mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-12 12:06:04 +00:00
queue and stream events for safe chunk
This commit is contained in:
parent
31105c450a
commit
ada18ec399
3 changed files with 79 additions and 23 deletions
|
|
@ -566,6 +566,9 @@ class StreamingResponseOrchestrator:
|
|||
# Accumulate usage from chunks (typically in final chunk with stream_options)
|
||||
self._accumulate_chunk_usage(chunk)
|
||||
|
||||
# Track deltas for this specific chunk for guardrail validation
|
||||
chunk_events: list[OpenAIResponseObjectStream] = []
|
||||
|
||||
for chunk_choice in chunk.choices:
|
||||
# Emit incremental text content as delta events
|
||||
if chunk_choice.delta.content:
|
||||
|
|
@ -601,15 +604,19 @@ class StreamingResponseOrchestrator:
|
|||
sequence_number=self.sequence_number,
|
||||
)
|
||||
self.sequence_number += 1
|
||||
# Skip Emitting text content delta event if guardrails are configured, only emits chunks after guardrails are applied
|
||||
if not self.guardrail_ids:
|
||||
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
|
||||
content_index=content_index,
|
||||
delta=chunk_choice.delta.content,
|
||||
item_id=message_item_id,
|
||||
output_index=message_output_index,
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
|
||||
text_delta_event = OpenAIResponseObjectStreamResponseOutputTextDelta(
|
||||
content_index=content_index,
|
||||
delta=chunk_choice.delta.content,
|
||||
item_id=message_item_id,
|
||||
output_index=message_output_index,
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
# Buffer text delta events for guardrail check
|
||||
if self.guardrail_ids:
|
||||
chunk_events.append(text_delta_event)
|
||||
else:
|
||||
yield text_delta_event
|
||||
|
||||
# Collect content for final response
|
||||
chat_response_content.append(chunk_choice.delta.content or "")
|
||||
|
|
@ -625,7 +632,11 @@ class StreamingResponseOrchestrator:
|
|||
message_item_id=message_item_id,
|
||||
message_output_index=message_output_index,
|
||||
):
|
||||
yield event
|
||||
# Buffer reasoning events for guardrail check
|
||||
if self.guardrail_ids:
|
||||
chunk_events.append(event)
|
||||
else:
|
||||
yield event
|
||||
reasoning_part_emitted = True
|
||||
reasoning_text_accumulated.append(chunk_choice.delta.reasoning_content)
|
||||
|
||||
|
|
@ -707,15 +718,21 @@ class StreamingResponseOrchestrator:
|
|||
response_tool_call.function.arguments or ""
|
||||
) + tool_call.function.arguments
|
||||
|
||||
# Output Safety Validation for a chunk
|
||||
# Output Safety Validation for this chunk
|
||||
if self.guardrail_ids:
|
||||
# Check guardrails on accumulated text so far
|
||||
accumulated_text = "".join(chat_response_content)
|
||||
violation_message = await run_guardrails(self.safety_api, accumulated_text, self.guardrail_ids)
|
||||
if violation_message:
|
||||
logger.info(f"Output guardrail violation: {violation_message}")
|
||||
chunk_events.clear()
|
||||
yield await self._create_refusal_response(violation_message)
|
||||
self.violation_detected = True
|
||||
return
|
||||
else:
|
||||
# No violation detected, emit all content events for this chunk
|
||||
for event in chunk_events:
|
||||
yield event
|
||||
|
||||
# Emit arguments.done events for completed tool calls (differentiate between MCP and function calls)
|
||||
for tool_call_index in sorted(chat_response_tool_calls.keys()):
|
||||
|
|
|
|||
|
|
@ -323,13 +323,11 @@ async def run_guardrails(safety_api: Safety, messages: str, guardrail_ids: list[
|
|||
shields_list = await safety_api.routing_table.list_shields()
|
||||
|
||||
for guardrail_id in guardrail_ids:
|
||||
# Find the shield with this identifier
|
||||
matching_shields = [shield for shield in shields_list.data if shield.identifier == guardrail_id]
|
||||
if matching_shields:
|
||||
model_id = matching_shields[0].provider_resource_id
|
||||
model_ids.append(model_id)
|
||||
else:
|
||||
# If no shield found, raise an error
|
||||
raise ValueError(f"No shield found with identifier '{guardrail_id}'")
|
||||
|
||||
guardrail_tasks = [safety_api.run_moderation(messages, model=model_id) for model_id in model_ids]
|
||||
|
|
|
|||
|
|
@ -346,22 +346,18 @@ def test_input_safety_guardrails(compat_client, text_model_id, stream):
|
|||
|
||||
|
||||
@pytest.mark.parametrize("stream", [True, False])
|
||||
def test_output_safety_guardrails(compat_client, text_model_id, stream):
|
||||
"""Test that output safety guardrails can block generated content."""
|
||||
def test_output_safety_guardrails_unsafe_content(compat_client, text_model_id, stream):
|
||||
"""Test that output safety guardrails block unsafe content."""
|
||||
if not isinstance(compat_client, OpenAI):
|
||||
pytest.skip("OpenAI client is required until responses API exists in llama-stack-client")
|
||||
|
||||
# Use an ambiguous prompt that could potentially generate content requiring guardrail evaluation
|
||||
# This prompt: "Describe violent content."
|
||||
# Could result in:
|
||||
# 1. Educational violent content → guardrail allows output → normal response
|
||||
# 2. Violent techniques content → guardrail blocks output → refusal response
|
||||
# Use an unsafe prompt that should be blocked by guardrail evaluation
|
||||
response = compat_client.responses.create(
|
||||
model=text_model_id,
|
||||
input=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Describe violent content.",
|
||||
"content": "Describe violent content",
|
||||
}
|
||||
],
|
||||
stream=stream,
|
||||
|
|
@ -369,7 +365,7 @@ def test_output_safety_guardrails(compat_client, text_model_id, stream):
|
|||
)
|
||||
|
||||
if stream:
|
||||
# For streaming, violations cause stream to end with refusal completion
|
||||
# For streaming, collect the final response
|
||||
last_chunk = None
|
||||
for chunk in response:
|
||||
last_chunk = chunk
|
||||
|
|
@ -385,7 +381,52 @@ def test_output_safety_guardrails(compat_client, text_model_id, stream):
|
|||
|
||||
assert len(message.content) > 0, "Message should have content"
|
||||
content_item = message.content[0]
|
||||
assert content_item.type == "refusal", f"Content type should be 'refusal', got {content_item.type}"
|
||||
assert content_item.type == "refusal", (
|
||||
f"Content type should be 'refusal' for unsafe output, got {content_item.type}"
|
||||
)
|
||||
assert len(content_item.refusal.strip()) > 0, "Refusal message should not be empty"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("stream", [True, False])
|
||||
def test_output_safety_guardrails_safe_content(compat_client, text_model_id, stream):
|
||||
"""Test that output safety guardrails allow safe content."""
|
||||
if not isinstance(compat_client, OpenAI):
|
||||
pytest.skip("OpenAI client is required until responses API exists in llama-stack-client")
|
||||
|
||||
# Use a safe prompt that should pass guardrail evaluation
|
||||
response = compat_client.responses.create(
|
||||
model=text_model_id,
|
||||
input=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's your name?",
|
||||
}
|
||||
],
|
||||
stream=stream,
|
||||
extra_body={"guardrails": ["llama-guard"]}, # Output guardrail validation
|
||||
)
|
||||
|
||||
if stream:
|
||||
# For streaming, collect the final response
|
||||
last_chunk = None
|
||||
for chunk in response:
|
||||
last_chunk = chunk
|
||||
|
||||
assert last_chunk is not None
|
||||
assert last_chunk.type == "response.completed", f"Expected final chunk to be completion, got {last_chunk.type}"
|
||||
response_to_check = last_chunk.response
|
||||
else:
|
||||
response_to_check = response
|
||||
|
||||
assert response_to_check.output[0].type == "message"
|
||||
message = response_to_check.output[0]
|
||||
|
||||
assert len(message.content) > 0, "Message should have content"
|
||||
content_item = message.content[0]
|
||||
assert content_item.type == "output_text", (
|
||||
f"Content type should be 'output_text' for safe output, got {content_item.type}"
|
||||
)
|
||||
assert len(content_item.text.strip()) > 0, "Text content should not be empty"
|
||||
|
||||
|
||||
def test_guardrails_with_tools(compat_client, text_model_id):
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue