docs: Add documentation on how to contribute a Vector DB provider and

updated Test documentation and added a shortcut

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Javier Arceo 2025-08-11 09:41:16 -04:00
parent 1677d6bffd
commit ae3cbde8a4
25 changed files with 563 additions and 13 deletions

View file

@ -12,6 +12,18 @@ That means you'll get fast and efficient vector retrieval.
- Lightweight and easy to use
- Fully integrated with Llama Stack
- GPU support
- **Vector search** - FAISS supports pure vector similarity search using embeddings
## Search Modes
**Supported:**
- **Vector Search** (`mode="vector"`): Performs vector similarity search using embeddings
**Not Supported:**
- **Keyword Search** (`mode="keyword"`): Not supported by FAISS
- **Hybrid Search** (`mode="hybrid"`): Not supported by FAISS
> **Note**: FAISS is designed as a pure vector similarity search library. See the [FAISS GitHub repository](https://github.com/facebookresearch/faiss) for more details about FAISS's core functionality.
## Usage