for available providers

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Javier Arceo 2025-10-16 10:59:01 -04:00
parent 24a1430c8b
commit accc4c437e
46 changed files with 397 additions and 702 deletions

View file

@ -4,27 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.core.datatypes import StackRunConfig
from llama_stack.providers.datatypes import Api, ProviderSpec
from .config import WeaviateVectorIOConfig
async def get_adapter_impl(
config: WeaviateVectorIOConfig, deps: dict[Api, ProviderSpec], run_config: StackRunConfig | None = None
):
async def get_adapter_impl(config: WeaviateVectorIOConfig, deps: dict[Api, ProviderSpec]):
from .weaviate import WeaviateVectorIOAdapter
vector_stores_config = None
if run_config and run_config.vector_stores:
vector_stores_config = run_config.vector_stores
impl = WeaviateVectorIOAdapter(
config,
deps[Api.inference],
deps[Api.models],
deps.get(Api.files),
vector_stores_config,
)
impl = WeaviateVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
await impl.initialize()
return impl

View file

@ -8,10 +8,7 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.schema_utils import json_schema_type
@ -22,16 +19,11 @@ class WeaviateVectorIOConfig(BaseModel):
kvstore: KVStoreConfig | None = Field(description="Config for KV store backend (SQLite only for now)", default=None)
@classmethod
def sample_run_config(
cls,
__distro_dir__: str,
**kwargs: Any,
) -> dict[str, Any]:
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
return {
"weaviate_api_key": None,
"weaviate_cluster_url": "${env.WEAVIATE_CLUSTER_URL:=localhost:8080}",
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="weaviate_registry.db",
__distro_dir__=__distro_dir__, db_name="weaviate_registry.db"
),
}

View file

@ -16,18 +16,14 @@ from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference
from llama_stack.apis.models import Models
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.core.datatypes import VectorStoresConfig
from llama_stack.core.request_headers import NeedsRequestProviderData
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import (
OpenAIVectorStoreMixin,
)
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
RERANKER_TYPE_RRF,
ChunkForDeletion,
@ -49,12 +45,7 @@ OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_conten
class WeaviateIndex(EmbeddingIndex):
def __init__(
self,
client: weaviate.WeaviateClient,
collection_name: str,
kvstore: KVStore | None = None,
):
def __init__(self, client: weaviate.WeaviateClient, collection_name: str, kvstore: KVStore | None = None):
self.client = client
self.collection_name = sanitize_collection_name(collection_name, weaviate_format=True)
self.kvstore = kvstore
@ -109,9 +100,7 @@ class WeaviateIndex(EmbeddingIndex):
try:
results = collection.query.near_vector(
near_vector=embedding.tolist(),
limit=k,
return_metadata=wvc.query.MetadataQuery(distance=True),
near_vector=embedding.tolist(), limit=k, return_metadata=wvc.query.MetadataQuery(distance=True)
)
except Exception as e:
log.error(f"Weaviate client vector search failed: {e}")
@ -154,12 +143,7 @@ class WeaviateIndex(EmbeddingIndex):
collection = self.client.collections.get(sanitized_collection_name)
collection.data.delete_many(where=Filter.by_property("id").contains_any(chunk_ids))
async def query_keyword(
self,
query_string: str,
k: int,
score_threshold: float,
) -> QueryChunksResponse:
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
"""
Performs BM25-based keyword search using Weaviate's built-in full-text search.
Args:
@ -176,9 +160,7 @@ class WeaviateIndex(EmbeddingIndex):
# Perform BM25 keyword search on chunk_content field
try:
results = collection.query.bm25(
query=query_string,
limit=k,
return_metadata=wvc.query.MetadataQuery(score=True),
query=query_string, limit=k, return_metadata=wvc.query.MetadataQuery(score=True)
)
except Exception as e:
log.error(f"Weaviate client keyword search failed: {e}")
@ -275,25 +257,11 @@ class WeaviateIndex(EmbeddingIndex):
return QueryChunksResponse(chunks=chunks, scores=scores)
class WeaviateVectorIOAdapter(
OpenAIVectorStoreMixin,
VectorIO,
NeedsRequestProviderData,
VectorDBsProtocolPrivate,
):
def __init__(
self,
config: WeaviateVectorIOConfig,
inference_api: Inference,
models_api: Models,
files_api: Files | None,
vector_stores_config: VectorStoresConfig | None = None,
) -> None:
class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProviderData, VectorDBsProtocolPrivate):
def __init__(self, config: WeaviateVectorIOConfig, inference_api: Inference, files_api: Files | None) -> None:
super().__init__(files_api=files_api, kvstore=None)
self.config = config
self.inference_api = inference_api
self.models_api = models_api
self.vector_stores_config = vector_stores_config
self.client_cache = {}
self.cache = {}
self.vector_db_store = None
@ -304,10 +272,7 @@ class WeaviateVectorIOAdapter(
log.info("Using Weaviate locally in container")
host, port = self.config.weaviate_cluster_url.split(":")
key = "local_test"
client = weaviate.connect_to_local(
host=host,
port=port,
)
client = weaviate.connect_to_local(host=host, port=port)
else:
log.info("Using Weaviate remote cluster with URL")
key = f"{self.config.weaviate_cluster_url}::{self.config.weaviate_api_key}"
@ -337,15 +302,9 @@ class WeaviateVectorIOAdapter(
for raw in stored:
vector_db = VectorDB.model_validate_json(raw)
client = self._get_client()
idx = WeaviateIndex(
client=client,
collection_name=vector_db.identifier,
kvstore=self.kvstore,
)
idx = WeaviateIndex(client=client, collection_name=vector_db.identifier, kvstore=self.kvstore)
self.cache[vector_db.identifier] = VectorDBWithIndex(
vector_db=vector_db,
index=idx,
inference_api=self.inference_api,
vector_db=vector_db, index=idx, inference_api=self.inference_api
)
# Load OpenAI vector stores metadata into cache
@ -357,10 +316,7 @@ class WeaviateVectorIOAdapter(
# Clean up mixin resources (file batch tasks)
await super().shutdown()
async def register_vector_db(
self,
vector_db: VectorDB,
) -> None:
async def register_vector_db(self, vector_db: VectorDB) -> None:
client = self._get_client()
sanitized_collection_name = sanitize_collection_name(vector_db.identifier, weaviate_format=True)
# Create collection if it doesn't exist
@ -369,17 +325,12 @@ class WeaviateVectorIOAdapter(
name=sanitized_collection_name,
vectorizer_config=wvc.config.Configure.Vectorizer.none(),
properties=[
wvc.config.Property(
name="chunk_content",
data_type=wvc.config.DataType.TEXT,
),
wvc.config.Property(name="chunk_content", data_type=wvc.config.DataType.TEXT),
],
)
self.cache[vector_db.identifier] = VectorDBWithIndex(
vector_db,
WeaviateIndex(client=client, collection_name=sanitized_collection_name),
self.inference_api,
vector_db, WeaviateIndex(client=client, collection_name=sanitized_collection_name), self.inference_api
)
async def unregister_vector_db(self, vector_db_id: str) -> None:
@ -415,12 +366,7 @@ class WeaviateVectorIOAdapter(
self.cache[vector_db_id] = index
return index
async def insert_chunks(
self,
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index:
raise VectorStoreNotFoundError(vector_db_id)
@ -428,10 +374,7 @@ class WeaviateVectorIOAdapter(
await index.insert_chunks(chunks)
async def query_chunks(
self,
vector_db_id: str,
query: InterleavedContent,
params: dict[str, Any] | None = None,
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index: