mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 01:48:05 +00:00
Merge 765cf1c9f5 into 4237eb4aaa
This commit is contained in:
commit
ae3e825640
25 changed files with 654 additions and 5 deletions
|
|
@ -31,7 +31,7 @@ jobs:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
vector-io-provider: ["inline::faiss", "inline::sqlite-vec", "inline::milvus", "remote::chromadb", "remote::pgvector", "remote::weaviate", "remote::qdrant"]
|
vector-io-provider: ["inline::faiss", "inline::sqlite-vec", "inline::milvus", "remote::chromadb", "remote::pgvector", "remote::weaviate", "remote::qdrant", "remote::elasticsearch"]
|
||||||
python-version: ${{ github.event.schedule == '0 0 * * *' && fromJSON('["3.12", "3.13"]') || fromJSON('["3.12"]') }}
|
python-version: ${{ github.event.schedule == '0 0 * * *' && fromJSON('["3.12", "3.13"]') || fromJSON('["3.12"]') }}
|
||||||
fail-fast: false # we want to run all tests regardless of failure
|
fail-fast: false # we want to run all tests regardless of failure
|
||||||
|
|
||||||
|
|
@ -146,6 +146,14 @@ jobs:
|
||||||
docker logs weaviate
|
docker logs weaviate
|
||||||
exit 1
|
exit 1
|
||||||
|
|
||||||
|
- name: Setup Elasticsearch
|
||||||
|
if: matrix.vector-io-provider == 'remote::elasticsearch'
|
||||||
|
id: setup-elasticsearch
|
||||||
|
run: |
|
||||||
|
curl -fsSL https://elastic.co/start-local | sh -s -- -v 9.2.0 --esonly
|
||||||
|
source elastic-start-local/.env
|
||||||
|
echo "elasticsearch-api-key=$ES_LOCAL_API_KEY" >> "$GITHUB_OUTPUT"
|
||||||
|
|
||||||
- name: Build Llama Stack
|
- name: Build Llama Stack
|
||||||
run: |
|
run: |
|
||||||
uv run --no-sync llama stack list-deps ci-tests | xargs -L1 uv pip install
|
uv run --no-sync llama stack list-deps ci-tests | xargs -L1 uv pip install
|
||||||
|
|
@ -170,6 +178,8 @@ jobs:
|
||||||
QDRANT_URL: ${{ matrix.vector-io-provider == 'remote::qdrant' && 'http://localhost:6333' || '' }}
|
QDRANT_URL: ${{ matrix.vector-io-provider == 'remote::qdrant' && 'http://localhost:6333' || '' }}
|
||||||
ENABLE_WEAVIATE: ${{ matrix.vector-io-provider == 'remote::weaviate' && 'true' || '' }}
|
ENABLE_WEAVIATE: ${{ matrix.vector-io-provider == 'remote::weaviate' && 'true' || '' }}
|
||||||
WEAVIATE_CLUSTER_URL: ${{ matrix.vector-io-provider == 'remote::weaviate' && 'localhost:8080' || '' }}
|
WEAVIATE_CLUSTER_URL: ${{ matrix.vector-io-provider == 'remote::weaviate' && 'localhost:8080' || '' }}
|
||||||
|
ELASTICSEARCH_URL: ${{ matrix.vector-io-provider == 'remote::elasticsearch' && 'http://localhost:9200' || '' }}
|
||||||
|
ELASTICSEARCH_API_KEY: ${{ matrix.vector-io-provider == 'remote::elasticsearch' && steps.setup-elasticsearch.outputs.elasticsearch-api-key || '' }}
|
||||||
run: |
|
run: |
|
||||||
uv run --no-sync \
|
uv run --no-sync \
|
||||||
pytest -sv --stack-config="files=inline::localfs,inference=inline::sentence-transformers,vector_io=${{ matrix.vector-io-provider }}" \
|
pytest -sv --stack-config="files=inline::localfs,inference=inline::sentence-transformers,vector_io=${{ matrix.vector-io-provider }}" \
|
||||||
|
|
@ -196,6 +206,11 @@ jobs:
|
||||||
run: |
|
run: |
|
||||||
docker logs qdrant > qdrant.log
|
docker logs qdrant > qdrant.log
|
||||||
|
|
||||||
|
- name: Write Elasticsearch logs to file
|
||||||
|
if: ${{ always() && matrix.vector-io-provider == 'remote::elasticsearch' }}
|
||||||
|
run: |
|
||||||
|
docker logs es-local-dev > elasticsearch.log
|
||||||
|
|
||||||
- name: Upload all logs to artifacts
|
- name: Upload all logs to artifacts
|
||||||
if: ${{ always() }}
|
if: ${{ always() }}
|
||||||
uses: actions/upload-artifact@330a01c490aca151604b8cf639adc76d48f6c5d4 # v5.0.0
|
uses: actions/upload-artifact@330a01c490aca151604b8cf639adc76d48f6c5d4 # v5.0.0
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ sidebar_position: 2
|
||||||
|
|
||||||
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
|
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
|
||||||
- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.),
|
- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.),
|
||||||
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, etc.),
|
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, Elasticsearch, etc.),
|
||||||
- Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.)
|
- Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.)
|
||||||
|
|
||||||
Providers come in two flavors:
|
Providers come in two flavors:
|
||||||
|
|
|
||||||
|
|
@ -54,7 +54,7 @@ Llama Stack consists of a server (with multiple pluggable API providers) and Cli
|
||||||
Llama Stack provides adapters for popular providers across all API categories:
|
Llama Stack provides adapters for popular providers across all API categories:
|
||||||
|
|
||||||
- **Inference**: Meta Reference, Ollama, Fireworks, Together, NVIDIA, vLLM, AWS Bedrock, OpenAI, Anthropic, and more
|
- **Inference**: Meta Reference, Ollama, Fireworks, Together, NVIDIA, vLLM, AWS Bedrock, OpenAI, Anthropic, and more
|
||||||
- **Vector Databases**: FAISS, Chroma, Milvus, Postgres, Weaviate, Qdrant, and others
|
- **Vector Databases**: FAISS, Chroma, Milvus, Postgres, Weaviate, Qdrant, Elasticsearch and others
|
||||||
- **Safety**: Llama Guard, Prompt Guard, Code Scanner, AWS Bedrock
|
- **Safety**: Llama Guard, Prompt Guard, Code Scanner, AWS Bedrock
|
||||||
- **Training & Evaluation**: HuggingFace, TorchTune, NVIDIA NEMO
|
- **Training & Evaluation**: HuggingFace, TorchTune, NVIDIA NEMO
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ sidebar_position: 1
|
||||||
|
|
||||||
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
|
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
|
||||||
- LLM inference providers (e.g., Meta Reference, Ollama, Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, OpenAI, Anthropic, Gemini, WatsonX, etc.),
|
- LLM inference providers (e.g., Meta Reference, Ollama, Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, OpenAI, Anthropic, Gemini, WatsonX, etc.),
|
||||||
- Vector databases (e.g., FAISS, SQLite-Vec, ChromaDB, Weaviate, Qdrant, Milvus, PGVector, etc.),
|
- Vector databases (e.g., FAISS, SQLite-Vec, ChromaDB, Weaviate, Qdrant, Milvus, PGVector, Elasticsearch, etc.),
|
||||||
- Safety providers (e.g., Meta's Llama Guard, Prompt Guard, Code Scanner, AWS Bedrock Guardrails, etc.),
|
- Safety providers (e.g., Meta's Llama Guard, Prompt Guard, Code Scanner, AWS Bedrock Guardrails, etc.),
|
||||||
- Tool Runtime providers (e.g., RAG Runtime, Brave Search, etc.)
|
- Tool Runtime providers (e.g., RAG Runtime, Brave Search, etc.)
|
||||||
|
|
||||||
|
|
|
||||||
104
docs/docs/providers/vector_io/remote_elasticsearch.mdx
Normal file
104
docs/docs/providers/vector_io/remote_elasticsearch.mdx
Normal file
|
|
@ -0,0 +1,104 @@
|
||||||
|
---
|
||||||
|
description: |
|
||||||
|
[Elasticsearch](https://www.elastic.co/) is a vector database provider for Llama Stack.
|
||||||
|
It allows you to store and query vectors directly within an Elasticsearch database.
|
||||||
|
That means you're not limited to storing vectors in memory or in a separate service.
|
||||||
|
|
||||||
|
## Features
|
||||||
|
Elasticsearch supports:
|
||||||
|
- Store embeddings and their metadata
|
||||||
|
- Vector search
|
||||||
|
- Full-text search
|
||||||
|
- Fuzzy search
|
||||||
|
- Hybrid search
|
||||||
|
- Document storage
|
||||||
|
- Metadata filtering
|
||||||
|
- Inference service
|
||||||
|
- Machine Learning integrations
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
To use Elasticsearch in your Llama Stack project, follow these steps:
|
||||||
|
|
||||||
|
1. Install the necessary dependencies.
|
||||||
|
2. Configure your Llama Stack project to use Elasticsearch.
|
||||||
|
3. Start storing and querying vectors.
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
You can test Elasticsearch locally by running this script in the terminal:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl -fsSL https://elastic.co/start-local | sh
|
||||||
|
```
|
||||||
|
|
||||||
|
Or you can [start a free trial](https://www.elastic.co/cloud/cloud-trial-overview?utm_campaign=llama-stack-integration) on Elastic Cloud.
|
||||||
|
For more information on how to deploy Elasticsearch, see the [official documentation](https://www.elastic.co/docs/deploy-manage/deploy).
|
||||||
|
|
||||||
|
## Documentation
|
||||||
|
See [Elasticsearch's documentation](https://www.elastic.co/docs/solutions/search) for more details about Elasticsearch in general.
|
||||||
|
sidebar_label: Remote - Elasticsearch
|
||||||
|
title: remote::elasticsearch
|
||||||
|
---
|
||||||
|
|
||||||
|
# remote::elasticsearch
|
||||||
|
|
||||||
|
## Description
|
||||||
|
|
||||||
|
|
||||||
|
[Elasticsearch](https://www.elastic.co/) is a vector database provider for Llama Stack.
|
||||||
|
It allows you to store and query vectors directly within an Elasticsearch database.
|
||||||
|
That means you're not limited to storing vectors in memory or in a separate service.
|
||||||
|
|
||||||
|
## Features
|
||||||
|
Elasticsearch supports:
|
||||||
|
- Store embeddings and their metadata
|
||||||
|
- Vector search
|
||||||
|
- Full-text search
|
||||||
|
- Fuzzy search
|
||||||
|
- Hybrid search
|
||||||
|
- Document storage
|
||||||
|
- Metadata filtering
|
||||||
|
- Inference service
|
||||||
|
- Machine Learning integrations
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
To use Elasticsearch in your Llama Stack project, follow these steps:
|
||||||
|
|
||||||
|
1. Install the necessary dependencies.
|
||||||
|
2. Configure your Llama Stack project to use Elasticsearch.
|
||||||
|
3. Start storing and querying vectors.
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
You can test Elasticsearch locally by running this script in the terminal:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl -fsSL https://elastic.co/start-local | sh
|
||||||
|
```
|
||||||
|
|
||||||
|
Or you can [start a free trial](https://www.elastic.co/cloud/cloud-trial-overview?utm_campaign=llama-stack-integration) on Elastic Cloud.
|
||||||
|
For more information on how to deploy Elasticsearch, see the [official documentation](https://www.elastic.co/docs/deploy-manage/deploy).
|
||||||
|
|
||||||
|
## Documentation
|
||||||
|
See [Elasticsearch's documentation](https://www.elastic.co/docs/solutions/search) for more details about Elasticsearch in general.
|
||||||
|
|
||||||
|
|
||||||
|
## Configuration
|
||||||
|
|
||||||
|
| Field | Type | Required | Default | Description |
|
||||||
|
|-------|------|----------|---------|-------------|
|
||||||
|
| `elasticsearch_api_key` | `str \| None` | No | | The API key for the Elasticsearch instance |
|
||||||
|
| `elasticsearch_url` | `str \| None` | No | localhost:9200 | The URL of the Elasticsearch instance |
|
||||||
|
| `persistence` | `KVStoreReference \| None` | No | | Config for KV store backend (SQLite only for now) |
|
||||||
|
|
||||||
|
## Sample Configuration
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
elasticsearch_url: ${env.ELASTICSEARCH_URL:=localhost:9200}
|
||||||
|
elasticsearch_api_key: ${env.ELASTICSEARCH_API_KEY:=}
|
||||||
|
persistence:
|
||||||
|
namespace: vector_io::elasticsearch
|
||||||
|
backend: kv_default
|
||||||
|
```
|
||||||
|
|
@ -160,7 +160,8 @@ const sidebars: SidebarsConfig = {
|
||||||
'providers/vector_io/remote_milvus',
|
'providers/vector_io/remote_milvus',
|
||||||
'providers/vector_io/remote_pgvector',
|
'providers/vector_io/remote_pgvector',
|
||||||
'providers/vector_io/remote_qdrant',
|
'providers/vector_io/remote_qdrant',
|
||||||
'providers/vector_io/remote_weaviate'
|
'providers/vector_io/remote_weaviate',
|
||||||
|
'providers/vector_io/remote_elasticsearch'
|
||||||
],
|
],
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|
|
||||||
|
|
@ -150,6 +150,7 @@ test = [
|
||||||
"pymilvus>=2.6.1",
|
"pymilvus>=2.6.1",
|
||||||
"milvus-lite>=2.5.0",
|
"milvus-lite>=2.5.0",
|
||||||
"weaviate-client>=4.16.4",
|
"weaviate-client>=4.16.4",
|
||||||
|
"elasticsearch>=8.16.0, <9.0.0"
|
||||||
]
|
]
|
||||||
docs = [
|
docs = [
|
||||||
"setuptools",
|
"setuptools",
|
||||||
|
|
@ -332,6 +333,7 @@ exclude = [
|
||||||
"^src/llama_stack/providers/remote/vector_io/qdrant/",
|
"^src/llama_stack/providers/remote/vector_io/qdrant/",
|
||||||
"^src/llama_stack/providers/remote/vector_io/sample/",
|
"^src/llama_stack/providers/remote/vector_io/sample/",
|
||||||
"^src/llama_stack/providers/remote/vector_io/weaviate/",
|
"^src/llama_stack/providers/remote/vector_io/weaviate/",
|
||||||
|
"^src/llama_stack/providers/remote/vector_io/elasticsearch/",
|
||||||
"^src/llama_stack/providers/utils/bedrock/client\\.py$",
|
"^src/llama_stack/providers/utils/bedrock/client\\.py$",
|
||||||
"^src/llama_stack/providers/utils/bedrock/refreshable_boto_session\\.py$",
|
"^src/llama_stack/providers/utils/bedrock/refreshable_boto_session\\.py$",
|
||||||
"^src/llama_stack/providers/utils/inference/embedding_mixin\\.py$",
|
"^src/llama_stack/providers/utils/inference/embedding_mixin\\.py$",
|
||||||
|
|
|
||||||
|
|
@ -27,6 +27,7 @@ distribution_spec:
|
||||||
- provider_type: remote::pgvector
|
- provider_type: remote::pgvector
|
||||||
- provider_type: remote::qdrant
|
- provider_type: remote::qdrant
|
||||||
- provider_type: remote::weaviate
|
- provider_type: remote::weaviate
|
||||||
|
- provider_type: remote::elasticsearch
|
||||||
files:
|
files:
|
||||||
- provider_type: inline::localfs
|
- provider_type: inline::localfs
|
||||||
safety:
|
safety:
|
||||||
|
|
|
||||||
|
|
@ -145,6 +145,14 @@ providers:
|
||||||
persistence:
|
persistence:
|
||||||
namespace: vector_io::weaviate
|
namespace: vector_io::weaviate
|
||||||
backend: kv_default
|
backend: kv_default
|
||||||
|
- provider_id: ${env.ELASTICSEARCH_URL:+elasticsearch}
|
||||||
|
provider_type: remote::elasticsearch
|
||||||
|
config:
|
||||||
|
elasticsearch_url: ${env.ELASTICSEARCH_URL:=localhost:9200}
|
||||||
|
elasticsearch_api_key: ${env.ELASTICSEARCH_API_KEY:=}
|
||||||
|
persistence:
|
||||||
|
namespace: vector_io::elasticsearch
|
||||||
|
backend: kv_default
|
||||||
files:
|
files:
|
||||||
- provider_id: meta-reference-files
|
- provider_id: meta-reference-files
|
||||||
provider_type: inline::localfs
|
provider_type: inline::localfs
|
||||||
|
|
|
||||||
|
|
@ -145,6 +145,14 @@ providers:
|
||||||
persistence:
|
persistence:
|
||||||
namespace: vector_io::weaviate
|
namespace: vector_io::weaviate
|
||||||
backend: kv_default
|
backend: kv_default
|
||||||
|
- provider_id: ${env.ELASTICSEARCH_URL:+elasticsearch}
|
||||||
|
provider_type: remote::elasticsearch
|
||||||
|
config:
|
||||||
|
elasticsearch_url: ${env.ELASTICSEARCH_URL:=localhost:9200}
|
||||||
|
elasticsearch_api_key: ${env.ELASTICSEARCH_API_KEY:=}
|
||||||
|
persistence:
|
||||||
|
namespace: vector_io::elasticsearch
|
||||||
|
backend: kv_default
|
||||||
files:
|
files:
|
||||||
- provider_id: meta-reference-files
|
- provider_id: meta-reference-files
|
||||||
provider_type: inline::localfs
|
provider_type: inline::localfs
|
||||||
|
|
|
||||||
|
|
@ -28,6 +28,7 @@ distribution_spec:
|
||||||
- provider_type: remote::pgvector
|
- provider_type: remote::pgvector
|
||||||
- provider_type: remote::qdrant
|
- provider_type: remote::qdrant
|
||||||
- provider_type: remote::weaviate
|
- provider_type: remote::weaviate
|
||||||
|
- provider_type: remote::elasticsearch
|
||||||
files:
|
files:
|
||||||
- provider_type: inline::localfs
|
- provider_type: inline::localfs
|
||||||
safety:
|
safety:
|
||||||
|
|
|
||||||
|
|
@ -145,6 +145,14 @@ providers:
|
||||||
persistence:
|
persistence:
|
||||||
namespace: vector_io::weaviate
|
namespace: vector_io::weaviate
|
||||||
backend: kv_default
|
backend: kv_default
|
||||||
|
- provider_id: ${env.ELASTICSEARCH_URL:+elasticsearch}
|
||||||
|
provider_type: remote::elasticsearch
|
||||||
|
config:
|
||||||
|
elasticsearch_url: ${env.ELASTICSEARCH_URL:=localhost:9200}
|
||||||
|
elasticsearch_api_key: ${env.ELASTICSEARCH_API_KEY:=}
|
||||||
|
persistence:
|
||||||
|
namespace: vector_io::elasticsearch
|
||||||
|
backend: kv_default
|
||||||
files:
|
files:
|
||||||
- provider_id: meta-reference-files
|
- provider_id: meta-reference-files
|
||||||
provider_type: inline::localfs
|
provider_type: inline::localfs
|
||||||
|
|
|
||||||
|
|
@ -145,6 +145,14 @@ providers:
|
||||||
persistence:
|
persistence:
|
||||||
namespace: vector_io::weaviate
|
namespace: vector_io::weaviate
|
||||||
backend: kv_default
|
backend: kv_default
|
||||||
|
- provider_id: ${env.ELASTICSEARCH_URL:+elasticsearch}
|
||||||
|
provider_type: remote::elasticsearch
|
||||||
|
config:
|
||||||
|
elasticsearch_url: ${env.ELASTICSEARCH_URL:=localhost:9200}
|
||||||
|
elasticsearch_api_key: ${env.ELASTICSEARCH_API_KEY:=}
|
||||||
|
persistence:
|
||||||
|
namespace: vector_io::elasticsearch
|
||||||
|
backend: kv_default
|
||||||
files:
|
files:
|
||||||
- provider_id: meta-reference-files
|
- provider_id: meta-reference-files
|
||||||
provider_type: inline::localfs
|
provider_type: inline::localfs
|
||||||
|
|
|
||||||
|
|
@ -28,6 +28,7 @@ distribution_spec:
|
||||||
- provider_type: remote::pgvector
|
- provider_type: remote::pgvector
|
||||||
- provider_type: remote::qdrant
|
- provider_type: remote::qdrant
|
||||||
- provider_type: remote::weaviate
|
- provider_type: remote::weaviate
|
||||||
|
- provider_type: remote::elasticsearch
|
||||||
files:
|
files:
|
||||||
- provider_type: inline::localfs
|
- provider_type: inline::localfs
|
||||||
safety:
|
safety:
|
||||||
|
|
|
||||||
|
|
@ -145,6 +145,14 @@ providers:
|
||||||
persistence:
|
persistence:
|
||||||
namespace: vector_io::weaviate
|
namespace: vector_io::weaviate
|
||||||
backend: kv_default
|
backend: kv_default
|
||||||
|
- provider_id: ${env.ELASTICSEARCH_URL:+elasticsearch}
|
||||||
|
provider_type: remote::elasticsearch
|
||||||
|
config:
|
||||||
|
elasticsearch_url: ${env.ELASTICSEARCH_URL:=localhost:9200}
|
||||||
|
elasticsearch_api_key: ${env.ELASTICSEARCH_API_KEY:=}
|
||||||
|
persistence:
|
||||||
|
namespace: vector_io::elasticsearch
|
||||||
|
backend: kv_default
|
||||||
files:
|
files:
|
||||||
- provider_id: meta-reference-files
|
- provider_id: meta-reference-files
|
||||||
provider_type: inline::localfs
|
provider_type: inline::localfs
|
||||||
|
|
|
||||||
|
|
@ -145,6 +145,14 @@ providers:
|
||||||
persistence:
|
persistence:
|
||||||
namespace: vector_io::weaviate
|
namespace: vector_io::weaviate
|
||||||
backend: kv_default
|
backend: kv_default
|
||||||
|
- provider_id: ${env.ELASTICSEARCH_URL:+elasticsearch}
|
||||||
|
provider_type: remote::elasticsearch
|
||||||
|
config:
|
||||||
|
elasticsearch_url: ${env.ELASTICSEARCH_URL:=localhost:9200}
|
||||||
|
elasticsearch_api_key: ${env.ELASTICSEARCH_API_KEY:=}
|
||||||
|
persistence:
|
||||||
|
namespace: vector_io::elasticsearch
|
||||||
|
backend: kv_default
|
||||||
files:
|
files:
|
||||||
- provider_id: meta-reference-files
|
- provider_id: meta-reference-files
|
||||||
provider_type: inline::localfs
|
provider_type: inline::localfs
|
||||||
|
|
|
||||||
|
|
@ -32,6 +32,7 @@ from llama_stack.providers.inline.vector_io.sqlite_vec.config import (
|
||||||
)
|
)
|
||||||
from llama_stack.providers.registry.inference import available_providers
|
from llama_stack.providers.registry.inference import available_providers
|
||||||
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
|
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
|
||||||
|
from llama_stack.providers.remote.vector_io.elasticsearch.config import ElasticsearchVectorIOConfig
|
||||||
from llama_stack.providers.remote.vector_io.pgvector.config import (
|
from llama_stack.providers.remote.vector_io.pgvector.config import (
|
||||||
PGVectorVectorIOConfig,
|
PGVectorVectorIOConfig,
|
||||||
)
|
)
|
||||||
|
|
@ -121,6 +122,7 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate:
|
||||||
BuildProvider(provider_type="remote::pgvector"),
|
BuildProvider(provider_type="remote::pgvector"),
|
||||||
BuildProvider(provider_type="remote::qdrant"),
|
BuildProvider(provider_type="remote::qdrant"),
|
||||||
BuildProvider(provider_type="remote::weaviate"),
|
BuildProvider(provider_type="remote::weaviate"),
|
||||||
|
BuildProvider(provider_type="remote::elasticsearch"),
|
||||||
],
|
],
|
||||||
"files": [BuildProvider(provider_type="inline::localfs")],
|
"files": [BuildProvider(provider_type="inline::localfs")],
|
||||||
"safety": [
|
"safety": [
|
||||||
|
|
@ -237,6 +239,15 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate:
|
||||||
cluster_url="${env.WEAVIATE_CLUSTER_URL:=}",
|
cluster_url="${env.WEAVIATE_CLUSTER_URL:=}",
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
|
Provider(
|
||||||
|
provider_id="${env.ELASTICSEARCH_URL:+elasticsearch}",
|
||||||
|
provider_type="remote::elasticsearch",
|
||||||
|
config=ElasticsearchVectorIOConfig.sample_run_config(
|
||||||
|
f"~/.llama/distributions/{name}",
|
||||||
|
elasticsearch_url="${env.ELASTICSEARCH_URL:=localhost:9200}",
|
||||||
|
elasticsearch_api_key="${env.ELASTICSEARCH_API_KEY:=}",
|
||||||
|
),
|
||||||
|
),
|
||||||
],
|
],
|
||||||
"files": [files_provider],
|
"files": [files_provider],
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -823,6 +823,55 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
|
||||||
optional_api_dependencies=[Api.files, Api.models],
|
optional_api_dependencies=[Api.files, Api.models],
|
||||||
description="""
|
description="""
|
||||||
Please refer to the remote provider documentation.
|
Please refer to the remote provider documentation.
|
||||||
|
""",
|
||||||
|
),
|
||||||
|
RemoteProviderSpec(
|
||||||
|
api=Api.vector_io,
|
||||||
|
adapter_type="elasticsearch",
|
||||||
|
provider_type="remote::elasticsearch",
|
||||||
|
pip_packages=["elasticsearch>=8.16.0,<9.0.0"] + DEFAULT_VECTOR_IO_DEPS,
|
||||||
|
module="llama_stack.providers.remote.vector_io.elasticsearch",
|
||||||
|
config_class="llama_stack.providers.remote.vector_io.elasticsearch.ElasticsearchVectorIOConfig",
|
||||||
|
api_dependencies=[Api.inference],
|
||||||
|
optional_api_dependencies=[Api.files, Api.models],
|
||||||
|
description="""
|
||||||
|
[Elasticsearch](https://www.elastic.co/) is a vector database provider for Llama Stack.
|
||||||
|
It allows you to store and query vectors directly within an Elasticsearch database.
|
||||||
|
That means you're not limited to storing vectors in memory or in a separate service.
|
||||||
|
|
||||||
|
## Features
|
||||||
|
Elasticsearch supports:
|
||||||
|
- Store embeddings and their metadata
|
||||||
|
- Vector search
|
||||||
|
- Full-text search
|
||||||
|
- Fuzzy search
|
||||||
|
- Hybrid search
|
||||||
|
- Document storage
|
||||||
|
- Metadata filtering
|
||||||
|
- Inference service
|
||||||
|
- Machine Learning integrations
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
To use Elasticsearch in your Llama Stack project, follow these steps:
|
||||||
|
|
||||||
|
1. Install the necessary dependencies.
|
||||||
|
2. Configure your Llama Stack project to use Elasticsearch.
|
||||||
|
3. Start storing and querying vectors.
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
You can test Elasticsearch locally by running this script in the terminal:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl -fsSL https://elastic.co/start-local | sh
|
||||||
|
```
|
||||||
|
|
||||||
|
Or you can [start a free trial](https://www.elastic.co/cloud/cloud-trial-overview?utm_campaign=llama-stack-integration) on Elastic Cloud.
|
||||||
|
For more information on how to deploy Elasticsearch, see the [official documentation](https://www.elastic.co/docs/deploy-manage/deploy).
|
||||||
|
|
||||||
|
## Documentation
|
||||||
|
See [Elasticsearch's documentation](https://www.elastic.co/docs/solutions/search) for more details about Elasticsearch in general.
|
||||||
""",
|
""",
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,17 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from llama_stack_api import Api, ProviderSpec
|
||||||
|
|
||||||
|
from .config import ElasticsearchVectorIOConfig
|
||||||
|
|
||||||
|
|
||||||
|
async def get_adapter_impl(config: ElasticsearchVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||||
|
from .elasticsearch import ElasticsearchVectorIOAdapter
|
||||||
|
|
||||||
|
impl = ElasticsearchVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
|
||||||
|
await impl.initialize()
|
||||||
|
return impl
|
||||||
|
|
@ -0,0 +1,32 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
from llama_stack.core.storage.datatypes import KVStoreReference
|
||||||
|
from llama_stack_api import json_schema_type
|
||||||
|
|
||||||
|
|
||||||
|
@json_schema_type
|
||||||
|
class ElasticsearchVectorIOConfig(BaseModel):
|
||||||
|
elasticsearch_api_key: str | None = Field(description="The API key for the Elasticsearch instance", default=None)
|
||||||
|
elasticsearch_url: str | None = Field(description="The URL of the Elasticsearch instance", default="localhost:9200")
|
||||||
|
persistence: KVStoreReference | None = Field(
|
||||||
|
description="Config for KV store backend (SQLite only for now)", default=None
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||||
|
return {
|
||||||
|
"elasticsearch_url": "${env.ELASTICSEARCH_URL:=localhost:9200}",
|
||||||
|
"elasticsearch_api_key": "${env.ELASTICSEARCH_API_KEY:=}",
|
||||||
|
"persistence": KVStoreReference(
|
||||||
|
backend="kv_default",
|
||||||
|
namespace="vector_io::elasticsearch",
|
||||||
|
).model_dump(exclude_none=True),
|
||||||
|
}
|
||||||
|
|
@ -0,0 +1,331 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from elasticsearch import AsyncElasticsearch
|
||||||
|
from elasticsearch.helpers import async_bulk
|
||||||
|
from numpy.typing import NDArray
|
||||||
|
|
||||||
|
from llama_stack.core.storage.kvstore import kvstore_impl
|
||||||
|
from llama_stack.log import get_logger
|
||||||
|
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||||
|
from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorStoreWithIndex
|
||||||
|
from llama_stack_api import (
|
||||||
|
Chunk,
|
||||||
|
Files,
|
||||||
|
Inference,
|
||||||
|
InterleavedContent,
|
||||||
|
QueryChunksResponse,
|
||||||
|
VectorIO,
|
||||||
|
VectorStore,
|
||||||
|
VectorStoreNotFoundError,
|
||||||
|
VectorStoresProtocolPrivate,
|
||||||
|
)
|
||||||
|
|
||||||
|
from .config import ElasticsearchVectorIOConfig
|
||||||
|
|
||||||
|
log = get_logger(name=__name__, category="vector_io::elasticsearch")
|
||||||
|
|
||||||
|
# KV store prefixes for vector databases
|
||||||
|
VERSION = "v3"
|
||||||
|
VECTOR_DBS_PREFIX = f"vector_stores:elasticsearch:{VERSION}::"
|
||||||
|
VECTOR_INDEX_PREFIX = f"vector_index:elasticsearch:{VERSION}::"
|
||||||
|
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:elasticsearch:{VERSION}::"
|
||||||
|
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:elasticsearch:{VERSION}::"
|
||||||
|
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:elasticsearch:{VERSION}::"
|
||||||
|
|
||||||
|
|
||||||
|
class ElasticsearchIndex(EmbeddingIndex):
|
||||||
|
def __init__(self, client: AsyncElasticsearch, collection_name: str):
|
||||||
|
self.client = client
|
||||||
|
self.collection_name = collection_name
|
||||||
|
|
||||||
|
async def initialize(self) -> None:
|
||||||
|
# Elasticsearch collections (indexes) are created on-demand in add_chunks
|
||||||
|
# If the index does not exist, it will be created in add_chunks.
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||||
|
"""Adds chunks and their embeddings to the Elasticsearch index."""
|
||||||
|
|
||||||
|
assert len(chunks) == len(embeddings), (
|
||||||
|
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if not await self.client.indices.exists(self.collection_name):
|
||||||
|
await self.client.indices.create(
|
||||||
|
index=self.collection_name,
|
||||||
|
body={
|
||||||
|
"mappings": {
|
||||||
|
"properties": {
|
||||||
|
"vector": {"type": "dense_vector", "dims": len(embeddings[0])},
|
||||||
|
"chunk_content": {"type": "object"},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
actions = []
|
||||||
|
for chunk, embedding in zip(chunks, embeddings, strict=False):
|
||||||
|
actions.append(
|
||||||
|
{
|
||||||
|
"_op_type": "index",
|
||||||
|
"_index": self.collection_name,
|
||||||
|
"_id": chunk.chunk_id,
|
||||||
|
"_source": {"vector": embedding, "chunk_content": chunk.model_dump_json()},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
successful_count, error_count = await async_bulk(
|
||||||
|
client=self.client, actions=actions, timeout="300s", refresh=True, raise_on_error=False, stats_only=True
|
||||||
|
)
|
||||||
|
if error_count > 0:
|
||||||
|
log.warning(
|
||||||
|
f"{error_count} out of {len(chunks)} documents failed to upload in Elasticsearch index {self.collection_name}"
|
||||||
|
)
|
||||||
|
|
||||||
|
log.info(f"Successfully added {successful_count} chunks to Elasticsearch index {self.collection_name}")
|
||||||
|
except Exception as e:
|
||||||
|
log.error(f"Error adding chunks to Elasticsearch index {self.collection_name}: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||||
|
"""Remove a chunk from the Elasticsearch index."""
|
||||||
|
|
||||||
|
actions = []
|
||||||
|
for chunk in chunks_for_deletion:
|
||||||
|
actions.append({"_op_type": "delete", "_index": self.collection_name, "_id": chunk.chunk_id})
|
||||||
|
|
||||||
|
try:
|
||||||
|
successful_count, error_count = await async_bulk(
|
||||||
|
client=self.client, actions=actions, timeout="300s", refresh=True, raise_on_error=True, stats_only=True
|
||||||
|
)
|
||||||
|
if error_count > 0:
|
||||||
|
log.warning(
|
||||||
|
f"{error_count} out of {len(chunks_for_deletion)} documents failed to be deleted in Elasticsearch index {self.collection_name}"
|
||||||
|
)
|
||||||
|
|
||||||
|
log.info(f"Successfully deleted {successful_count} chunks from Elasticsearch index {self.collection_name}")
|
||||||
|
except Exception as e:
|
||||||
|
log.error(f"Error deleting chunks from Elasticsearch index {self.collection_name}: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
async def _results_to_chunks(self, results: dict) -> QueryChunksResponse:
|
||||||
|
"""Convert search results to QueryChunksResponse."""
|
||||||
|
|
||||||
|
chunks, scores = [], []
|
||||||
|
for result in results["hits"]["hits"]:
|
||||||
|
try:
|
||||||
|
chunk = Chunk(
|
||||||
|
content=result["_source"]["chunk_content"],
|
||||||
|
stored_chunk_id=result["_id"],
|
||||||
|
embedding=result["_source"]["vector"],
|
||||||
|
)
|
||||||
|
except Exception:
|
||||||
|
log.exception("Failed to parse chunk")
|
||||||
|
continue
|
||||||
|
|
||||||
|
chunks.append(chunk)
|
||||||
|
scores.append(result["_score"])
|
||||||
|
|
||||||
|
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||||
|
|
||||||
|
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||||
|
"""Vector search using kNN."""
|
||||||
|
|
||||||
|
try:
|
||||||
|
results = await self.client.search(
|
||||||
|
index=self.collection_name,
|
||||||
|
query={"knn": {"field": "vector", "query_vector": embedding.tolist(), "k": k}},
|
||||||
|
min_score=score_threshold,
|
||||||
|
limit=k,
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
log.error(f"Error performing vector query on Elasticsearch index {self.collection_name}: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
return await self._results_to_chunks(results)
|
||||||
|
|
||||||
|
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||||
|
"""Keyword search using match query."""
|
||||||
|
|
||||||
|
try:
|
||||||
|
results = await self.client.search(
|
||||||
|
index=self.collection_name,
|
||||||
|
query={"match": {"chunk_content": {"query": query_string}}},
|
||||||
|
min_score=score_threshold,
|
||||||
|
limit=k,
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
log.error(f"Error performing keyword query on Elasticsearch index {self.collection_name}: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
return await self._results_to_chunks(results)
|
||||||
|
|
||||||
|
async def query_hybrid(
|
||||||
|
self,
|
||||||
|
embedding: NDArray,
|
||||||
|
query_string: str,
|
||||||
|
k: int,
|
||||||
|
score_threshold: float,
|
||||||
|
reranker_type: str,
|
||||||
|
reranker_params: dict[str, Any] | None = None,
|
||||||
|
) -> QueryChunksResponse:
|
||||||
|
supported_retrievers = ["rrf", "linear"]
|
||||||
|
if reranker_type not in supported_retrievers:
|
||||||
|
raise ValueError(f"Unsupported reranker type: {reranker_type}. Supported types are: {supported_retrievers}")
|
||||||
|
|
||||||
|
retriever = {
|
||||||
|
reranker_type: {
|
||||||
|
"retrievers": [
|
||||||
|
{"retriever": {"standard": {"query": {"match": {"chunk_content": query_string}}}}},
|
||||||
|
{"knn": {"field": "vector", "query_vector": embedding.tolist(), "k": k}},
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
# Add reranker parameters if provided for RRF (e.g. rank_constant)
|
||||||
|
# see https://www.elastic.co/docs/reference/elasticsearch/rest-apis/retrievers/rrf-retriever
|
||||||
|
if reranker_type == "rrf" and reranker_params is not None:
|
||||||
|
retriever["rrf"].update(reranker_params)
|
||||||
|
# Add reranker parameters if provided for Linear (e.g. weights)
|
||||||
|
# see https://www.elastic.co/docs/reference/elasticsearch/rest-apis/retrievers/linear-retriever
|
||||||
|
# Since the weights are per retriever, we need to update them separately, using the following syntax
|
||||||
|
# reranker_params = {
|
||||||
|
# "retrievers": {
|
||||||
|
# "standard": {"weight": 0.7},
|
||||||
|
# "knn": {"weight": 0.3}
|
||||||
|
# }
|
||||||
|
# }
|
||||||
|
elif reranker_type == "linear" and reranker_params is not None:
|
||||||
|
retrievers_params = reranker_params.get("retrievers")
|
||||||
|
if retrievers_params is not None:
|
||||||
|
for i in range(0, len(retriever["linear"]["retrievers"])):
|
||||||
|
retr_type = list(retriever["linear"]["retrievers"][i].keys())[0]
|
||||||
|
retriever["linear"]["retrievers"][i].update(retrievers_params["retrievers"][retr_type])
|
||||||
|
del reranker_params["retrievers"]
|
||||||
|
retriever["linear"].update(reranker_params)
|
||||||
|
|
||||||
|
try:
|
||||||
|
results = await self.client.search(
|
||||||
|
index=self.collection_name, size=k, retriever=retriever, min_score=score_threshold
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
log.error(f"Error performing hybrid query on Elasticsearch index {self.collection_name}: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
return await self._results_to_chunks(results)
|
||||||
|
|
||||||
|
async def delete(self):
|
||||||
|
"""Delete the entire Elasticsearch index with collection_name."""
|
||||||
|
|
||||||
|
try:
|
||||||
|
await self.client.delete(index=self.collection_name)
|
||||||
|
except Exception as e:
|
||||||
|
log.error(f"Error deleting Elasticsearch index {self.collection_name}: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
class ElasticsearchVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: ElasticsearchVectorIOConfig,
|
||||||
|
inference_api: Inference,
|
||||||
|
files_api: Files | None = None,
|
||||||
|
) -> None:
|
||||||
|
super().__init__(files_api=files_api, kvstore=None)
|
||||||
|
self.config = config
|
||||||
|
self.client: AsyncElasticsearch = None
|
||||||
|
self.cache = {}
|
||||||
|
self.inference_api = inference_api
|
||||||
|
self.vector_store_table = None
|
||||||
|
|
||||||
|
async def initialize(self) -> None:
|
||||||
|
self.client = AsyncElasticsearch(hosts=self.config.elasticsearch_url, api_key=self.config.elasticsearch_api_key)
|
||||||
|
self.kvstore = await kvstore_impl(self.config.persistence)
|
||||||
|
|
||||||
|
start_key = VECTOR_DBS_PREFIX
|
||||||
|
end_key = f"{VECTOR_DBS_PREFIX}\xff"
|
||||||
|
stored_vector_stores = await self.kvstore.values_in_range(start_key, end_key)
|
||||||
|
|
||||||
|
for vector_store_data in stored_vector_stores:
|
||||||
|
vector_store = VectorStore.model_validate_json(vector_store_data)
|
||||||
|
index = VectorStoreWithIndex(
|
||||||
|
vector_store, ElasticsearchIndex(self.client, vector_store.identifier), self.inference_api
|
||||||
|
)
|
||||||
|
self.cache[vector_store.identifier] = index
|
||||||
|
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||||
|
|
||||||
|
async def shutdown(self) -> None:
|
||||||
|
await self.client.close()
|
||||||
|
# Clean up mixin resources (file batch tasks)
|
||||||
|
await super().shutdown()
|
||||||
|
|
||||||
|
async def register_vector_store(self, vector_store: VectorStore) -> None:
|
||||||
|
assert self.kvstore is not None
|
||||||
|
key = f"{VECTOR_DBS_PREFIX}{vector_store.identifier}"
|
||||||
|
await self.kvstore.set(key=key, value=vector_store.model_dump_json())
|
||||||
|
|
||||||
|
index = VectorStoreWithIndex(
|
||||||
|
vector_store=vector_store,
|
||||||
|
index=ElasticsearchIndex(self.client, vector_store.identifier),
|
||||||
|
inference_api=self.inference_api,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.cache[vector_store.identifier] = index
|
||||||
|
|
||||||
|
async def unregister_vector_store(self, vector_store_id: str) -> None:
|
||||||
|
if vector_store_id in self.cache:
|
||||||
|
await self.cache[vector_store_id].index.delete()
|
||||||
|
del self.cache[vector_store_id]
|
||||||
|
|
||||||
|
assert self.kvstore is not None
|
||||||
|
await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_store_id}")
|
||||||
|
|
||||||
|
async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex | None:
|
||||||
|
if vector_store_id in self.cache:
|
||||||
|
return self.cache[vector_store_id]
|
||||||
|
|
||||||
|
if self.vector_store_table is None:
|
||||||
|
raise ValueError(f"Vector DB not found {vector_store_id}")
|
||||||
|
|
||||||
|
vector_store = await self.vector_store_table.get_vector_store(vector_store_id)
|
||||||
|
if not vector_store:
|
||||||
|
raise VectorStoreNotFoundError(vector_store_id)
|
||||||
|
|
||||||
|
index = VectorStoreWithIndex(
|
||||||
|
vector_store=vector_store,
|
||||||
|
index=ElasticsearchIndex(client=self.client, collection_name=vector_store.identifier),
|
||||||
|
inference_api=self.inference_api,
|
||||||
|
)
|
||||||
|
self.cache[vector_store_id] = index
|
||||||
|
return index
|
||||||
|
|
||||||
|
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
|
||||||
|
index = await self._get_and_cache_vector_store_index(vector_db_id)
|
||||||
|
if not index:
|
||||||
|
raise VectorStoreNotFoundError(vector_db_id)
|
||||||
|
|
||||||
|
await index.insert_chunks(chunks)
|
||||||
|
|
||||||
|
async def query_chunks(
|
||||||
|
self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None
|
||||||
|
) -> QueryChunksResponse:
|
||||||
|
index = await self._get_and_cache_vector_store_index(vector_db_id)
|
||||||
|
if not index:
|
||||||
|
raise VectorStoreNotFoundError(vector_db_id)
|
||||||
|
|
||||||
|
return await index.query_chunks(query, params)
|
||||||
|
|
||||||
|
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||||
|
"""Delete chunks from an Elasticsearch vector store."""
|
||||||
|
index = await self._get_and_cache_vector_store_index(store_id)
|
||||||
|
if not index:
|
||||||
|
raise ValueError(f"Vector DB {store_id} not found")
|
||||||
|
|
||||||
|
await index.index.delete_chunks(chunks_for_deletion)
|
||||||
|
|
@ -379,6 +379,7 @@ def vector_provider_wrapper(func):
|
||||||
"pgvector",
|
"pgvector",
|
||||||
"weaviate",
|
"weaviate",
|
||||||
"qdrant",
|
"qdrant",
|
||||||
|
"elasticsearch",
|
||||||
]
|
]
|
||||||
else:
|
else:
|
||||||
# For CI tests (replay/record), only use providers that are available in ci-tests environment
|
# For CI tests (replay/record), only use providers that are available in ci-tests environment
|
||||||
|
|
|
||||||
|
|
@ -34,6 +34,7 @@ def skip_if_provider_doesnt_support_openai_vector_stores(client_with_models):
|
||||||
"remote::pgvector",
|
"remote::pgvector",
|
||||||
"remote::qdrant",
|
"remote::qdrant",
|
||||||
"remote::weaviate",
|
"remote::weaviate",
|
||||||
|
"remote::elasticsearch",
|
||||||
]:
|
]:
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
@ -54,6 +55,7 @@ def skip_if_provider_doesnt_support_openai_vector_stores_search(client_with_mode
|
||||||
"remote::pgvector",
|
"remote::pgvector",
|
||||||
"remote::qdrant",
|
"remote::qdrant",
|
||||||
"remote::weaviate",
|
"remote::weaviate",
|
||||||
|
"remote::elasticsearch",
|
||||||
],
|
],
|
||||||
"keyword": [
|
"keyword": [
|
||||||
"inline::milvus",
|
"inline::milvus",
|
||||||
|
|
@ -61,6 +63,7 @@ def skip_if_provider_doesnt_support_openai_vector_stores_search(client_with_mode
|
||||||
"remote::milvus",
|
"remote::milvus",
|
||||||
"remote::pgvector",
|
"remote::pgvector",
|
||||||
"remote::weaviate",
|
"remote::weaviate",
|
||||||
|
"remote::elasticsearch",
|
||||||
],
|
],
|
||||||
"hybrid": [
|
"hybrid": [
|
||||||
"inline::milvus",
|
"inline::milvus",
|
||||||
|
|
@ -68,6 +71,7 @@ def skip_if_provider_doesnt_support_openai_vector_stores_search(client_with_mode
|
||||||
"remote::milvus",
|
"remote::milvus",
|
||||||
"remote::pgvector",
|
"remote::pgvector",
|
||||||
"remote::weaviate",
|
"remote::weaviate",
|
||||||
|
"remote::elasticsearch",
|
||||||
],
|
],
|
||||||
}
|
}
|
||||||
supported_providers = search_mode_support.get(search_mode, [])
|
supported_providers = search_mode_support.get(search_mode, [])
|
||||||
|
|
|
||||||
|
|
@ -164,6 +164,7 @@ def test_insert_chunks_with_precomputed_embeddings(
|
||||||
"inline::milvus": {"score_threshold": -1.0},
|
"inline::milvus": {"score_threshold": -1.0},
|
||||||
"inline::qdrant": {"score_threshold": -1.0},
|
"inline::qdrant": {"score_threshold": -1.0},
|
||||||
"remote::qdrant": {"score_threshold": -1.0},
|
"remote::qdrant": {"score_threshold": -1.0},
|
||||||
|
"remote::elasticsearch": {"score_threshold": -1.0},
|
||||||
}
|
}
|
||||||
vector_store_name = "test_precomputed_embeddings_db"
|
vector_store_name = "test_precomputed_embeddings_db"
|
||||||
register_response = client_with_empty_registry.vector_stores.create(
|
register_response = client_with_empty_registry.vector_stores.create(
|
||||||
|
|
@ -214,6 +215,7 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
|
||||||
"inline::milvus": {"score_threshold": 0.0},
|
"inline::milvus": {"score_threshold": 0.0},
|
||||||
"remote::qdrant": {"score_threshold": 0.0},
|
"remote::qdrant": {"score_threshold": 0.0},
|
||||||
"inline::qdrant": {"score_threshold": 0.0},
|
"inline::qdrant": {"score_threshold": 0.0},
|
||||||
|
"remote::elasticsearch": {"score_threshold": 0.0},
|
||||||
}
|
}
|
||||||
vector_store_name = "test_precomputed_embeddings_db"
|
vector_store_name = "test_precomputed_embeddings_db"
|
||||||
register_response = client_with_empty_registry.vector_stores.create(
|
register_response = client_with_empty_registry.vector_stores.create(
|
||||||
|
|
|
||||||
29
uv.lock
generated
29
uv.lock
generated
|
|
@ -988,6 +988,33 @@ wheels = [
|
||||||
{ url = "https://files.pythonhosted.org/packages/b0/0d/9feae160378a3553fa9a339b0e9c1a048e147a4127210e286ef18b730f03/durationpy-0.10-py3-none-any.whl", hash = "sha256:3b41e1b601234296b4fb368338fdcd3e13e0b4fb5b67345948f4f2bf9868b286", size = 3922, upload-time = "2025-05-17T13:52:36.463Z" },
|
{ url = "https://files.pythonhosted.org/packages/b0/0d/9feae160378a3553fa9a339b0e9c1a048e147a4127210e286ef18b730f03/durationpy-0.10-py3-none-any.whl", hash = "sha256:3b41e1b601234296b4fb368338fdcd3e13e0b4fb5b67345948f4f2bf9868b286", size = 3922, upload-time = "2025-05-17T13:52:36.463Z" },
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "elastic-transport"
|
||||||
|
version = "8.17.1"
|
||||||
|
source = { registry = "https://pypi.org/simple" }
|
||||||
|
dependencies = [
|
||||||
|
{ name = "certifi" },
|
||||||
|
{ name = "urllib3" },
|
||||||
|
]
|
||||||
|
sdist = { url = "https://files.pythonhosted.org/packages/6a/54/d498a766ac8fa475f931da85a154666cc81a70f8eb4a780bc8e4e934e9ac/elastic_transport-8.17.1.tar.gz", hash = "sha256:5edef32ac864dca8e2f0a613ef63491ee8d6b8cfb52881fa7313ba9290cac6d2", size = 73425, upload-time = "2025-03-13T07:28:30.776Z" }
|
||||||
|
wheels = [
|
||||||
|
{ url = "https://files.pythonhosted.org/packages/cf/cd/b71d5bc74cde7fc6fd9b2ff9389890f45d9762cbbbf81dc5e51fd7588c4a/elastic_transport-8.17.1-py3-none-any.whl", hash = "sha256:192718f498f1d10c5e9aa8b9cf32aed405e469a7f0e9d6a8923431dbb2c59fb8", size = 64969, upload-time = "2025-03-13T07:28:29.031Z" },
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "elasticsearch"
|
||||||
|
version = "8.19.2"
|
||||||
|
source = { registry = "https://pypi.org/simple" }
|
||||||
|
dependencies = [
|
||||||
|
{ name = "elastic-transport" },
|
||||||
|
{ name = "python-dateutil" },
|
||||||
|
{ name = "typing-extensions" },
|
||||||
|
]
|
||||||
|
sdist = { url = "https://files.pythonhosted.org/packages/42/7b/70b9d16069eda6f91d45fadd9e12faed8e4442f242ca8a81de84bc626f1b/elasticsearch-8.19.2.tar.gz", hash = "sha256:622efa6a3e662db45285f16ab57bf198ea73ac9e137e7ed8b1d1d1e47638959d", size = 797401, upload-time = "2025-10-28T16:36:44.953Z" }
|
||||||
|
wheels = [
|
||||||
|
{ url = "https://files.pythonhosted.org/packages/56/01/6f77d042b83260ef9ed73ea9647dfa0ef8414eba0a3fc57a509a088ad39b/elasticsearch-8.19.2-py3-none-any.whl", hash = "sha256:c16ba20c4c76cf6952e836dae7f4e724e00ba7bf31b94b79472b873683accdd4", size = 949706, upload-time = "2025-10-28T16:36:41.003Z" },
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "eval-type-backport"
|
name = "eval-type-backport"
|
||||||
version = "0.2.2"
|
version = "0.2.2"
|
||||||
|
|
@ -2077,6 +2104,7 @@ test = [
|
||||||
{ name = "chardet" },
|
{ name = "chardet" },
|
||||||
{ name = "chromadb" },
|
{ name = "chromadb" },
|
||||||
{ name = "datasets" },
|
{ name = "datasets" },
|
||||||
|
{ name = "elasticsearch" },
|
||||||
{ name = "mcp" },
|
{ name = "mcp" },
|
||||||
{ name = "milvus-lite" },
|
{ name = "milvus-lite" },
|
||||||
{ name = "psycopg2-binary" },
|
{ name = "psycopg2-binary" },
|
||||||
|
|
@ -2223,6 +2251,7 @@ test = [
|
||||||
{ name = "chardet" },
|
{ name = "chardet" },
|
||||||
{ name = "chromadb", specifier = ">=1.0.15" },
|
{ name = "chromadb", specifier = ">=1.0.15" },
|
||||||
{ name = "datasets", specifier = ">=4.0.0" },
|
{ name = "datasets", specifier = ">=4.0.0" },
|
||||||
|
{ name = "elasticsearch", specifier = ">=8.16.0,<9.0.0" },
|
||||||
{ name = "mcp" },
|
{ name = "mcp" },
|
||||||
{ name = "milvus-lite", specifier = ">=2.5.0" },
|
{ name = "milvus-lite", specifier = ">=2.5.0" },
|
||||||
{ name = "psycopg2-binary", specifier = ">=2.9.0" },
|
{ name = "psycopg2-binary", specifier = ">=2.9.0" },
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue