queue and stream events for safe chunk

This commit is contained in:
Swapna Lekkala 2025-10-15 13:16:37 -07:00
parent 31105c450a
commit ada18ec399
3 changed files with 79 additions and 23 deletions

View file

@ -566,6 +566,9 @@ class StreamingResponseOrchestrator:
# Accumulate usage from chunks (typically in final chunk with stream_options)
self._accumulate_chunk_usage(chunk)
# Track deltas for this specific chunk for guardrail validation
chunk_events: list[OpenAIResponseObjectStream] = []
for chunk_choice in chunk.choices:
# Emit incremental text content as delta events
if chunk_choice.delta.content:
@ -601,15 +604,19 @@ class StreamingResponseOrchestrator:
sequence_number=self.sequence_number,
)
self.sequence_number += 1
# Skip Emitting text content delta event if guardrails are configured, only emits chunks after guardrails are applied
if not self.guardrail_ids:
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
content_index=content_index,
delta=chunk_choice.delta.content,
item_id=message_item_id,
output_index=message_output_index,
sequence_number=self.sequence_number,
)
text_delta_event = OpenAIResponseObjectStreamResponseOutputTextDelta(
content_index=content_index,
delta=chunk_choice.delta.content,
item_id=message_item_id,
output_index=message_output_index,
sequence_number=self.sequence_number,
)
# Buffer text delta events for guardrail check
if self.guardrail_ids:
chunk_events.append(text_delta_event)
else:
yield text_delta_event
# Collect content for final response
chat_response_content.append(chunk_choice.delta.content or "")
@ -625,7 +632,11 @@ class StreamingResponseOrchestrator:
message_item_id=message_item_id,
message_output_index=message_output_index,
):
yield event
# Buffer reasoning events for guardrail check
if self.guardrail_ids:
chunk_events.append(event)
else:
yield event
reasoning_part_emitted = True
reasoning_text_accumulated.append(chunk_choice.delta.reasoning_content)
@ -707,15 +718,21 @@ class StreamingResponseOrchestrator:
response_tool_call.function.arguments or ""
) + tool_call.function.arguments
# Output Safety Validation for a chunk
# Output Safety Validation for this chunk
if self.guardrail_ids:
# Check guardrails on accumulated text so far
accumulated_text = "".join(chat_response_content)
violation_message = await run_guardrails(self.safety_api, accumulated_text, self.guardrail_ids)
if violation_message:
logger.info(f"Output guardrail violation: {violation_message}")
chunk_events.clear()
yield await self._create_refusal_response(violation_message)
self.violation_detected = True
return
else:
# No violation detected, emit all content events for this chunk
for event in chunk_events:
yield event
# Emit arguments.done events for completed tool calls (differentiate between MCP and function calls)
for tool_call_index in sorted(chat_response_tool_calls.keys()):

View file

@ -323,13 +323,11 @@ async def run_guardrails(safety_api: Safety, messages: str, guardrail_ids: list[
shields_list = await safety_api.routing_table.list_shields()
for guardrail_id in guardrail_ids:
# Find the shield with this identifier
matching_shields = [shield for shield in shields_list.data if shield.identifier == guardrail_id]
if matching_shields:
model_id = matching_shields[0].provider_resource_id
model_ids.append(model_id)
else:
# If no shield found, raise an error
raise ValueError(f"No shield found with identifier '{guardrail_id}'")
guardrail_tasks = [safety_api.run_moderation(messages, model=model_id) for model_id in model_ids]

View file

@ -346,22 +346,18 @@ def test_input_safety_guardrails(compat_client, text_model_id, stream):
@pytest.mark.parametrize("stream", [True, False])
def test_output_safety_guardrails(compat_client, text_model_id, stream):
"""Test that output safety guardrails can block generated content."""
def test_output_safety_guardrails_unsafe_content(compat_client, text_model_id, stream):
"""Test that output safety guardrails block unsafe content."""
if not isinstance(compat_client, OpenAI):
pytest.skip("OpenAI client is required until responses API exists in llama-stack-client")
# Use an ambiguous prompt that could potentially generate content requiring guardrail evaluation
# This prompt: "Describe violent content."
# Could result in:
# 1. Educational violent content → guardrail allows output → normal response
# 2. Violent techniques content → guardrail blocks output → refusal response
# Use an unsafe prompt that should be blocked by guardrail evaluation
response = compat_client.responses.create(
model=text_model_id,
input=[
{
"role": "user",
"content": "Describe violent content.",
"content": "Describe violent content",
}
],
stream=stream,
@ -369,7 +365,7 @@ def test_output_safety_guardrails(compat_client, text_model_id, stream):
)
if stream:
# For streaming, violations cause stream to end with refusal completion
# For streaming, collect the final response
last_chunk = None
for chunk in response:
last_chunk = chunk
@ -385,7 +381,52 @@ def test_output_safety_guardrails(compat_client, text_model_id, stream):
assert len(message.content) > 0, "Message should have content"
content_item = message.content[0]
assert content_item.type == "refusal", f"Content type should be 'refusal', got {content_item.type}"
assert content_item.type == "refusal", (
f"Content type should be 'refusal' for unsafe output, got {content_item.type}"
)
assert len(content_item.refusal.strip()) > 0, "Refusal message should not be empty"
@pytest.mark.parametrize("stream", [True, False])
def test_output_safety_guardrails_safe_content(compat_client, text_model_id, stream):
"""Test that output safety guardrails allow safe content."""
if not isinstance(compat_client, OpenAI):
pytest.skip("OpenAI client is required until responses API exists in llama-stack-client")
# Use a safe prompt that should pass guardrail evaluation
response = compat_client.responses.create(
model=text_model_id,
input=[
{
"role": "user",
"content": "What's your name?",
}
],
stream=stream,
extra_body={"guardrails": ["llama-guard"]}, # Output guardrail validation
)
if stream:
# For streaming, collect the final response
last_chunk = None
for chunk in response:
last_chunk = chunk
assert last_chunk is not None
assert last_chunk.type == "response.completed", f"Expected final chunk to be completion, got {last_chunk.type}"
response_to_check = last_chunk.response
else:
response_to_check = response
assert response_to_check.output[0].type == "message"
message = response_to_check.output[0]
assert len(message.content) > 0, "Message should have content"
content_item = message.content[0]
assert content_item.type == "output_text", (
f"Content type should be 'output_text' for safe output, got {content_item.type}"
)
assert len(content_item.text.strip()) > 0, "Text content should not be empty"
def test_guardrails_with_tools(compat_client, text_model_id):