mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
[1/n] torchtune <> llama-stack integration skeleton (#540)
### Context This is the 1st of series PRs that integrate torchtune with llama-stack as meta reference post-training implementation. For MVP, we will focus on single device LoRA SFT. Though this PR is still WIP, we want to get early feedback on the high level design of this skeleton while still working on several details ### Scope To limit the scope of this PR, we focus on the skeleton of the implementation. **What are included?** - refine the post-training SFT apis - skeleton of supervised_fine_tune implementation. We verified that we can call the supervised_fine_tune API successfully from llama stack client SDK (client side PR: https://github.com/meta-llama/llama-stack-client-python/pull/51) - a very basic single device LoRA training recipe based on torchtune core components - parity check with torchtune library and post training api unit test **What are not includes?** - implementation of other job management, get training artifacts apis (separate PR) - refactor the meta reference inference logic to support eval on finetuned model (separate PR) - several necessary functionality in the training recipe such as logging, validation etc (separate PR) - interop with telemetry for tracing and metrics logging, currently temporarily log to local disk (separate PR) ### Testing **e2e test** Although we haven't added detailed testing and numerical parity check with torchtune yet, we did a simple E2E test from client to server 1. setup server with` llama stack build --template experimental-post-training --image-type conda` and `llama stack run experimental-post-training ` 2. On client, run `llama-stack-client --endpoint http://devgpu018.nha2.facebook.com:5000 post_training supervised_fine_tune` 3. Training finishes successfully. On server side, get the finetune checkpoints under output dir. On client side, get the job uuid server <img width="1110" alt="Screenshot 2024-12-02 at 5 52 32 PM" src="https://github.com/user-attachments/assets/b548eb90-7a9b-4edc-a858-ee237cc4361d"> client <img width="807" alt="Screenshot 2024-12-02 at 5 52 37 PM" src="https://github.com/user-attachments/assets/1138ffa8-4698-40fa-b190-3d7b99646838"> **parity check** torchtune dataloader output and llama-stack post training dataloader output are same <img width="1116" alt="Screenshot 2024-12-04 at 8 18 46 PM" src="https://github.com/user-attachments/assets/5e295cdc-4c24-4ea6-82c0-ca96ef1bd6ee"> torchtune LoRA SFT and llama-stack post training LoRA SFT on alpaca dataset with llama3.2 3B instruct model are numerical match <img width="860" alt="Screenshot 2024-12-04 at 8 17 01 PM" src="https://github.com/user-attachments/assets/c05cf0a8-c674-4d2e-9f0a-c5d01b2dca99"> <img width="1049" alt="Screenshot 2024-12-04 at 8 17 06 PM" src="https://github.com/user-attachments/assets/b911d4e2-e7b1-41a9-b62c-d75529b6d443"> **unit test ** ![Uploading Screenshot 2024-12-09 at 1.35.10 PM.png…]()
This commit is contained in:
parent
53b3a1e345
commit
aeb76390fc
18 changed files with 1172 additions and 68 deletions
|
@ -6,50 +6,60 @@
|
|||
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
|
||||
from typing import Any, Dict, List, Optional, Protocol
|
||||
from typing import Any, Dict, List, Optional, Protocol, Union
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.datasets import * # noqa: F403
|
||||
from llama_stack.apis.common.training_types import * # noqa: F403
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OptimizerType(Enum):
|
||||
adam = "adam"
|
||||
adamw = "adamw"
|
||||
sgd = "sgd"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DataConfig(BaseModel):
|
||||
dataset_id: str
|
||||
batch_size: int
|
||||
shuffle: bool
|
||||
validation_dataset_id: Optional[str] = None
|
||||
packed: Optional[bool] = False
|
||||
train_on_input: Optional[bool] = False
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OptimizerConfig(BaseModel):
|
||||
optimizer_type: OptimizerType
|
||||
lr: float
|
||||
lr_min: float
|
||||
weight_decay: float
|
||||
num_warmup_steps: int
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EfficiencyConfig(BaseModel):
|
||||
enable_activation_checkpointing: Optional[bool] = False
|
||||
enable_activation_offloading: Optional[bool] = False
|
||||
memory_efficient_fsdp_wrap: Optional[bool] = False
|
||||
fsdp_cpu_offload: Optional[bool] = False
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TrainingConfig(BaseModel):
|
||||
n_epochs: int
|
||||
batch_size: int
|
||||
shuffle: bool
|
||||
n_iters: int
|
||||
|
||||
enable_activation_checkpointing: bool
|
||||
memory_efficient_fsdp_wrap: bool
|
||||
fsdp_cpu_offload: bool
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class FinetuningAlgorithm(Enum):
|
||||
full = "full"
|
||||
lora = "lora"
|
||||
qlora = "qlora"
|
||||
dora = "dora"
|
||||
max_steps_per_epoch: int
|
||||
gradient_accumulation_steps: int
|
||||
data_config: DataConfig
|
||||
optimizer_config: OptimizerConfig
|
||||
efficiency_config: Optional[EfficiencyConfig] = None
|
||||
dtype: Optional[str] = "bf16"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -59,16 +69,19 @@ class LoraFinetuningConfig(BaseModel):
|
|||
apply_lora_to_output: bool
|
||||
rank: int
|
||||
alpha: int
|
||||
use_dora: Optional[bool] = False
|
||||
quantize_base: Optional[bool] = False
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QLoraFinetuningConfig(LoraFinetuningConfig):
|
||||
pass
|
||||
class QATFinetuningConfig(BaseModel):
|
||||
quantizer_name: str
|
||||
group_size: int
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DoraFinetuningConfig(LoraFinetuningConfig):
|
||||
pass
|
||||
AlgorithmConfig = Annotated[
|
||||
Union[LoraFinetuningConfig, LoraFinetuningConfig], Field(discriminator="type")
|
||||
]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -100,29 +113,6 @@ class DPOAlignmentConfig(BaseModel):
|
|||
gamma: float
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PostTrainingSFTRequest(BaseModel):
|
||||
"""Request to finetune a model."""
|
||||
|
||||
job_uuid: str
|
||||
|
||||
model: str
|
||||
dataset_id: str
|
||||
validation_dataset_id: str
|
||||
|
||||
algorithm: FinetuningAlgorithm
|
||||
algorithm_config: Union[
|
||||
LoraFinetuningConfig, QLoraFinetuningConfig, DoraFinetuningConfig
|
||||
]
|
||||
|
||||
optimizer_config: OptimizerConfig
|
||||
training_config: TrainingConfig
|
||||
|
||||
# TODO: define these
|
||||
hyperparam_search_config: Dict[str, Any]
|
||||
logger_config: Dict[str, Any]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PostTrainingRLHFRequest(BaseModel):
|
||||
"""Request to finetune a model."""
|
||||
|
@ -135,7 +125,7 @@ class PostTrainingRLHFRequest(BaseModel):
|
|||
validation_dataset_id: str
|
||||
|
||||
algorithm: RLHFAlgorithm
|
||||
algorithm_config: Union[DPOAlignmentConfig]
|
||||
algorithm_config: DPOAlignmentConfig
|
||||
|
||||
optimizer_config: OptimizerConfig
|
||||
training_config: TrainingConfig
|
||||
|
@ -177,53 +167,49 @@ class PostTrainingJobArtifactsResponse(BaseModel):
|
|||
|
||||
class PostTraining(Protocol):
|
||||
@webmethod(route="/post-training/supervised-fine-tune")
|
||||
def supervised_fine_tune(
|
||||
async def supervised_fine_tune(
|
||||
self,
|
||||
job_uuid: str,
|
||||
model: str,
|
||||
dataset_id: str,
|
||||
validation_dataset_id: str,
|
||||
algorithm: FinetuningAlgorithm,
|
||||
algorithm_config: Union[
|
||||
LoraFinetuningConfig, QLoraFinetuningConfig, DoraFinetuningConfig
|
||||
],
|
||||
optimizer_config: OptimizerConfig,
|
||||
training_config: TrainingConfig,
|
||||
hyperparam_search_config: Dict[str, Any],
|
||||
logger_config: Dict[str, Any],
|
||||
model: str = Field(
|
||||
default="Llama3.2-3B-Instruct",
|
||||
description="Model descriptor from `llama model list`",
|
||||
),
|
||||
checkpoint_dir: Optional[str] = None,
|
||||
algorithm_config: Optional[AlgorithmConfig] = None,
|
||||
) -> PostTrainingJob: ...
|
||||
|
||||
@webmethod(route="/post-training/preference-optimize")
|
||||
def preference_optimize(
|
||||
async def preference_optimize(
|
||||
self,
|
||||
job_uuid: str,
|
||||
finetuned_model: URL,
|
||||
dataset_id: str,
|
||||
validation_dataset_id: str,
|
||||
algorithm: RLHFAlgorithm,
|
||||
algorithm_config: Union[DPOAlignmentConfig],
|
||||
optimizer_config: OptimizerConfig,
|
||||
finetuned_model: str,
|
||||
algorithm_config: DPOAlignmentConfig,
|
||||
training_config: TrainingConfig,
|
||||
hyperparam_search_config: Dict[str, Any],
|
||||
logger_config: Dict[str, Any],
|
||||
) -> PostTrainingJob: ...
|
||||
|
||||
@webmethod(route="/post-training/jobs")
|
||||
def get_training_jobs(self) -> List[PostTrainingJob]: ...
|
||||
async def get_training_jobs(self) -> List[PostTrainingJob]: ...
|
||||
|
||||
# sends SSE stream of logs
|
||||
@webmethod(route="/post-training/job/logs")
|
||||
def get_training_job_logstream(self, job_uuid: str) -> PostTrainingJobLogStream: ...
|
||||
async def get_training_job_logstream(
|
||||
self, job_uuid: str
|
||||
) -> PostTrainingJobLogStream: ...
|
||||
|
||||
@webmethod(route="/post-training/job/status")
|
||||
def get_training_job_status(
|
||||
async def get_training_job_status(
|
||||
self, job_uuid: str
|
||||
) -> PostTrainingJobStatusResponse: ...
|
||||
|
||||
@webmethod(route="/post-training/job/cancel")
|
||||
def cancel_training_job(self, job_uuid: str) -> None: ...
|
||||
async def cancel_training_job(self, job_uuid: str) -> None: ...
|
||||
|
||||
@webmethod(route="/post-training/job/artifacts")
|
||||
def get_training_job_artifacts(
|
||||
async def get_training_job_artifacts(
|
||||
self, job_uuid: str
|
||||
) -> PostTrainingJobArtifactsResponse: ...
|
||||
|
|
|
@ -24,6 +24,7 @@ from llama_stack.apis.inspect import Inspect
|
|||
from llama_stack.apis.memory import Memory
|
||||
from llama_stack.apis.memory_banks import MemoryBanks
|
||||
from llama_stack.apis.models import Models
|
||||
from llama_stack.apis.post_training import PostTraining
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.apis.scoring_functions import ScoringFunctions
|
||||
|
@ -58,6 +59,7 @@ def api_protocol_map() -> Dict[Api, Any]:
|
|||
Api.scoring_functions: ScoringFunctions,
|
||||
Api.eval: Eval,
|
||||
Api.eval_tasks: EvalTasks,
|
||||
Api.post_training: PostTraining,
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -28,6 +28,7 @@ class Api(Enum):
|
|||
datasetio = "datasetio"
|
||||
scoring = "scoring"
|
||||
eval = "eval"
|
||||
post_training = "post_training"
|
||||
|
||||
telemetry = "telemetry"
|
||||
|
||||
|
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.distribution.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import TorchtunePostTrainingConfig
|
||||
|
||||
# post_training api and the torchtune provider is still experimental and under heavy development
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: TorchtunePostTrainingConfig,
|
||||
deps: Dict[Api, ProviderSpec],
|
||||
):
|
||||
from .post_training import TorchtunePostTrainingImpl
|
||||
|
||||
impl = TorchtunePostTrainingImpl(
|
||||
config,
|
||||
deps[Api.datasetio],
|
||||
deps[Api.datasets],
|
||||
)
|
||||
return impl
|
|
@ -0,0 +1,13 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class TorchtunePostTrainingConfig(BaseModel):
|
||||
torch_seed: Optional[int] = None
|
|
@ -0,0 +1,66 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, List, Mapping
|
||||
|
||||
import numpy as np
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
from torchtune.data._common import CROSS_ENTROPY_IGNORE_IDX
|
||||
from torchtune.data._messages import validate_messages
|
||||
from torchtune.modules.transforms import Transform
|
||||
|
||||
|
||||
class SFTDataset(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
rows: List[Dict[str, Any]],
|
||||
message_transform: Transform,
|
||||
model_transform: Transform,
|
||||
) -> None:
|
||||
self._rows = rows
|
||||
self._message_transform = message_transform
|
||||
self._model_transform = model_transform
|
||||
|
||||
def __len__(self):
|
||||
return len(self._rows)
|
||||
|
||||
def __getitem__(self, index: int) -> Dict[str, Any]:
|
||||
sample = self._rows[index]
|
||||
return self._prepare_sample(sample)
|
||||
|
||||
def _prepare_sample(self, sample: Mapping[str, Any]) -> Dict[str, Any]:
|
||||
transformed_sample = self._message_transform(sample)
|
||||
if "messages" in transformed_sample:
|
||||
validate_messages(transformed_sample["messages"])
|
||||
|
||||
tokenized_dict = self._model_transform(transformed_sample)
|
||||
|
||||
if not ("tokens" in tokenized_dict and "mask" in tokenized_dict):
|
||||
keys_str = ", ".join(tokenized_dict.keys())
|
||||
error_message = (
|
||||
"model_transform returned the following keys: "
|
||||
f"{keys_str}. Must return 'tokens' and 'mask' as keys."
|
||||
)
|
||||
raise ValueError(error_message)
|
||||
|
||||
# Wherever mask == True, set to CROSS_ENTROPY_IGNORE_IDX. Otherwise keep as tokens
|
||||
tokenized_dict["labels"] = list(
|
||||
np.where(
|
||||
tokenized_dict["mask"],
|
||||
CROSS_ENTROPY_IGNORE_IDX,
|
||||
tokenized_dict["tokens"],
|
||||
)
|
||||
)
|
||||
assert len(tokenized_dict["tokens"]) == len(tokenized_dict["labels"])
|
||||
|
||||
return tokenized_dict
|
|
@ -0,0 +1,86 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.providers.inline.post_training.torchtune.config import (
|
||||
TorchtunePostTrainingConfig,
|
||||
)
|
||||
from llama_stack.apis.post_training import * # noqa
|
||||
from llama_stack.providers.inline.post_training.torchtune.recipes.lora_finetuning_single_device import (
|
||||
LoraFinetuningSingleDevice,
|
||||
)
|
||||
|
||||
|
||||
class TorchtunePostTrainingImpl:
|
||||
def __init__(
|
||||
self,
|
||||
config: TorchtunePostTrainingConfig,
|
||||
datasetio_api: DatasetIO,
|
||||
datasets: Datasets,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets
|
||||
|
||||
async def supervised_fine_tune(
|
||||
self,
|
||||
job_uuid: str,
|
||||
training_config: TrainingConfig,
|
||||
hyperparam_search_config: Dict[str, Any],
|
||||
logger_config: Dict[str, Any],
|
||||
model: str,
|
||||
checkpoint_dir: Optional[str],
|
||||
algorithm_config: Optional[Union[LoraFinetuningConfig, QATFinetuningConfig]],
|
||||
) -> PostTrainingJob:
|
||||
if isinstance(algorithm_config, LoraFinetuningConfig):
|
||||
recipe = LoraFinetuningSingleDevice(
|
||||
self.config,
|
||||
training_config,
|
||||
hyperparam_search_config,
|
||||
logger_config,
|
||||
model,
|
||||
checkpoint_dir,
|
||||
algorithm_config,
|
||||
self.datasetio_api,
|
||||
self.datasets_api,
|
||||
)
|
||||
await recipe.setup()
|
||||
await recipe.train()
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
return PostTrainingJob(job_uuid=job_uuid)
|
||||
|
||||
async def preference_optimize(
|
||||
self,
|
||||
job_uuid: str,
|
||||
finetuned_model: str,
|
||||
algorithm_config: DPOAlignmentConfig,
|
||||
training_config: TrainingConfig,
|
||||
hyperparam_search_config: Dict[str, Any],
|
||||
logger_config: Dict[str, Any],
|
||||
) -> PostTrainingJob: ...
|
||||
|
||||
# TODO @SLR722 impelment below APIs
|
||||
async def get_training_jobs(self) -> List[PostTrainingJob]: ...
|
||||
|
||||
# sends SSE stream of logs
|
||||
@webmethod(route="/post-training/job/logs")
|
||||
async def get_training_job_logstream(
|
||||
self, job_uuid: str
|
||||
) -> PostTrainingJobLogStream: ...
|
||||
|
||||
@webmethod(route="/post-training/job/status")
|
||||
async def get_training_job_status(
|
||||
self, job_uuid: str
|
||||
) -> PostTrainingJobStatusResponse: ...
|
||||
|
||||
@webmethod(route="/post-training/job/cancel")
|
||||
async def cancel_training_job(self, job_uuid: str) -> None: ...
|
||||
|
||||
@webmethod(route="/post-training/job/artifacts")
|
||||
async def get_training_job_artifacts(
|
||||
self, job_uuid: str
|
||||
) -> PostTrainingJobArtifactsResponse: ...
|
|
@ -0,0 +1,506 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from llama_models.sku_list import resolve_model
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from torch import nn
|
||||
from torchtune import utils as torchtune_utils
|
||||
from torchtune.training.metric_logging import DiskLogger
|
||||
from llama_stack.apis.post_training import * # noqa
|
||||
from llama_stack.distribution.utils.model_utils import model_local_dir
|
||||
|
||||
from llama_stack.providers.inline.post_training.torchtune import utils
|
||||
from llama_stack.providers.inline.post_training.torchtune.config import (
|
||||
TorchtunePostTrainingConfig,
|
||||
)
|
||||
from llama_stack.providers.inline.post_training.torchtune.datasets.sft import SFTDataset
|
||||
from torch.optim import Optimizer
|
||||
from torch.utils.data import DataLoader, DistributedSampler
|
||||
from torchtune import modules, training
|
||||
from torchtune.data import AlpacaToMessages, padded_collate_sft
|
||||
|
||||
from torchtune.modules.loss import CEWithChunkedOutputLoss
|
||||
from torchtune.modules.peft import (
|
||||
get_adapter_params,
|
||||
get_adapter_state_dict,
|
||||
get_lora_module_names,
|
||||
get_merged_lora_ckpt,
|
||||
load_dora_magnitudes,
|
||||
set_trainable_params,
|
||||
validate_missing_and_unexpected_for_lora,
|
||||
)
|
||||
from torchtune.training.lr_schedulers import get_cosine_schedule_with_warmup
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
from torchtune.models.llama3._tokenizer import Llama3Tokenizer
|
||||
|
||||
|
||||
class LoraFinetuningSingleDevice:
|
||||
# This recipe only supports GPU training
|
||||
|
||||
# This recipe doesn't include several training efficiency setting within origin torchtune repo, including
|
||||
# - compile
|
||||
# - activation offloading
|
||||
|
||||
# Resume from checkpoint hasn't been supported yet
|
||||
# Validation hasn't been supported yet
|
||||
|
||||
# Currently logging only logs limited training metrics to local disk
|
||||
# will figure out more loggings and how it works with telemetry in future PRs
|
||||
def __init__(
|
||||
self,
|
||||
config: TorchtunePostTrainingConfig,
|
||||
training_config: TrainingConfig,
|
||||
hyperparam_search_config: Dict[str, Any],
|
||||
logger_config: Dict[str, Any],
|
||||
model: str,
|
||||
checkpoint_dir: Optional[str],
|
||||
algorithm_config: Optional[Union[LoraFinetuningConfig, QATFinetuningConfig]],
|
||||
datasetio_api: DatasetIO,
|
||||
datasets_api: Datasets,
|
||||
) -> None:
|
||||
self.training_config = training_config
|
||||
self.algorithm_config = algorithm_config
|
||||
self._device = torchtune_utils.get_device(device="cuda")
|
||||
self._dtype = training.get_dtype(training_config.dtype, device=self._device)
|
||||
self.model_id = model
|
||||
|
||||
def model_checkpoint_dir(model) -> str:
|
||||
checkpoint_dir = Path(model_local_dir(model.descriptor()))
|
||||
|
||||
paths = [
|
||||
Path(checkpoint_dir / f"consolidated.{ext}")
|
||||
for ext in ["pth", "00.pth"]
|
||||
]
|
||||
if not any(p.exists() for p in paths):
|
||||
checkpoint_dir = checkpoint_dir / "original"
|
||||
|
||||
assert checkpoint_dir.exists(), (
|
||||
f"Could not find checkpoints in: {model_local_dir(model.descriptor())}. "
|
||||
f"Please download model using `llama download --model-id {model.descriptor()}`"
|
||||
)
|
||||
return str(checkpoint_dir)
|
||||
|
||||
if checkpoint_dir and checkpoint_dir != "null":
|
||||
self.checkpoint_dir = config.checkpoint_dir
|
||||
else:
|
||||
model = resolve_model(self.model_id)
|
||||
self.checkpoint_dir = model_checkpoint_dir(model)
|
||||
|
||||
# TODO @SLR722 make it work with get_training_job_artifacts
|
||||
self._output_dir = self.checkpoint_dir + "/posting_training/"
|
||||
|
||||
self.seed = training.set_seed(seed=config.torch_seed)
|
||||
self.epochs_run = 0
|
||||
self.total_epochs = training_config.n_epochs
|
||||
self._shuffle = training_config.data_config.shuffle
|
||||
self._batch_size = training_config.data_config.batch_size
|
||||
|
||||
# this is important for debugging purpose
|
||||
self.max_steps_per_epoch = training_config.max_steps_per_epoch
|
||||
self.global_step = 0
|
||||
|
||||
self._gradient_accumulation_steps = training_config.gradient_accumulation_steps
|
||||
|
||||
self._clip_grad_norm = 1.0
|
||||
self._enable_activation_checkpointing = (
|
||||
(training_config.efficiency_config.enable_activation_checkpointing)
|
||||
if training_config.efficiency_config
|
||||
else False
|
||||
)
|
||||
self._enable_activation_offloading = (
|
||||
(training_config.efficiency_config.enable_activation_offloading)
|
||||
if training_config.efficiency_config
|
||||
else False
|
||||
)
|
||||
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
|
||||
async def load_checkpoint(self):
|
||||
def get_checkpoint_files(checkpoint_dir: str) -> List[str]:
|
||||
try:
|
||||
# List all files in the given directory
|
||||
files = os.listdir(checkpoint_dir)
|
||||
# Filter files that end with .pth
|
||||
pth_files = [file for file in files if file.endswith(".pth")]
|
||||
return pth_files
|
||||
except FileNotFoundError:
|
||||
return [f"Error: The directory '{checkpoint_dir}' does not exist."]
|
||||
|
||||
self._checkpointer = training.FullModelMetaCheckpointer(
|
||||
checkpoint_dir=self.checkpoint_dir,
|
||||
checkpoint_files=get_checkpoint_files(self.checkpoint_dir),
|
||||
output_dir=self._output_dir,
|
||||
model_type=await utils.get_checkpointer_model_type(self.model_id),
|
||||
)
|
||||
checkpoint_dict = self._checkpointer.load_checkpoint()
|
||||
return checkpoint_dict
|
||||
|
||||
async def setup(self) -> None:
|
||||
self._metric_logger = DiskLogger(log_dir=self._output_dir)
|
||||
|
||||
checkpoint_dict = await self.load_checkpoint()
|
||||
|
||||
self._model = await self._setup_model(
|
||||
enable_activation_checkpointing=self._enable_activation_checkpointing,
|
||||
enable_activation_offloading=self._enable_activation_offloading,
|
||||
base_model_state_dict=checkpoint_dict[training.MODEL_KEY],
|
||||
lora_weights_state_dict=None,
|
||||
)
|
||||
log.info(f"Model is initialized with precision {self._dtype}.")
|
||||
|
||||
self._tokenizer = await self._setup_tokenizer()
|
||||
log.info("Tokenizer is initialized.")
|
||||
|
||||
self._optimizer = await self._setup_optimizer(
|
||||
optimizer_config=self.training_config.optimizer_config
|
||||
)
|
||||
log.info("Optimizer is initialized.")
|
||||
|
||||
self._loss_fn = CEWithChunkedOutputLoss()
|
||||
self._model.set_num_output_chunks(self._loss_fn.num_output_chunks)
|
||||
log.info("Loss is initialized.")
|
||||
|
||||
self._sampler, self._dataloader = await self._setup_data(
|
||||
tokenizer=self._tokenizer,
|
||||
shuffle=self._shuffle,
|
||||
batch_size=self._batch_size,
|
||||
)
|
||||
log.info("Dataset and Sampler are initialized.")
|
||||
|
||||
# Number of training steps in each epoch depends on the number of batches produced
|
||||
# by the dataloader and the max_steps_per_epoch param set by the user and is used
|
||||
# for logging and tracking training state. This should be computed after the dataloader
|
||||
# has been setup
|
||||
self._steps_per_epoch = (
|
||||
len(self._dataloader) // self._gradient_accumulation_steps
|
||||
)
|
||||
if (
|
||||
self.max_steps_per_epoch is not None
|
||||
and self.max_steps_per_epoch < self._steps_per_epoch
|
||||
):
|
||||
self._steps_per_epoch = self.max_steps_per_epoch
|
||||
self.global_step = self.epochs_run * self._steps_per_epoch
|
||||
|
||||
# Learning rate scheduler can only be set up after number of steps
|
||||
# has been computed
|
||||
self._lr_scheduler = await self._setup_lr_scheduler(
|
||||
num_warmup_steps=self.training_config.optimizer_config.num_warmup_steps,
|
||||
num_training_steps=self.total_epochs * self._steps_per_epoch,
|
||||
last_epoch=self.global_step - 1,
|
||||
)
|
||||
log.info("Learning rate scheduler is initialized.")
|
||||
|
||||
# Used to ignore labels for loss computation
|
||||
self.ignore_labels_cache = torch.full(
|
||||
(self._batch_size, 1), self._loss_fn.ignore_index, device=self._device
|
||||
)
|
||||
|
||||
async def _setup_model(
|
||||
self,
|
||||
enable_activation_checkpointing: bool,
|
||||
enable_activation_offloading: bool,
|
||||
base_model_state_dict: Dict[str, Any],
|
||||
lora_weights_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> nn.Module:
|
||||
self._lora_rank = self.algorithm_config.rank
|
||||
self._lora_alpha = self.algorithm_config.alpha
|
||||
self._lora_attn_modules = list(self.algorithm_config.lora_attn_modules)
|
||||
self._apply_lora_to_mlp = self.algorithm_config.apply_lora_to_mlp
|
||||
self._apply_lora_to_output = self.algorithm_config.apply_lora_to_output
|
||||
self._use_dora = self.algorithm_config.use_dora or False
|
||||
|
||||
with training.set_default_dtype(self._dtype), self._device:
|
||||
model_type = await utils.get_model_definition(self.model_id)
|
||||
model = model_type(
|
||||
lora_attn_modules=self._lora_attn_modules,
|
||||
apply_lora_to_mlp=self._apply_lora_to_mlp,
|
||||
apply_lora_to_output=self._apply_lora_to_output,
|
||||
lora_rank=self._lora_rank,
|
||||
lora_alpha=self._lora_alpha,
|
||||
quantize_base=False,
|
||||
use_dora=self._use_dora,
|
||||
)
|
||||
|
||||
self.adapter_params = get_adapter_params(model)
|
||||
self._is_dora = any(["magnitude" in k for k in self.adapter_params.keys()])
|
||||
|
||||
set_trainable_params(model, self.adapter_params)
|
||||
|
||||
if enable_activation_checkpointing:
|
||||
training.set_activation_checkpointing(
|
||||
model, auto_wrap_policy={modules.TransformerSelfAttentionLayer}
|
||||
)
|
||||
|
||||
base_missing, base_unexpected = model.load_state_dict(
|
||||
base_model_state_dict, strict=False
|
||||
)
|
||||
|
||||
# This is for any adapters that need to be initialized after base weights
|
||||
# have been loaded (e.g. DoRA).
|
||||
if self._is_dora:
|
||||
for m in model.modules():
|
||||
if hasattr(m, "initialize_dora_magnitude"):
|
||||
m.initialize_dora_magnitude()
|
||||
load_dora_magnitudes(model)
|
||||
if lora_weights_state_dict:
|
||||
lora_missing, lora_unexpected = model.load_state_dict(
|
||||
lora_weights_state_dict, strict=False
|
||||
)
|
||||
else:
|
||||
lora_missing, lora_unexpected = None, None
|
||||
validate_missing_and_unexpected_for_lora(
|
||||
lora_attn_modules=self._lora_attn_modules,
|
||||
apply_lora_to_mlp=self._apply_lora_to_mlp,
|
||||
apply_lora_to_output=self._apply_lora_to_output,
|
||||
base_missing=base_missing,
|
||||
base_unexpected=base_unexpected,
|
||||
lora_missing=lora_missing,
|
||||
lora_unexpected=lora_unexpected,
|
||||
)
|
||||
|
||||
# Validate model adapter params were loaded in with the expected dtype
|
||||
training.validate_expected_param_dtype(
|
||||
self.adapter_params.items(), dtype=self._dtype
|
||||
)
|
||||
|
||||
# activation offloading
|
||||
self.activations_handling_ctx = training.get_act_offloading_ctx_manager(
|
||||
model, enable_activation_offloading
|
||||
)
|
||||
|
||||
memory_stats = training.get_memory_stats(device=self._device)
|
||||
training.log_memory_stats(memory_stats)
|
||||
|
||||
return model
|
||||
|
||||
async def _setup_tokenizer(
|
||||
self,
|
||||
) -> Llama3Tokenizer:
|
||||
tokenizer_path = self.checkpoint_dir + "/tokenizer.model"
|
||||
tokenizer_type = await utils.get_tokenizer_type(self.model_id)
|
||||
return tokenizer_type(path=tokenizer_path)
|
||||
|
||||
async def _setup_optimizer(self, optimizer_config: OptimizerConfig) -> Optimizer:
|
||||
optimizer = torch.optim.AdamW(
|
||||
params=self._model.parameters(),
|
||||
lr=optimizer_config.lr,
|
||||
betas=(0.9, 0.95),
|
||||
eps=1e-8,
|
||||
weight_decay=0.1,
|
||||
)
|
||||
return optimizer
|
||||
|
||||
async def _setup_data(
|
||||
self, tokenizer: Llama3Tokenizer, shuffle: bool, batch_size: int
|
||||
) -> Tuple[DistributedSampler, DataLoader]:
|
||||
dataset_id = self.training_config.data_config.dataset_id
|
||||
|
||||
async def fetch_rows():
|
||||
return await self.datasetio_api.get_rows_paginated(
|
||||
dataset_id=dataset_id,
|
||||
rows_in_page=-1,
|
||||
)
|
||||
|
||||
all_rows = await fetch_rows()
|
||||
rows = all_rows.rows
|
||||
|
||||
# Curretly only support alpaca instruct dataset
|
||||
# TODO @SLR722 make the message_transform swappable and support more dataset types
|
||||
# TODO @SLR722 make the input dataset schema more flexible by exposing column_map
|
||||
await utils.validate_input_dataset_schema(
|
||||
datasets_api=self.datasets_api,
|
||||
dataset_id=dataset_id,
|
||||
dataset_type="alpaca",
|
||||
)
|
||||
ds = SFTDataset(
|
||||
rows,
|
||||
message_transform=AlpacaToMessages(train_on_input=False),
|
||||
model_transform=tokenizer,
|
||||
)
|
||||
|
||||
sampler = DistributedSampler(
|
||||
ds,
|
||||
num_replicas=1,
|
||||
rank=0,
|
||||
shuffle=shuffle,
|
||||
seed=0,
|
||||
)
|
||||
dataloader = DataLoader(
|
||||
dataset=ds,
|
||||
sampler=sampler,
|
||||
batch_size=batch_size,
|
||||
# dropping last avoids shape issues with compile + flex attention
|
||||
drop_last=True,
|
||||
collate_fn=(
|
||||
partial(
|
||||
padded_collate_sft,
|
||||
padding_idx=self._tokenizer.pad_id,
|
||||
ignore_idx=self._loss_fn.ignore_index,
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
return sampler, dataloader
|
||||
|
||||
async def _setup_lr_scheduler(
|
||||
self,
|
||||
num_warmup_steps: int,
|
||||
num_training_steps: int,
|
||||
last_epoch: int,
|
||||
) -> Optimizer:
|
||||
lr_scheduler = get_cosine_schedule_with_warmup(
|
||||
self._optimizer,
|
||||
num_warmup_steps=num_warmup_steps,
|
||||
num_training_steps=num_training_steps,
|
||||
last_epoch=last_epoch,
|
||||
)
|
||||
return lr_scheduler
|
||||
|
||||
async def save_checkpoint(self, epoch: int) -> None:
|
||||
ckpt_dict = {}
|
||||
|
||||
adapter_state_dict = get_adapter_state_dict(self._model.state_dict())
|
||||
ckpt_dict.update({training.ADAPTER_KEY: adapter_state_dict})
|
||||
|
||||
# Construct the full state dict with LoRA weights merged into base LLM weights
|
||||
# Move to CPU to avoid a copy on GPU
|
||||
state_dict = {k: v.cpu() for k, v in self._model.state_dict().items()}
|
||||
|
||||
merged_state_dict = get_merged_lora_ckpt(
|
||||
state_dict,
|
||||
rank=self._lora_rank,
|
||||
alpha=self._lora_alpha,
|
||||
)
|
||||
|
||||
ckpt_dict.update({training.MODEL_KEY: merged_state_dict})
|
||||
|
||||
adapter_config = {
|
||||
"r": self._lora_rank,
|
||||
"lora_alpha": self._lora_alpha,
|
||||
"target_modules": get_lora_module_names(
|
||||
self._lora_attn_modules,
|
||||
self._apply_lora_to_mlp,
|
||||
self._apply_lora_to_output,
|
||||
),
|
||||
"peft_type": "LORA",
|
||||
}
|
||||
ckpt_dict.update({training.ADAPTER_CONFIG: adapter_config})
|
||||
|
||||
self._checkpointer.save_checkpoint(
|
||||
ckpt_dict,
|
||||
epoch=epoch,
|
||||
)
|
||||
|
||||
async def _loss_step(self, batch: Dict[str, torch.Tensor]) -> torch.Tensor:
|
||||
# Shape [b, s], needed for the loss not the model
|
||||
labels = batch.pop("labels")
|
||||
# run model
|
||||
with self.activations_handling_ctx:
|
||||
logits = self._model(**batch)
|
||||
|
||||
# Shift labels to compute loss
|
||||
# equivalent to doing labels[..., 1:] and logits[..., :-1, :]
|
||||
# But this way we dont need to slice the logits. We just add an ignore index to labels.
|
||||
labels = torch.hstack(
|
||||
(labels[..., 1:], self.ignore_labels_cache[: labels.shape[0]])
|
||||
)
|
||||
if not isinstance(logits, list):
|
||||
labels = labels.reshape(-1)
|
||||
logits = logits.reshape(-1, logits.size(-1))
|
||||
|
||||
loss = self._loss_fn(logits, labels)
|
||||
|
||||
# free logits otherwise it peaks backward memory
|
||||
del logits
|
||||
|
||||
return loss
|
||||
|
||||
async def train(self) -> None:
|
||||
"""
|
||||
The core training loop.
|
||||
"""
|
||||
# Initialize tokens count and running loss (for grad accumulation)
|
||||
# t0 = time.perf_counter()
|
||||
t0 = time.perf_counter()
|
||||
running_loss = 0
|
||||
num_tokens = 0
|
||||
|
||||
# self.epochs_run should be non-zero when we're resuming from a checkpoint
|
||||
for curr_epoch in range(self.epochs_run, self.total_epochs):
|
||||
# Update the sampler to ensure data is correctly shuffled across epochs
|
||||
# in case shuffle is True
|
||||
self._sampler.set_epoch(curr_epoch)
|
||||
|
||||
for idx, batch in enumerate(self._dataloader):
|
||||
if (
|
||||
self.max_steps_per_epoch is not None
|
||||
and (idx // self._gradient_accumulation_steps)
|
||||
== self.max_steps_per_epoch
|
||||
):
|
||||
break
|
||||
|
||||
torchtune_utils.batch_to_device(batch, self._device)
|
||||
|
||||
# Calculate the number of unmasked tokens in the current batch
|
||||
# and increment the total number of tokens seen in the step
|
||||
current_num_tokens = (
|
||||
batch["labels"] != self._loss_fn.ignore_index
|
||||
).sum()
|
||||
num_tokens += current_num_tokens
|
||||
|
||||
# Loss is normalized by default so we multiply by the number of tokens
|
||||
# This way we can normalize by the total number of tokens if we're accumulating gradients
|
||||
current_loss = await self._loss_step(batch) * current_num_tokens
|
||||
running_loss += current_loss
|
||||
current_loss.backward()
|
||||
|
||||
# Step with optimizer
|
||||
if (idx + 1) % self._gradient_accumulation_steps == 0:
|
||||
training.scale_grads(self._model, 1 / num_tokens)
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
self._model.parameters(),
|
||||
max_norm=float(self._clip_grad_norm),
|
||||
)
|
||||
self._optimizer.step()
|
||||
self._optimizer.zero_grad(set_to_none=True)
|
||||
self._lr_scheduler.step()
|
||||
# Update the number of steps when the weights are updated
|
||||
self.global_step += 1
|
||||
|
||||
loss_to_log = running_loss.item() / num_tokens
|
||||
time_per_step = time.perf_counter() - t0
|
||||
log_dict = {
|
||||
"loss": loss_to_log,
|
||||
"lr": self._optimizer.param_groups[0]["lr"],
|
||||
"tokens_per_second_per_gpu": num_tokens / time_per_step,
|
||||
}
|
||||
log_dict.update(training.get_memory_stats(device=self._device))
|
||||
if self._clip_grad_norm is not None:
|
||||
log_dict.update({"grad_norm": grad_norm})
|
||||
self._metric_logger.log_dict(
|
||||
log_dict,
|
||||
step=self.global_step,
|
||||
)
|
||||
|
||||
# Reset running stats for the next step
|
||||
running_loss = 0
|
||||
num_tokens = 0
|
||||
t0 = time.perf_counter()
|
||||
|
||||
self.epochs_run += 1
|
||||
log.info("Starting checkpoint save...")
|
||||
await self.save_checkpoint(epoch=curr_epoch)
|
139
llama_stack/providers/inline/post_training/torchtune/utils.py
Normal file
139
llama_stack/providers/inline/post_training/torchtune/utils.py
Normal file
|
@ -0,0 +1,139 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
# Copyright (c) Meta Platforms, IAny, nc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, Dict, List
|
||||
|
||||
import torch
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.common.type_system import * # noqa
|
||||
from llama_models.datatypes import Model
|
||||
from llama_models.sku_list import resolve_model
|
||||
from llama_stack.apis.common.type_system import ParamType
|
||||
|
||||
from torchtune.models.llama3 import llama3_tokenizer, lora_llama3_8b
|
||||
from torchtune.models.llama3._tokenizer import Llama3Tokenizer
|
||||
from torchtune.models.llama3_2 import lora_llama3_2_3b
|
||||
|
||||
|
||||
class ColumnName(Enum):
|
||||
instruction = "instruction"
|
||||
input = "input"
|
||||
output = "output"
|
||||
text = "text"
|
||||
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
model_definition: Any
|
||||
tokenizer_type: Any
|
||||
checkpoint_type: str
|
||||
|
||||
|
||||
class DatasetSchema(BaseModel):
|
||||
alpaca: List[Dict[str, ParamType]]
|
||||
|
||||
|
||||
MODEL_CONFIGS: Dict[str, ModelConfig] = {
|
||||
"Llama3.2-3B-Instruct": ModelConfig(
|
||||
model_definition=lora_llama3_2_3b,
|
||||
tokenizer_type=llama3_tokenizer,
|
||||
checkpoint_type="LLAMA3_2",
|
||||
),
|
||||
"Llama-3-8B-Instruct": ModelConfig(
|
||||
model_definition=lora_llama3_8b,
|
||||
tokenizer_type=llama3_tokenizer,
|
||||
checkpoint_type="LLAMA3",
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
EXPECTED_DATASET_SCHEMA = DatasetSchema(
|
||||
alpaca=[
|
||||
{
|
||||
ColumnName.instruction.value: StringType(),
|
||||
ColumnName.input.value: StringType(),
|
||||
ColumnName.output.value: StringType(),
|
||||
ColumnName.text.value: StringType(),
|
||||
},
|
||||
{
|
||||
ColumnName.instruction.value: StringType(),
|
||||
ColumnName.input.value: StringType(),
|
||||
ColumnName.output.value: StringType(),
|
||||
},
|
||||
{
|
||||
ColumnName.instruction.value: StringType(),
|
||||
ColumnName.output.value: StringType(),
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
BuildLoraModelCallable = Callable[..., torch.nn.Module]
|
||||
BuildTokenizerCallable = Callable[..., Llama3Tokenizer]
|
||||
|
||||
|
||||
def _validate_model_id(model_id: str) -> Model:
|
||||
model = resolve_model(model_id)
|
||||
if model is None or model.core_model_id.value not in MODEL_CONFIGS:
|
||||
raise ValueError(f"Model {model_id} is not supported.")
|
||||
return model
|
||||
|
||||
|
||||
async def get_model_definition(
|
||||
model_id: str,
|
||||
) -> BuildLoraModelCallable:
|
||||
model = _validate_model_id(model_id)
|
||||
model_config = MODEL_CONFIGS[model.core_model_id.value]
|
||||
if not hasattr(model_config, "model_definition"):
|
||||
raise ValueError(f"Model {model_id} does not have model definition.")
|
||||
return model_config.model_definition
|
||||
|
||||
|
||||
async def get_tokenizer_type(
|
||||
model_id: str,
|
||||
) -> BuildTokenizerCallable:
|
||||
model = _validate_model_id(model_id)
|
||||
model_config = MODEL_CONFIGS[model.core_model_id.value]
|
||||
if not hasattr(model_config, "tokenizer_type"):
|
||||
raise ValueError(f"Model {model_id} does not have tokenizer_type.")
|
||||
return model_config.tokenizer_type
|
||||
|
||||
|
||||
async def get_checkpointer_model_type(
|
||||
model_id: str,
|
||||
) -> str:
|
||||
"""
|
||||
checkpointer model type is used in checkpointer for some special treatment on some specific model types
|
||||
For example, llama3.2 model tied weights (https://github.com/pytorch/torchtune/blob/main/torchtune/training/checkpointing/_checkpointer.py#L1041)
|
||||
"""
|
||||
model = _validate_model_id(model_id)
|
||||
model_config = MODEL_CONFIGS[model.core_model_id.value]
|
||||
if not hasattr(model_config, "checkpoint_type"):
|
||||
raise ValueError(f"Model {model_id} does not have checkpoint_type.")
|
||||
return model_config.checkpoint_type
|
||||
|
||||
|
||||
async def validate_input_dataset_schema(
|
||||
datasets_api: Datasets,
|
||||
dataset_id: str,
|
||||
dataset_type: str,
|
||||
) -> None:
|
||||
dataset_def = await datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
|
||||
raise ValueError(f"Dataset {dataset_id} does not have a schema defined.")
|
||||
|
||||
if not hasattr(EXPECTED_DATASET_SCHEMA, dataset_type):
|
||||
raise ValueError(f"Dataset type {dataset_type} is not supported.")
|
||||
|
||||
if dataset_def.dataset_schema not in getattr(EXPECTED_DATASET_SCHEMA, dataset_type):
|
||||
raise ValueError(
|
||||
f"Dataset {dataset_id} does not have a correct input schema in {getattr(EXPECTED_DATASET_SCHEMA, dataset_type)}"
|
||||
)
|
25
llama_stack/providers/registry/post_training.py
Normal file
25
llama_stack/providers/registry/post_training.py
Normal file
|
@ -0,0 +1,25 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
|
||||
|
||||
def available_providers() -> List[ProviderSpec]:
|
||||
return [
|
||||
InlineProviderSpec(
|
||||
api=Api.post_training,
|
||||
provider_type="inline::torchtune",
|
||||
pip_packages=["torch", "torchtune", "torchao", "numpy"],
|
||||
module="llama_stack.providers.inline.post_training.torchtune",
|
||||
config_class="llama_stack.providers.inline.post_training.torchtune.TorchtunePostTrainingConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
],
|
||||
),
|
||||
]
|
|
@ -156,4 +156,5 @@ pytest_plugins = [
|
|||
"llama_stack.providers.tests.datasetio.fixtures",
|
||||
"llama_stack.providers.tests.scoring.fixtures",
|
||||
"llama_stack.providers.tests.eval.fixtures",
|
||||
"llama_stack.providers.tests.post_training.fixtures",
|
||||
]
|
||||
|
|
|
@ -10,6 +10,7 @@ import pytest_asyncio
|
|||
from llama_stack.distribution.datatypes import Api, Provider
|
||||
|
||||
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
||||
|
||||
from ..conftest import ProviderFixture, remote_stack_fixture
|
||||
|
||||
|
||||
|
|
5
llama_stack/providers/tests/post_training/__init__.py
Normal file
5
llama_stack/providers/tests/post_training/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
45
llama_stack/providers/tests/post_training/conftest.py
Normal file
45
llama_stack/providers/tests/post_training/conftest.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import pytest
|
||||
|
||||
from ..conftest import get_provider_fixture_overrides
|
||||
|
||||
from ..datasetio.fixtures import DATASETIO_FIXTURES
|
||||
|
||||
from .fixtures import POST_TRAINING_FIXTURES
|
||||
|
||||
DEFAULT_PROVIDER_COMBINATIONS = [
|
||||
pytest.param(
|
||||
{
|
||||
"post_training": "torchtune",
|
||||
"datasetio": "huggingface",
|
||||
},
|
||||
id="torchtune_post_training_huggingface_datasetio",
|
||||
marks=pytest.mark.torchtune_post_training_huggingface_datasetio,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def pytest_configure(config):
|
||||
combined_fixtures = "torchtune_post_training_huggingface_datasetio"
|
||||
config.addinivalue_line(
|
||||
"markers",
|
||||
f"{combined_fixtures}: marks tests as {combined_fixtures} specific",
|
||||
)
|
||||
|
||||
|
||||
def pytest_generate_tests(metafunc):
|
||||
if "post_training_stack" in metafunc.fixturenames:
|
||||
available_fixtures = {
|
||||
"eval": POST_TRAINING_FIXTURES,
|
||||
"datasetio": DATASETIO_FIXTURES,
|
||||
}
|
||||
combinations = (
|
||||
get_provider_fixture_overrides(metafunc.config, available_fixtures)
|
||||
or DEFAULT_PROVIDER_COMBINATIONS
|
||||
)
|
||||
metafunc.parametrize("post_training_stack", combinations, indirect=True)
|
74
llama_stack/providers/tests/post_training/fixtures.py
Normal file
74
llama_stack/providers/tests/post_training/fixtures.py
Normal file
|
@ -0,0 +1,74 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_models.llama3.api.datatypes import URL
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.apis.datasets import DatasetInput
|
||||
from llama_stack.apis.models import ModelInput
|
||||
|
||||
from llama_stack.distribution.datatypes import Api, Provider
|
||||
|
||||
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
||||
|
||||
from ..conftest import ProviderFixture
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def post_training_torchtune() -> ProviderFixture:
|
||||
return ProviderFixture(
|
||||
providers=[
|
||||
Provider(
|
||||
provider_id="torchtune",
|
||||
provider_type="inline::torchtune",
|
||||
config={},
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
POST_TRAINING_FIXTURES = ["torchtune"]
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def post_training_stack(request):
|
||||
fixture_dict = request.param
|
||||
|
||||
providers = {}
|
||||
provider_data = {}
|
||||
for key in ["post_training", "datasetio"]:
|
||||
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
|
||||
providers[key] = fixture.providers
|
||||
if fixture.provider_data:
|
||||
provider_data.update(fixture.provider_data)
|
||||
|
||||
test_stack = await construct_stack_for_test(
|
||||
[Api.post_training, Api.datasetio],
|
||||
providers,
|
||||
provider_data,
|
||||
models=[ModelInput(model_id="meta-llama/Llama-3.2-3B-Instruct")],
|
||||
datasets=[
|
||||
DatasetInput(
|
||||
dataset_id="alpaca",
|
||||
provider_id="huggingface",
|
||||
url=URL(uri="https://huggingface.co/datasets/tatsu-lab/alpaca"),
|
||||
metadata={
|
||||
"path": "tatsu-lab/alpaca",
|
||||
"split": "train",
|
||||
},
|
||||
dataset_schema={
|
||||
"instruction": StringType(),
|
||||
"input": StringType(),
|
||||
"output": StringType(),
|
||||
"text": StringType(),
|
||||
},
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
return test_stack.impls[Api.post_training]
|
|
@ -0,0 +1,61 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import pytest
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.apis.post_training import * # noqa: F403
|
||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
|
||||
# How to run this test:
|
||||
#
|
||||
# pytest llama_stack/providers/tests/post_training/test_post_training.py
|
||||
# -m "torchtune_post_training_huggingface_datasetio"
|
||||
# -v -s --tb=short --disable-warnings
|
||||
|
||||
|
||||
class TestPostTraining:
|
||||
@pytest.mark.asyncio
|
||||
async def test_supervised_fine_tune(self, post_training_stack):
|
||||
algorithm_config = LoraFinetuningConfig(
|
||||
lora_attn_modules=["q_proj", "v_proj", "output_proj"],
|
||||
apply_lora_to_mlp=True,
|
||||
apply_lora_to_output=False,
|
||||
rank=8,
|
||||
alpha=16,
|
||||
)
|
||||
|
||||
data_config = DataConfig(
|
||||
dataset_id="alpaca",
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
optimizer_config = OptimizerConfig(
|
||||
optimizer_type="adamw",
|
||||
lr=3e-4,
|
||||
lr_min=3e-5,
|
||||
weight_decay=0.1,
|
||||
num_warmup_steps=100,
|
||||
)
|
||||
|
||||
training_config = TrainingConfig(
|
||||
n_epochs=1,
|
||||
data_config=data_config,
|
||||
optimizer_config=optimizer_config,
|
||||
max_steps_per_epoch=1,
|
||||
gradient_accumulation_steps=1,
|
||||
)
|
||||
post_training_impl = post_training_stack
|
||||
response = await post_training_impl.supervised_fine_tune(
|
||||
job_uuid="1234",
|
||||
model="Llama3.2-3B-Instruct",
|
||||
algorithm_config=algorithm_config,
|
||||
training_config=training_config,
|
||||
hyperparam_search_config={},
|
||||
logger_config={},
|
||||
checkpoint_dir="null",
|
||||
)
|
||||
assert isinstance(response, PostTrainingJob)
|
||||
assert response.job_uuid == "1234"
|
13
llama_stack/templates/experimental-post-training/build.yaml
Normal file
13
llama_stack/templates/experimental-post-training/build.yaml
Normal file
|
@ -0,0 +1,13 @@
|
|||
version: '2'
|
||||
name: experimental-post-training
|
||||
distribution_spec:
|
||||
description: Experimental template for post training
|
||||
docker_image: null
|
||||
providers:
|
||||
post_training:
|
||||
- inline::torchtune
|
||||
datasetio:
|
||||
- remote::huggingface
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
image_type: conda
|
53
llama_stack/templates/experimental-post-training/run.yaml
Normal file
53
llama_stack/templates/experimental-post-training/run.yaml
Normal file
|
@ -0,0 +1,53 @@
|
|||
version: '2'
|
||||
image_name: experimental-post-training
|
||||
docker_image: null
|
||||
conda_env: experimental-post-training
|
||||
apis:
|
||||
- telemetry
|
||||
- datasetio
|
||||
- post_training
|
||||
providers:
|
||||
datasetio:
|
||||
- provider_id: huggingface-0
|
||||
provider_type: remote::huggingface
|
||||
config: {}
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
post_training:
|
||||
- provider_id: torchtune-post-training
|
||||
provider_type: inline::torchtune
|
||||
config: {}
|
||||
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.POST_TRAINING_MODEL}
|
||||
provider_id: meta-reference-inference
|
||||
provider_model_id: null
|
||||
shields: []
|
||||
memory_banks: []
|
||||
datasets:
|
||||
- dataset_id: alpaca
|
||||
provider_id: huggingface-0
|
||||
url:
|
||||
uri: https://huggingface.co/datasets/tatsu-lab/alpaca
|
||||
metadata:
|
||||
path: tatsu-lab/alpaca
|
||||
name:
|
||||
split: train
|
||||
dataset_schema:
|
||||
instruction:
|
||||
type: string
|
||||
input:
|
||||
type: string
|
||||
output:
|
||||
type: string
|
||||
text:
|
||||
type: string
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
Loading…
Add table
Add a link
Reference in a new issue