mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-15 12:22:42 +00:00
feat: Add responses and safety impl extra_body
This commit is contained in:
parent
0a96a7faa5
commit
ad4362e48d
163 changed files with 29338 additions and 141 deletions
|
|
@ -91,6 +91,12 @@ def mock_conversations_api():
|
|||
return mock_api
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_safety_api():
|
||||
safety_api = AsyncMock()
|
||||
return safety_api
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def openai_responses_impl(
|
||||
mock_inference_api,
|
||||
|
|
@ -98,6 +104,7 @@ def openai_responses_impl(
|
|||
mock_tool_runtime_api,
|
||||
mock_responses_store,
|
||||
mock_vector_io_api,
|
||||
mock_safety_api,
|
||||
mock_conversations_api,
|
||||
):
|
||||
return OpenAIResponsesImpl(
|
||||
|
|
@ -106,6 +113,7 @@ def openai_responses_impl(
|
|||
tool_runtime_api=mock_tool_runtime_api,
|
||||
responses_store=mock_responses_store,
|
||||
vector_io_api=mock_vector_io_api,
|
||||
safety_api=mock_safety_api,
|
||||
conversations_api=mock_conversations_api,
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,160 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.agents.agents import ResponseShieldSpec
|
||||
from llama_stack.providers.inline.agents.meta_reference.responses.openai_responses import (
|
||||
OpenAIResponsesImpl,
|
||||
)
|
||||
from llama_stack.providers.inline.agents.meta_reference.responses.utils import (
|
||||
extract_shield_ids,
|
||||
extract_text_content,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_apis():
|
||||
"""Create mock APIs for testing."""
|
||||
return {
|
||||
"inference_api": AsyncMock(),
|
||||
"tool_groups_api": AsyncMock(),
|
||||
"tool_runtime_api": AsyncMock(),
|
||||
"responses_store": AsyncMock(),
|
||||
"vector_io_api": AsyncMock(),
|
||||
"conversations_api": AsyncMock(),
|
||||
"safety_api": AsyncMock(),
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def responses_impl(mock_apis):
|
||||
"""Create OpenAIResponsesImpl instance with mocked dependencies."""
|
||||
return OpenAIResponsesImpl(**mock_apis)
|
||||
|
||||
|
||||
def test_extract_shield_ids_from_strings(responses_impl):
|
||||
"""Test extraction from simple string shield IDs."""
|
||||
shields = ["llama-guard", "content-filter", "nsfw-detector"]
|
||||
result = extract_shield_ids(shields)
|
||||
assert result == ["llama-guard", "content-filter", "nsfw-detector"]
|
||||
|
||||
|
||||
def test_extract_shield_ids_from_objects(responses_impl):
|
||||
"""Test extraction from ResponseShieldSpec objects."""
|
||||
shields = [
|
||||
ResponseShieldSpec(type="llama-guard"),
|
||||
ResponseShieldSpec(type="content-filter"),
|
||||
]
|
||||
result = extract_shield_ids(shields)
|
||||
assert result == ["llama-guard", "content-filter"]
|
||||
|
||||
|
||||
def test_extract_shield_ids_mixed_formats(responses_impl):
|
||||
"""Test extraction from mixed string and object formats."""
|
||||
shields = [
|
||||
"llama-guard",
|
||||
ResponseShieldSpec(type="content-filter"),
|
||||
"nsfw-detector",
|
||||
]
|
||||
result = extract_shield_ids(shields)
|
||||
assert result == ["llama-guard", "content-filter", "nsfw-detector"]
|
||||
|
||||
|
||||
def test_extract_shield_ids_none_input(responses_impl):
|
||||
"""Test extraction with None input."""
|
||||
result = extract_shield_ids(None)
|
||||
assert result == []
|
||||
|
||||
|
||||
def test_extract_shield_ids_empty_list(responses_impl):
|
||||
"""Test extraction with empty list."""
|
||||
result = extract_shield_ids([])
|
||||
assert result == []
|
||||
|
||||
|
||||
def test_extract_shield_ids_unknown_format(responses_impl):
|
||||
"""Test extraction with unknown shield format raises ValueError."""
|
||||
# Create an object that's neither string nor ResponseShieldSpec
|
||||
unknown_object = {"invalid": "format"} # Plain dict, not ResponseShieldSpec
|
||||
shields = ["valid-shield", unknown_object, "another-shield"]
|
||||
with pytest.raises(ValueError, match="Unknown shield format.*expected str or ResponseShieldSpec"):
|
||||
extract_shield_ids(shields)
|
||||
|
||||
|
||||
def test_extract_text_content_string(responses_impl):
|
||||
"""Test extraction from simple string content."""
|
||||
content = "Hello world"
|
||||
result = extract_text_content(content)
|
||||
assert result == "Hello world"
|
||||
|
||||
|
||||
def test_extract_text_content_list_with_text(responses_impl):
|
||||
"""Test extraction from list content with text parts."""
|
||||
content = [
|
||||
MagicMock(text="Hello "),
|
||||
MagicMock(text="world"),
|
||||
]
|
||||
result = extract_text_content(content)
|
||||
assert result == "Hello world"
|
||||
|
||||
|
||||
def test_extract_text_content_list_with_refusal(responses_impl):
|
||||
"""Test extraction skips refusal parts."""
|
||||
# Create text parts
|
||||
text_part1 = MagicMock()
|
||||
text_part1.text = "Hello"
|
||||
|
||||
text_part2 = MagicMock()
|
||||
text_part2.text = "world"
|
||||
|
||||
# Create refusal part (no text attribute)
|
||||
refusal_part = MagicMock()
|
||||
refusal_part.type = "refusal"
|
||||
refusal_part.refusal = "Blocked"
|
||||
del refusal_part.text # Remove text attribute
|
||||
|
||||
content = [text_part1, refusal_part, text_part2]
|
||||
result = extract_text_content(content)
|
||||
assert result == "Hello world"
|
||||
|
||||
|
||||
def test_extract_text_content_empty_list(responses_impl):
|
||||
"""Test extraction from empty list returns None."""
|
||||
content = []
|
||||
result = extract_text_content(content)
|
||||
assert result is None
|
||||
|
||||
|
||||
def test_extract_text_content_no_text_parts(responses_impl):
|
||||
"""Test extraction with no text parts returns None."""
|
||||
# Create image part (no text attribute)
|
||||
image_part = MagicMock()
|
||||
image_part.type = "image"
|
||||
image_part.image_url = "http://example.com"
|
||||
|
||||
# Create refusal part (no text attribute)
|
||||
refusal_part = MagicMock()
|
||||
refusal_part.type = "refusal"
|
||||
refusal_part.refusal = "Blocked"
|
||||
|
||||
# Explicitly remove text attributes to simulate non-text parts
|
||||
if hasattr(image_part, "text"):
|
||||
delattr(image_part, "text")
|
||||
if hasattr(refusal_part, "text"):
|
||||
delattr(refusal_part, "text")
|
||||
|
||||
content = [image_part, refusal_part]
|
||||
result = extract_text_content(content)
|
||||
assert result is None
|
||||
|
||||
|
||||
def test_extract_text_content_none_input(responses_impl):
|
||||
"""Test extraction with None input returns None."""
|
||||
result = extract_text_content(None)
|
||||
assert result is None
|
||||
|
|
@ -4,10 +4,44 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
OpenAIResponseContentPartRefusal,
|
||||
OpenAIResponseText,
|
||||
)
|
||||
from llama_stack.apis.inference import UserMessage
|
||||
from llama_stack.apis.safety import SafetyViolation, ViolationLevel
|
||||
from llama_stack.apis.tools import ToolDef
|
||||
from llama_stack.providers.inline.agents.meta_reference.responses.streaming import (
|
||||
StreamingResponseOrchestrator,
|
||||
convert_tooldef_to_chat_tool,
|
||||
)
|
||||
from llama_stack.providers.inline.agents.meta_reference.responses.types import ChatCompletionContext
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_safety_api():
|
||||
safety_api = AsyncMock()
|
||||
return safety_api
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_inference_api():
|
||||
inference_api = AsyncMock()
|
||||
return inference_api
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_context():
|
||||
context = AsyncMock(spec=ChatCompletionContext)
|
||||
# Add required attributes that StreamingResponseOrchestrator expects
|
||||
context.tool_context = AsyncMock()
|
||||
context.tool_context.previous_tools = {}
|
||||
context.messages = []
|
||||
return context
|
||||
|
||||
|
||||
def test_convert_tooldef_to_chat_tool_preserves_items_field():
|
||||
|
|
@ -36,3 +70,89 @@ def test_convert_tooldef_to_chat_tool_preserves_items_field():
|
|||
assert tags_param["type"] == "array"
|
||||
assert "items" in tags_param, "items field should be preserved for array parameters"
|
||||
assert tags_param["items"] == {"type": "string"}
|
||||
|
||||
|
||||
async def test_check_input_safety_no_violation(mock_safety_api, mock_inference_api, mock_context):
|
||||
"""Test input shield validation with no violations."""
|
||||
messages = [UserMessage(content="Hello world")]
|
||||
shield_ids = ["llama-guard"]
|
||||
|
||||
# Mock successful shield validation (no violation)
|
||||
mock_response = AsyncMock()
|
||||
mock_response.violation = None
|
||||
mock_safety_api.run_shield.return_value = mock_response
|
||||
|
||||
# Create orchestrator with safety components
|
||||
orchestrator = StreamingResponseOrchestrator(
|
||||
inference_api=mock_inference_api,
|
||||
ctx=mock_context,
|
||||
response_id="test_id",
|
||||
created_at=1234567890,
|
||||
text=OpenAIResponseText(),
|
||||
max_infer_iters=5,
|
||||
tool_executor=AsyncMock(),
|
||||
safety_api=mock_safety_api,
|
||||
shield_ids=shield_ids,
|
||||
)
|
||||
|
||||
result = await orchestrator._check_input_safety(messages)
|
||||
|
||||
assert result is None
|
||||
mock_safety_api.run_shield.assert_called_once_with(shield_id="llama-guard", messages=messages, params={})
|
||||
|
||||
|
||||
async def test_check_input_safety_with_violation(mock_safety_api, mock_inference_api, mock_context):
|
||||
"""Test input shield validation with safety violation."""
|
||||
messages = [UserMessage(content="Harmful content")]
|
||||
shield_ids = ["llama-guard"]
|
||||
|
||||
# Mock shield violation
|
||||
violation = SafetyViolation(
|
||||
violation_level=ViolationLevel.ERROR, user_message="Content violates safety guidelines", metadata={}
|
||||
)
|
||||
mock_response = AsyncMock()
|
||||
mock_response.violation = violation
|
||||
mock_safety_api.run_shield.return_value = mock_response
|
||||
|
||||
# Create orchestrator with safety components
|
||||
orchestrator = StreamingResponseOrchestrator(
|
||||
inference_api=mock_inference_api,
|
||||
ctx=mock_context,
|
||||
response_id="test_id",
|
||||
created_at=1234567890,
|
||||
text=OpenAIResponseText(),
|
||||
max_infer_iters=5,
|
||||
tool_executor=AsyncMock(),
|
||||
safety_api=mock_safety_api,
|
||||
shield_ids=shield_ids,
|
||||
)
|
||||
|
||||
result = await orchestrator._check_input_safety(messages)
|
||||
|
||||
assert isinstance(result, OpenAIResponseContentPartRefusal)
|
||||
assert result.refusal == "Content violates safety guidelines"
|
||||
|
||||
|
||||
async def test_check_input_safety_empty_inputs(mock_safety_api, mock_inference_api, mock_context):
|
||||
"""Test input shield validation with empty inputs."""
|
||||
# Create orchestrator with safety components
|
||||
orchestrator = StreamingResponseOrchestrator(
|
||||
inference_api=mock_inference_api,
|
||||
ctx=mock_context,
|
||||
response_id="test_id",
|
||||
created_at=1234567890,
|
||||
text=OpenAIResponseText(),
|
||||
max_infer_iters=5,
|
||||
tool_executor=AsyncMock(),
|
||||
safety_api=mock_safety_api,
|
||||
shield_ids=[],
|
||||
)
|
||||
|
||||
# Test empty shield_ids
|
||||
result = await orchestrator._check_input_safety([UserMessage(content="test")])
|
||||
assert result is None
|
||||
|
||||
# Test empty messages
|
||||
orchestrator.shield_ids = ["llama-guard"]
|
||||
result = await orchestrator._check_input_safety([])
|
||||
assert result is None
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue