mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
make inference server load checkpoints for fp8 inference
- introduce quantization related args for inference config - also kill GeneratorArgs
This commit is contained in:
parent
7d2c0b14b8
commit
ad62e2e1f3
10 changed files with 249 additions and 155 deletions
106
toolchain/inference/quantization/loader.py
Normal file
106
toolchain/inference/quantization/loader.py
Normal file
|
@ -0,0 +1,106 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
|
||||
|
||||
import os
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from models.llama3_1.api.model import Transformer, TransformerBlock
|
||||
|
||||
from toolchain.inference.api.config import (
|
||||
CheckpointQuantizationFormat,
|
||||
InlineImplConfig,
|
||||
)
|
||||
from toolchain.inference.api.datatypes import (
|
||||
QuantizationType,
|
||||
)
|
||||
|
||||
from termcolor import cprint
|
||||
|
||||
def is_fbgemm_available() -> bool:
|
||||
try:
|
||||
import fbgemm_gpu.experimental.gen_ai # noqa: F401
|
||||
return True
|
||||
except (ImportError, ModuleNotFoundError):
|
||||
return False
|
||||
|
||||
|
||||
def convert_to_quantized_model(
|
||||
model: Transformer,
|
||||
config: InlineImplConfig,
|
||||
fp8_activation_scale_ub: Optional[float] = 1200.0,
|
||||
) -> Transformer:
|
||||
if config.quantization.type == QuantizationType.bf16.value:
|
||||
return model
|
||||
|
||||
elif config.quantization.type != QuantizationType.fp8.value:
|
||||
raise ValueError("Only FP8 quantization is supported")
|
||||
|
||||
from .fp8_impls import Fp8ScaledWeights, load_fp8, quantize_fp8
|
||||
|
||||
|
||||
|
||||
checkpoint = config.checkpoint_config.checkpoint
|
||||
# Move weights to GPU with quantization
|
||||
if checkpoint.quantization_format == CheckpointQuantizationFormat.fp8_mixed.value:
|
||||
cprint("Loading fp8 scales...", "yellow")
|
||||
fp8_scales_path = os.path.join(
|
||||
checkpoint.checkpoint_dir, f"fp8_scales_{get_model_parallel_rank()}.pt"
|
||||
)
|
||||
assert os.path.isfile(
|
||||
fp8_scales_path
|
||||
), f"fp8_scales_path not found for rank {get_model_parallel_rank()}"
|
||||
fp8_scales = torch.load(fp8_scales_path, weights_only=True)
|
||||
|
||||
for block in model.layers:
|
||||
if isinstance(block, TransformerBlock):
|
||||
if block.layer_id == 0 or block.layer_id == (model.n_layers - 1):
|
||||
continue
|
||||
block.feed_forward.w1.weight = load_fp8(
|
||||
block.feed_forward.w1.weight,
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w1_{get_model_parallel_rank()}"
|
||||
],
|
||||
fp8_activation_scale_ub,
|
||||
)
|
||||
block.feed_forward.w3.weight = load_fp8(
|
||||
block.feed_forward.w3.weight,
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w3_{get_model_parallel_rank()}"
|
||||
],
|
||||
fp8_activation_scale_ub,
|
||||
)
|
||||
block.feed_forward.w2.weight = load_fp8(
|
||||
block.feed_forward.w2.weight,
|
||||
fp8_scales[
|
||||
f"{block.layer_id}_feed_forward.w2_{get_model_parallel_rank()}"
|
||||
],
|
||||
fp8_activation_scale_ub,
|
||||
)
|
||||
else:
|
||||
cprint("Quantizing fp8 weights from bf16...", "yellow")
|
||||
for block in model.layers:
|
||||
if isinstance(block, TransformerBlock):
|
||||
if block.layer_id == 0 or block.layer_id == (model.n_layers - 1):
|
||||
continue
|
||||
block.feed_forward.w1.weight = quantize_fp8(
|
||||
block.feed_forward.w1.weight,
|
||||
fp8_activation_scale_ub,
|
||||
output_device=torch.device("cuda"),
|
||||
)
|
||||
block.feed_forward.w3.weight = quantize_fp8(
|
||||
block.feed_forward.w3.weight,
|
||||
fp8_activation_scale_ub,
|
||||
output_device=torch.device("cuda"),
|
||||
)
|
||||
block.feed_forward.w2.weight = quantize_fp8(
|
||||
block.feed_forward.w2.weight,
|
||||
fp8_activation_scale_ub,
|
||||
output_device=torch.device("cuda"),
|
||||
)
|
||||
|
||||
for _, parameter in model.named_parameters():
|
||||
if not isinstance(parameter, Fp8ScaledWeights):
|
||||
parameter.data = parameter.to(device="cuda")
|
||||
return model
|
Loading…
Add table
Add a link
Reference in a new issue