mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-09 03:19:20 +00:00
add data structure to tasks
This commit is contained in:
parent
9816c9aae6
commit
ad18dc94ac
7 changed files with 100 additions and 168 deletions
|
|
@ -71,16 +71,7 @@ class EvaluateTaskConfig(BaseModel):
|
|||
sampling_params: SamplingParams = SamplingParams()
|
||||
|
||||
|
||||
class BaseTask(
|
||||
ABC,
|
||||
Generic[
|
||||
TDatasetSample,
|
||||
TPreprocessedSample,
|
||||
TPredictionSample,
|
||||
TPostprocessedSample,
|
||||
TSingleEvalResult,
|
||||
],
|
||||
):
|
||||
class BaseTask(ABC, Generic[TDatasetSample, TProcessedSample]):
|
||||
"""
|
||||
A task represents a single evaluation benchmark, including it's dataset, preprocessing, postprocessing and scoring methods.
|
||||
Base class for all evaluation tasks. Each task needs to implement the following methods:
|
||||
|
|
@ -94,17 +85,15 @@ class BaseTask(
|
|||
self._name = self.__class__.__name__
|
||||
|
||||
@abstractmethod
|
||||
def preprocess_sample(self, sample: TDatasetSample) -> TPreprocessedSample:
|
||||
def preprocess_sample(self, sample: TDatasetSample) -> TProcessedSample:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def postprocess_sample(self, sample: TPredictionSample) -> TPostprocessedSample:
|
||||
def postprocess_sample(self, sample: TProcessedSample) -> TProcessedSample:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def score_sample(
|
||||
self, sample: TPostprocessedSample, ground_truth: TPreprocessedSample
|
||||
):
|
||||
def score_sample(self, sample: TProcessedSample) -> SingleEvalResult:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
|
|
@ -112,24 +101,15 @@ class BaseTask(
|
|||
raise NotImplementedError()
|
||||
|
||||
def preprocess(
|
||||
self, dataset: BaseDataset[TDatasetSample]
|
||||
) -> List[TPreprocessedSample]:
|
||||
return [self.preprocess_sample(sample) for sample in self.dataset]
|
||||
self, dataset: BaseDataset[TProcessedSample]
|
||||
) -> List[TProcessedSample]:
|
||||
return [self.preprocess_sample(sample) for sample in dataset]
|
||||
|
||||
def postprocess(
|
||||
self, generation: List[TPredictionSample]
|
||||
) -> List[TPostprocessedSample]:
|
||||
def postprocess(self, generation: List[TProcessedSample]) -> List[TProcessedSample]:
|
||||
return [self.postprocess_sample(sample) for sample in generation]
|
||||
|
||||
def score(
|
||||
self,
|
||||
postprocessed: List[TPostprocessedSample],
|
||||
preprocessed_dataset: List[TPreprocessedSample],
|
||||
) -> List[TSingleEvalResult]:
|
||||
return [
|
||||
self.score_sample(sample, ground_truth)
|
||||
for sample, ground_truth in zip(postprocessed, self.preprocessed_dataset)
|
||||
]
|
||||
def score(self, postprocessed: List[TProcessedSample]) -> List[SingleEvalResult]:
|
||||
return [self.score_sample(sample) for sample in postprocessed]
|
||||
|
||||
|
||||
class Evals(Protocol):
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue