mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-05 20:27:35 +00:00
Merge branch 'llamastack:main' into crewai
This commit is contained in:
commit
ad9b12a950
81 changed files with 12332 additions and 2029 deletions
26
docs/_static/llama-stack-spec.html
vendored
26
docs/_static/llama-stack-spec.html
vendored
|
@ -4129,7 +4129,7 @@
|
|||
"tags": [
|
||||
"Files"
|
||||
],
|
||||
"description": "Upload a file that can be used across various endpoints.\nThe file upload should be a multipart form request with:\n- file: The File object (not file name) to be uploaded.\n- purpose: The intended purpose of the uploaded file.",
|
||||
"description": "Upload a file that can be used across various endpoints.\nThe file upload should be a multipart form request with:\n- file: The File object (not file name) to be uploaded.\n- purpose: The intended purpose of the uploaded file.\n- expires_after: Optional form values describing expiration for the file. Expected expires_after[anchor] = \"created_at\", expires_after[seconds] = <int>. Seconds must be between 3600 and 2592000 (1 hour to 30 days).",
|
||||
"parameters": [],
|
||||
"requestBody": {
|
||||
"content": {
|
||||
|
@ -4143,11 +4143,33 @@
|
|||
},
|
||||
"purpose": {
|
||||
"$ref": "#/components/schemas/OpenAIFilePurpose"
|
||||
},
|
||||
"expires_after_anchor": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
]
|
||||
},
|
||||
"expires_after_seconds": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "integer"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"file",
|
||||
"purpose"
|
||||
"purpose",
|
||||
"expires_after_anchor",
|
||||
"expires_after_seconds"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
14
docs/_static/llama-stack-spec.yaml
vendored
14
docs/_static/llama-stack-spec.yaml
vendored
|
@ -2933,6 +2933,10 @@ paths:
|
|||
- file: The File object (not file name) to be uploaded.
|
||||
|
||||
- purpose: The intended purpose of the uploaded file.
|
||||
|
||||
- expires_after: Optional form values describing expiration for the file.
|
||||
Expected expires_after[anchor] = "created_at", expires_after[seconds] = <int>.
|
||||
Seconds must be between 3600 and 2592000 (1 hour to 30 days).
|
||||
parameters: []
|
||||
requestBody:
|
||||
content:
|
||||
|
@ -2945,9 +2949,19 @@ paths:
|
|||
format: binary
|
||||
purpose:
|
||||
$ref: '#/components/schemas/OpenAIFilePurpose'
|
||||
expires_after_anchor:
|
||||
oneOf:
|
||||
- type: string
|
||||
- type: 'null'
|
||||
expires_after_seconds:
|
||||
oneOf:
|
||||
- type: integer
|
||||
- type: 'null'
|
||||
required:
|
||||
- file
|
||||
- purpose
|
||||
- expires_after_anchor
|
||||
- expires_after_seconds
|
||||
required: true
|
||||
/v1/openai/v1/models:
|
||||
get:
|
||||
|
|
|
@ -33,7 +33,7 @@ The list of open-benchmarks we currently support:
|
|||
- [MMMU](https://arxiv.org/abs/2311.16502) (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI)]: Benchmark designed to evaluate multimodal models.
|
||||
|
||||
|
||||
You can follow this [contributing guide](https://llama-stack.readthedocs.io/en/latest/references/evals_reference/index.html#open-benchmark-contributing-guide) to add more open-benchmarks to Llama Stack
|
||||
You can follow this [contributing guide](../references/evals_reference/index.md#open-benchmark-contributing-guide) to add more open-benchmarks to Llama Stack
|
||||
|
||||
#### Run evaluation on open-benchmarks via CLI
|
||||
|
||||
|
|
|
@ -88,7 +88,7 @@ Interactive pages for users to play with and explore Llama Stack API capabilitie
|
|||
- **API Resources**: Inspect Llama Stack API resources
|
||||
- This page allows you to inspect Llama Stack API resources (`models`, `datasets`, `memory_banks`, `benchmarks`, `shields`).
|
||||
- Under the hood, it uses Llama Stack's `/<resources>/list` API to get information about each resources.
|
||||
- Please visit [Core Concepts](https://llama-stack.readthedocs.io/en/latest/concepts/index.html) for more details about the resources.
|
||||
- Please visit [Core Concepts](../../concepts/index.md) for more details about the resources.
|
||||
|
||||
### Starting the Llama Stack Playground
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
Llama Stack (LLS) provides two different APIs for building AI applications with tool calling capabilities: the **Agents API** and the **OpenAI Responses API**. While both enable AI systems to use tools, and maintain full conversation history, they serve different use cases and have distinct characteristics.
|
||||
|
||||
```{note}
|
||||
For simple and basic inferencing, you may want to use the [Chat Completions API](https://llama-stack.readthedocs.io/en/latest/providers/index.html#chat-completions) directly, before progressing to Agents or Responses API.
|
||||
**Note:** For simple and basic inferencing, you may want to use the [Chat Completions API](../providers/openai.md#chat-completions) directly, before progressing to Agents or Responses API.
|
||||
```
|
||||
|
||||
## Overview
|
||||
|
@ -173,7 +173,7 @@ Both APIs demonstrate distinct strengths that make them valuable on their own fo
|
|||
|
||||
## For More Information
|
||||
|
||||
- **LLS Agents API**: For detailed information on creating and managing agents, see the [Agents documentation](https://llama-stack.readthedocs.io/en/latest/building_applications/agent.html)
|
||||
- **LLS Agents API**: For detailed information on creating and managing agents, see the [Agents documentation](agent.md)
|
||||
- **OpenAI Responses API**: For information on using the OpenAI-compatible responses API, see the [OpenAI API documentation](https://platform.openai.com/docs/api-reference/responses)
|
||||
- **Chat Completions API**: For the default backend API used by Agents, see the [Chat Completions providers documentation](https://llama-stack.readthedocs.io/en/latest/providers/index.html#chat-completions)
|
||||
- **Agent Execution Loop**: For understanding how agents process turns and steps in their execution, see the [Agent Execution Loop documentation](https://llama-stack.readthedocs.io/en/latest/building_applications/agent_execution_loop.html)
|
||||
- **Chat Completions API**: For the default backend API used by Agents, see the [Chat Completions providers documentation](../providers/openai.md#chat-completions)
|
||||
- **Agent Execution Loop**: For understanding how agents process turns and steps in their execution, see the [Agent Execution Loop documentation](agent_execution_loop.md)
|
||||
|
|
|
@ -6,4 +6,4 @@ While there is a lot of flexibility to mix-and-match providers, often users will
|
|||
|
||||
**Locally Hosted Distro**: You may want to run Llama Stack on your own hardware. Typically though, you still need to use Inference via an external service. You can use providers like HuggingFace TGI, Fireworks, Together, etc. for this purpose. Or you may have access to GPUs and can run a [vLLM](https://github.com/vllm-project/vllm) or [NVIDIA NIM](https://build.nvidia.com/nim?filters=nimType%3Anim_type_run_anywhere&q=llama) instance. If you "just" have a regular desktop machine, you can use [Ollama](https://ollama.com/) for inference. To provide convenient quick access to these options, we provide a number of such pre-configured locally-hosted Distros.
|
||||
|
||||
**On-device Distro**: To run Llama Stack directly on an edge device (mobile phone or a tablet), we provide Distros for [iOS](https://llama-stack.readthedocs.io/en/latest/distributions/ondevice_distro/ios_sdk.html) and [Android](https://llama-stack.readthedocs.io/en/latest/distributions/ondevice_distro/android_sdk.html)
|
||||
**On-device Distro**: To run Llama Stack directly on an edge device (mobile phone or a tablet), we provide Distros for [iOS](../distributions/ondevice_distro/ios_sdk.md) and [Android](../distributions/ondevice_distro/android_sdk.md)
|
||||
|
|
|
@ -14,6 +14,13 @@ Here are some example PRs to help you get started:
|
|||
- [Nvidia Inference Implementation](https://github.com/meta-llama/llama-stack/pull/355)
|
||||
- [Model context protocol Tool Runtime](https://github.com/meta-llama/llama-stack/pull/665)
|
||||
|
||||
## Guidelines for creating Internal or External Providers
|
||||
|
||||
|**Type** |Internal (In-tree) |External (out-of-tree)
|
||||
|---------|-------------------|---------------------|
|
||||
|**Description** |A provider that is directly in the Llama Stack code|A provider that is outside of the Llama stack core codebase but is still accessible and usable by Llama Stack.
|
||||
|**Benefits** |Ability to interact with the provider with minimal additional configurations or installations| Contributors do not have to add directly to the code to create providers accessible on Llama Stack. Keep provider-specific code separate from the core Llama Stack code.
|
||||
|
||||
## Inference Provider Patterns
|
||||
|
||||
When implementing Inference providers for OpenAI-compatible APIs, Llama Stack provides several mixin classes to simplify development and ensure consistent behavior across providers.
|
||||
|
|
|
@ -27,7 +27,7 @@ Then, you can access the APIs like `models` and `inference` on the client and ca
|
|||
response = client.models.list()
|
||||
```
|
||||
|
||||
If you've created a [custom distribution](https://llama-stack.readthedocs.io/en/latest/distributions/building_distro.html), you can also use the run.yaml configuration file directly:
|
||||
If you've created a [custom distribution](building_distro.md), you can also use the run.yaml configuration file directly:
|
||||
|
||||
```python
|
||||
client = LlamaStackAsLibraryClient(config_path)
|
||||
|
|
|
@ -22,17 +22,17 @@ else
|
|||
fi
|
||||
|
||||
if [ -z "${GITHUB_CLIENT_ID:-}" ]; then
|
||||
echo "ERROR: GITHUB_CLIENT_ID not set. You need it for Github login to work. Refer to https://llama-stack.readthedocs.io/en/latest/deploying/index.html#kubernetes-deployment-guide"
|
||||
echo "ERROR: GITHUB_CLIENT_ID not set. You need it for Github login to work. See the Kubernetes Deployment Guide in the Llama Stack documentation."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -z "${GITHUB_CLIENT_SECRET:-}" ]; then
|
||||
echo "ERROR: GITHUB_CLIENT_SECRET not set. You need it for Github login to work. Refer to https://llama-stack.readthedocs.io/en/latest/deploying/index.html#kubernetes-deployment-guide"
|
||||
echo "ERROR: GITHUB_CLIENT_SECRET not set. You need it for Github login to work. See the Kubernetes Deployment Guide in the Llama Stack documentation."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -z "${LLAMA_STACK_UI_URL:-}" ]; then
|
||||
echo "ERROR: LLAMA_STACK_UI_URL not set. Should be set to the external URL of the UI (excluding port). You need it for Github login to work. Refer to https://llama-stack.readthedocs.io/en/latest/deploying/index.html#kubernetes-deployment-guide"
|
||||
echo "ERROR: LLAMA_STACK_UI_URL not set. Should be set to the external URL of the UI (excluding port). You need it for Github login to work. See the Kubernetes Deployment Guide in the Llama Stack documentation."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
|
|
@ -66,7 +66,7 @@ llama stack run starter --port 5050
|
|||
|
||||
Ensure the Llama Stack server version is the same as the Kotlin SDK Library for maximum compatibility.
|
||||
|
||||
Other inference providers: [Table](https://llama-stack.readthedocs.io/en/latest/index.html#supported-llama-stack-implementations)
|
||||
Other inference providers: [Table](../../index.md#supported-llama-stack-implementations)
|
||||
|
||||
How to set remote localhost in Demo App: [Settings](https://github.com/meta-llama/llama-stack-client-kotlin/tree/latest-release/examples/android_app#settings)
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
orphan: true
|
||||
---
|
||||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# Meta Reference Distribution
|
||||
# Meta Reference GPU Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
|
@ -41,7 +41,7 @@ The following environment variables can be configured:
|
|||
|
||||
## Prerequisite: Downloading Models
|
||||
|
||||
Please use `llama model list --downloaded` to check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
Please use `llama model list --downloaded` to check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](../../references/llama_cli_reference/download_models.md) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
||||
|
||||
```
|
||||
$ llama model list --downloaded
|
||||
|
|
|
@ -50,6 +50,7 @@ The following models are available by default:
|
|||
- `meta/llama-3.2-11b-vision-instruct `
|
||||
- `meta/llama-3.2-90b-vision-instruct `
|
||||
- `meta/llama-3.3-70b-instruct `
|
||||
- `nvidia/vila `
|
||||
- `nvidia/llama-3.2-nv-embedqa-1b-v2 `
|
||||
- `nvidia/nv-embedqa-e5-v5 `
|
||||
- `nvidia/nv-embedqa-mistral-7b-v2 `
|
||||
|
|
|
@ -12,6 +12,60 @@ That means you'll get fast and efficient vector retrieval.
|
|||
- Easy to use
|
||||
- Fully integrated with Llama Stack
|
||||
|
||||
There are three implementations of search for PGVectoIndex available:
|
||||
|
||||
1. Vector Search:
|
||||
- How it works:
|
||||
- Uses PostgreSQL's vector extension (pgvector) to perform similarity search
|
||||
- Compares query embeddings against stored embeddings using Cosine distance or other distance metrics
|
||||
- Eg. SQL query: SELECT document, embedding <=> %s::vector AS distance FROM table ORDER BY distance
|
||||
|
||||
-Characteristics:
|
||||
- Semantic understanding - finds documents similar in meaning even if they don't share keywords
|
||||
- Works with high-dimensional vector embeddings (typically 768, 1024, or higher dimensions)
|
||||
- Best for: Finding conceptually related content, handling synonyms, cross-language search
|
||||
|
||||
2. Keyword Search
|
||||
- How it works:
|
||||
- Uses PostgreSQL's full-text search capabilities with tsvector and ts_rank
|
||||
- Converts text to searchable tokens using to_tsvector('english', text). Default language is English.
|
||||
- Eg. SQL query: SELECT document, ts_rank(tokenized_content, plainto_tsquery('english', %s)) AS score
|
||||
|
||||
- Characteristics:
|
||||
- Lexical matching - finds exact keyword matches and variations
|
||||
- Uses GIN (Generalized Inverted Index) for fast text search performance
|
||||
- Scoring: Uses PostgreSQL's ts_rank function for relevance scoring
|
||||
- Best for: Exact term matching, proper names, technical terms, Boolean-style queries
|
||||
|
||||
3. Hybrid Search
|
||||
- How it works:
|
||||
- Combines both vector and keyword search results
|
||||
- Runs both searches independently, then merges results using configurable reranking
|
||||
|
||||
- Two reranking strategies available:
|
||||
- Reciprocal Rank Fusion (RRF) - (default: 60.0)
|
||||
- Weighted Average - (default: 0.5)
|
||||
|
||||
- Characteristics:
|
||||
- Best of both worlds: semantic understanding + exact matching
|
||||
- Documents appearing in both searches get boosted scores
|
||||
- Configurable balance between semantic and lexical matching
|
||||
- Best for: General-purpose search where you want both precision and recall
|
||||
|
||||
4. Database Schema
|
||||
The PGVector implementation stores data optimized for all three search types:
|
||||
CREATE TABLE vector_store_xxx (
|
||||
id TEXT PRIMARY KEY,
|
||||
document JSONB, -- Original document
|
||||
embedding vector(dimension), -- For vector search
|
||||
content_text TEXT, -- Raw text content
|
||||
tokenized_content TSVECTOR -- For keyword search
|
||||
);
|
||||
|
||||
-- Indexes for performance
|
||||
CREATE INDEX content_gin_idx ON table USING GIN(tokenized_content); -- Keyword search
|
||||
-- Vector index created automatically by pgvector
|
||||
|
||||
## Usage
|
||||
|
||||
To use PGVector in your Llama Stack project, follow these steps:
|
||||
|
@ -20,6 +74,25 @@ To use PGVector in your Llama Stack project, follow these steps:
|
|||
2. Configure your Llama Stack project to use pgvector. (e.g. remote::pgvector).
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
## This is an example how you can set up your environment for using PGVector
|
||||
|
||||
1. Export env vars:
|
||||
```bash
|
||||
export ENABLE_PGVECTOR=true
|
||||
export PGVECTOR_HOST=localhost
|
||||
export PGVECTOR_PORT=5432
|
||||
export PGVECTOR_DB=llamastack
|
||||
export PGVECTOR_USER=llamastack
|
||||
export PGVECTOR_PASSWORD=llamastack
|
||||
```
|
||||
|
||||
2. Create DB:
|
||||
```bash
|
||||
psql -h localhost -U postgres -c "CREATE ROLE llamastack LOGIN PASSWORD 'llamastack';"
|
||||
psql -h localhost -U postgres -c "CREATE DATABASE llamastack OWNER llamastack;"
|
||||
psql -h localhost -U llamastack -d llamastack -c "CREATE EXTENSION IF NOT EXISTS vector;"
|
||||
```
|
||||
|
||||
## Installation
|
||||
|
||||
You can install PGVector using docker:
|
||||
|
|
|
@ -17,6 +17,7 @@ Weaviate supports:
|
|||
- Metadata filtering
|
||||
- Multi-modal retrieval
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
To use Weaviate in your Llama Stack project, follow these steps:
|
||||
|
|
|
@ -202,7 +202,7 @@ pprint(response)
|
|||
|
||||
Llama Stack offers a library of scoring functions and the `/scoring` API, allowing you to run evaluations on your pre-annotated AI application datasets.
|
||||
|
||||
In this example, we will work with an example RAG dataset you have built previously, label with an annotation, and use LLM-As-Judge with custom judge prompt for scoring. Please checkout our [Llama Stack Playground](https://llama-stack.readthedocs.io/en/latest/playground/index.html) for an interactive interface to upload datasets and run scorings.
|
||||
In this example, we will work with an example RAG dataset you have built previously, label with an annotation, and use LLM-As-Judge with custom judge prompt for scoring. Please checkout our [Llama Stack Playground](../../building_applications/playground/index.md) for an interactive interface to upload datasets and run scorings.
|
||||
|
||||
```python
|
||||
judge_model_id = "meta-llama/Llama-3.1-405B-Instruct-FP8"
|
||||
|
|
|
@ -478,7 +478,6 @@ llama-stack-client scoring_functions list
|
|||
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┓
|
||||
┃ identifier ┃ provider_id ┃ description ┃ type ┃
|
||||
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━┩
|
||||
│ basic::bfcl │ basic │ BFCL complex scoring │ scoring_function │
|
||||
│ basic::docvqa │ basic │ DocVQA Visual Question & Answer scoring function │ scoring_function │
|
||||
│ basic::equality │ basic │ Returns 1.0 if the input is equal to the target, 0.0 │ scoring_function │
|
||||
│ │ │ otherwise. │ │
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue