mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
Merge branch 'main' into fix/divide-by-zero-exception-faiss-query-vector
This commit is contained in:
commit
b05a3db358
19 changed files with 254 additions and 389 deletions
23
.github/actions/setup-ollama/action.yml
vendored
23
.github/actions/setup-ollama/action.yml
vendored
|
@ -1,26 +1,9 @@
|
|||
name: Setup Ollama
|
||||
description: Start Ollama and cache model
|
||||
inputs:
|
||||
models:
|
||||
description: Comma-separated list of models to pull
|
||||
default: "llama3.2:3b-instruct-fp16,all-minilm:latest"
|
||||
description: Start Ollama
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install and start Ollama
|
||||
- name: Start Ollama
|
||||
shell: bash
|
||||
run: |
|
||||
# the ollama installer also starts the ollama service
|
||||
curl -fsSL https://ollama.com/install.sh | sh
|
||||
|
||||
# Do NOT cache models - pulling the cache is actually slower than just pulling the model.
|
||||
# It takes ~45 seconds to pull the models from the cache and unpack it, but only 30 seconds to
|
||||
# pull them directly.
|
||||
# Maybe this is because the cache is being pulled at the same time by all the matrix jobs?
|
||||
- name: Pull requested models
|
||||
if: inputs.models != ''
|
||||
shell: bash
|
||||
run: |
|
||||
for model in $(echo "${{ inputs.models }}" | tr ',' ' '); do
|
||||
ollama pull "$model"
|
||||
done
|
||||
docker run -d --name ollama -p 11434:11434 docker.io/leseb/ollama-with-models
|
||||
|
|
7
.github/actions/setup-runner/action.yml
vendored
7
.github/actions/setup-runner/action.yml
vendored
|
@ -1,12 +1,17 @@
|
|||
name: Setup runner
|
||||
description: Prepare a runner for the tests (install uv, python, project dependencies, etc.)
|
||||
inputs:
|
||||
python-version:
|
||||
description: The Python version to use
|
||||
required: false
|
||||
default: "3.10"
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@6b9c6063abd6010835644d4c2e1bef4cf5cd0fca # v6.0.1
|
||||
with:
|
||||
python-version: "3.10"
|
||||
python-version: ${{ inputs.python-version }}
|
||||
activate-environment: true
|
||||
version: 0.7.6
|
||||
|
||||
|
|
12
.github/workflows/integration-tests.yml
vendored
12
.github/workflows/integration-tests.yml
vendored
|
@ -26,6 +26,7 @@ jobs:
|
|||
# TODO: generate matrix list from tests/integration when fixed
|
||||
test-type: [agents, inference, datasets, inspect, scoring, post_training, providers, tool_runtime]
|
||||
client-type: [library, http]
|
||||
python-version: ["3.10", "3.11", "3.12"]
|
||||
fail-fast: false # we want to run all tests regardless of failure
|
||||
|
||||
steps:
|
||||
|
@ -34,20 +35,22 @@ jobs:
|
|||
|
||||
- name: Install dependencies
|
||||
uses: ./.github/actions/setup-runner
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Setup ollama
|
||||
uses: ./.github/actions/setup-ollama
|
||||
|
||||
- name: Build Llama Stack
|
||||
run: |
|
||||
llama stack build --template ollama --image-type venv
|
||||
uv run llama stack build --template ollama --image-type venv
|
||||
|
||||
- name: Start Llama Stack server in background
|
||||
if: matrix.client-type == 'http'
|
||||
env:
|
||||
INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct"
|
||||
run: |
|
||||
LLAMA_STACK_LOG_FILE=server.log nohup uv run llama stack run ./llama_stack/templates/ollama/run.yaml --image-type venv &
|
||||
LLAMA_STACK_LOG_FILE=server.log nohup uv run llama stack run ./llama_stack/templates/ollama/run.yaml --image-type venv --env OLLAMA_URL="http://0.0.0.0:11434" &
|
||||
|
||||
- name: Wait for Llama Stack server to be ready
|
||||
if: matrix.client-type == 'http'
|
||||
|
@ -84,6 +87,7 @@ jobs:
|
|||
- name: Run Integration Tests
|
||||
env:
|
||||
INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct"
|
||||
OLLAMA_URL: "http://0.0.0.0:11434"
|
||||
run: |
|
||||
if [ "${{ matrix.client-type }}" == "library" ]; then
|
||||
stack_config="ollama"
|
||||
|
@ -104,13 +108,13 @@ jobs:
|
|||
- name: Write ollama logs to file
|
||||
if: ${{ always() }}
|
||||
run: |
|
||||
sudo journalctl -u ollama.service > ollama.log
|
||||
sudo docker logs ollama > ollama.log
|
||||
|
||||
- name: Upload all logs to artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
|
||||
with:
|
||||
name: logs-${{ github.run_id }}-${{ github.run_attempt }}-${{ matrix.client-type }}-${{ matrix.test-type }}
|
||||
name: logs-${{ github.run_id }}-${{ github.run_attempt }}-${{ matrix.client-type }}-${{ matrix.test-type }}-${{ matrix.python-version }}
|
||||
path: |
|
||||
*.log
|
||||
retention-days: 1
|
||||
|
|
|
@ -43,23 +43,12 @@ def get_provider_dependencies(
|
|||
config: BuildConfig | DistributionTemplate,
|
||||
) -> tuple[list[str], list[str]]:
|
||||
"""Get normal and special dependencies from provider configuration."""
|
||||
# Extract providers based on config type
|
||||
if isinstance(config, DistributionTemplate):
|
||||
providers = config.providers
|
||||
config = config.build_config()
|
||||
|
||||
# TODO: This is a hack to get the dependencies for internal APIs into build
|
||||
# We should have a better way to do this by formalizing the concept of "internal" APIs
|
||||
# and providers, with a way to specify dependencies for them.
|
||||
run_configs = config.run_configs
|
||||
additional_pip_packages: list[str] = []
|
||||
if run_configs:
|
||||
for run_config in run_configs.values():
|
||||
run_config_ = run_config.run_config(name="", providers={}, container_image=None)
|
||||
if run_config_.inference_store:
|
||||
additional_pip_packages.extend(run_config_.inference_store.pip_packages)
|
||||
elif isinstance(config, BuildConfig):
|
||||
providers = config.distribution_spec.providers
|
||||
additional_pip_packages = config.additional_pip_packages
|
||||
|
||||
deps = []
|
||||
registry = get_provider_registry(config)
|
||||
for api_str, provider_or_providers in providers.items():
|
||||
|
@ -87,8 +76,7 @@ def get_provider_dependencies(
|
|||
else:
|
||||
normal_deps.append(package)
|
||||
|
||||
if additional_pip_packages:
|
||||
normal_deps.extend(additional_pip_packages)
|
||||
normal_deps.extend(additional_pip_packages or [])
|
||||
|
||||
return list(set(normal_deps)), list(set(special_deps))
|
||||
|
||||
|
|
|
@ -149,13 +149,14 @@ class LlamaStackAsLibraryClient(LlamaStackClient):
|
|||
logger.info(f"Removed handler {handler.__class__.__name__} from root logger")
|
||||
|
||||
def request(self, *args, **kwargs):
|
||||
if kwargs.get("stream"):
|
||||
# NOTE: We are using AsyncLlamaStackClient under the hood
|
||||
# A new event loop is needed to convert the AsyncStream
|
||||
# from async client into SyncStream return type for streaming
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
|
||||
if kwargs.get("stream"):
|
||||
|
||||
def sync_generator():
|
||||
try:
|
||||
async_stream = loop.run_until_complete(self.async_client.request(*args, **kwargs))
|
||||
|
@ -172,7 +173,14 @@ class LlamaStackAsLibraryClient(LlamaStackClient):
|
|||
|
||||
return sync_generator()
|
||||
else:
|
||||
return asyncio.run(self.async_client.request(*args, **kwargs))
|
||||
try:
|
||||
result = loop.run_until_complete(self.async_client.request(*args, **kwargs))
|
||||
finally:
|
||||
pending = asyncio.all_tasks(loop)
|
||||
if pending:
|
||||
loop.run_until_complete(asyncio.gather(*pending, return_exceptions=True))
|
||||
loop.close()
|
||||
return result
|
||||
|
||||
|
||||
class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
||||
|
|
|
@ -8,7 +8,7 @@ import json
|
|||
import time
|
||||
import uuid
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any, cast
|
||||
from typing import Any
|
||||
|
||||
from openai.types.chat import ChatCompletionToolParam
|
||||
from pydantic import BaseModel
|
||||
|
@ -200,7 +200,6 @@ class ChatCompletionContext(BaseModel):
|
|||
messages: list[OpenAIMessageParam]
|
||||
tools: list[ChatCompletionToolParam] | None = None
|
||||
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP]
|
||||
stream: bool
|
||||
temperature: float | None
|
||||
response_format: OpenAIResponseFormatParam
|
||||
|
||||
|
@ -281,49 +280,6 @@ class OpenAIResponsesImpl:
|
|||
"""
|
||||
return await self.responses_store.list_response_input_items(response_id, after, before, include, limit, order)
|
||||
|
||||
def _is_function_tool_call(
|
||||
self,
|
||||
tool_call: OpenAIChatCompletionToolCall,
|
||||
tools: list[OpenAIResponseInputTool],
|
||||
) -> bool:
|
||||
if not tool_call.function:
|
||||
return False
|
||||
for t in tools:
|
||||
if t.type == "function" and t.name == tool_call.function.name:
|
||||
return True
|
||||
return False
|
||||
|
||||
async def _process_response_choices(
|
||||
self,
|
||||
chat_response: OpenAIChatCompletion,
|
||||
ctx: ChatCompletionContext,
|
||||
tools: list[OpenAIResponseInputTool] | None,
|
||||
) -> list[OpenAIResponseOutput]:
|
||||
"""Handle tool execution and response message creation."""
|
||||
output_messages: list[OpenAIResponseOutput] = []
|
||||
# Execute tool calls if any
|
||||
for choice in chat_response.choices:
|
||||
if choice.message.tool_calls and tools:
|
||||
# Assume if the first tool is a function, all tools are functions
|
||||
if self._is_function_tool_call(choice.message.tool_calls[0], tools):
|
||||
for tool_call in choice.message.tool_calls:
|
||||
output_messages.append(
|
||||
OpenAIResponseOutputMessageFunctionToolCall(
|
||||
arguments=tool_call.function.arguments or "",
|
||||
call_id=tool_call.id,
|
||||
name=tool_call.function.name or "",
|
||||
id=f"fc_{uuid.uuid4()}",
|
||||
status="completed",
|
||||
)
|
||||
)
|
||||
else:
|
||||
tool_messages = await self._execute_tool_and_return_final_output(choice, ctx)
|
||||
output_messages.extend(tool_messages)
|
||||
else:
|
||||
output_messages.append(await _convert_chat_choice_to_response_message(choice))
|
||||
|
||||
return output_messages
|
||||
|
||||
async def _store_response(
|
||||
self,
|
||||
response: OpenAIResponseObject,
|
||||
|
@ -370,9 +326,48 @@ class OpenAIResponsesImpl:
|
|||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
):
|
||||
stream = False if stream is None else stream
|
||||
stream = bool(stream)
|
||||
text = OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")) if text is None else text
|
||||
|
||||
stream_gen = self._create_streaming_response(
|
||||
input=input,
|
||||
model=model,
|
||||
instructions=instructions,
|
||||
previous_response_id=previous_response_id,
|
||||
store=store,
|
||||
temperature=temperature,
|
||||
text=text,
|
||||
tools=tools,
|
||||
max_infer_iters=max_infer_iters,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return stream_gen
|
||||
else:
|
||||
response = None
|
||||
async for stream_chunk in stream_gen:
|
||||
if stream_chunk.type == "response.completed":
|
||||
if response is not None:
|
||||
raise ValueError("The response stream completed multiple times! Earlier response: {response}")
|
||||
response = stream_chunk.response
|
||||
# don't leave the generator half complete!
|
||||
|
||||
if response is None:
|
||||
raise ValueError("The response stream never completed")
|
||||
return response
|
||||
|
||||
async def _create_streaming_response(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
instructions: str | None = None,
|
||||
previous_response_id: str | None = None,
|
||||
store: bool | None = True,
|
||||
temperature: float | None = None,
|
||||
text: OpenAIResponseText | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
output_messages: list[OpenAIResponseOutput] = []
|
||||
|
||||
# Input preprocessing
|
||||
|
@ -383,7 +378,7 @@ class OpenAIResponsesImpl:
|
|||
# Structured outputs
|
||||
response_format = await _convert_response_text_to_chat_response_format(text)
|
||||
|
||||
# Tool setup
|
||||
# Tool setup, TODO: refactor this slightly since this can also yield events
|
||||
chat_tools, mcp_tool_to_server, mcp_list_message = (
|
||||
await self._convert_response_tools_to_chat_tools(tools) if tools else (None, {}, None)
|
||||
)
|
||||
|
@ -395,136 +390,10 @@ class OpenAIResponsesImpl:
|
|||
messages=messages,
|
||||
tools=chat_tools,
|
||||
mcp_tool_to_server=mcp_tool_to_server,
|
||||
stream=stream,
|
||||
temperature=temperature,
|
||||
response_format=response_format,
|
||||
)
|
||||
|
||||
# Fork to streaming vs non-streaming - let each handle ALL inference rounds
|
||||
if stream:
|
||||
return self._create_streaming_response(
|
||||
ctx=ctx,
|
||||
output_messages=output_messages,
|
||||
input=input,
|
||||
model=model,
|
||||
store=store,
|
||||
text=text,
|
||||
tools=tools,
|
||||
max_infer_iters=max_infer_iters,
|
||||
)
|
||||
else:
|
||||
return await self._create_non_streaming_response(
|
||||
ctx=ctx,
|
||||
output_messages=output_messages,
|
||||
input=input,
|
||||
model=model,
|
||||
store=store,
|
||||
text=text,
|
||||
tools=tools,
|
||||
max_infer_iters=max_infer_iters,
|
||||
)
|
||||
|
||||
async def _create_non_streaming_response(
|
||||
self,
|
||||
ctx: ChatCompletionContext,
|
||||
output_messages: list[OpenAIResponseOutput],
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
store: bool | None,
|
||||
text: OpenAIResponseText,
|
||||
tools: list[OpenAIResponseInputTool] | None,
|
||||
max_infer_iters: int,
|
||||
) -> OpenAIResponseObject:
|
||||
n_iter = 0
|
||||
messages = ctx.messages.copy()
|
||||
|
||||
while True:
|
||||
# Do inference (including the first one)
|
||||
inference_result = await self.inference_api.openai_chat_completion(
|
||||
model=ctx.model,
|
||||
messages=messages,
|
||||
tools=ctx.tools,
|
||||
stream=False,
|
||||
temperature=ctx.temperature,
|
||||
response_format=ctx.response_format,
|
||||
)
|
||||
completion = OpenAIChatCompletion(**inference_result.model_dump())
|
||||
|
||||
# Separate function vs non-function tool calls
|
||||
function_tool_calls = []
|
||||
non_function_tool_calls = []
|
||||
|
||||
for choice in completion.choices:
|
||||
if choice.message.tool_calls and tools:
|
||||
for tool_call in choice.message.tool_calls:
|
||||
if self._is_function_tool_call(tool_call, tools):
|
||||
function_tool_calls.append(tool_call)
|
||||
else:
|
||||
non_function_tool_calls.append(tool_call)
|
||||
|
||||
# Process response choices based on tool call types
|
||||
if function_tool_calls:
|
||||
# For function tool calls, use existing logic and return immediately
|
||||
current_output_messages = await self._process_response_choices(
|
||||
chat_response=completion,
|
||||
ctx=ctx,
|
||||
tools=tools,
|
||||
)
|
||||
output_messages.extend(current_output_messages)
|
||||
break
|
||||
elif non_function_tool_calls:
|
||||
# For non-function tool calls, execute them and continue loop
|
||||
for choice in completion.choices:
|
||||
tool_outputs, tool_response_messages = await self._execute_tool_calls_only(choice, ctx)
|
||||
output_messages.extend(tool_outputs)
|
||||
|
||||
# Add assistant message and tool responses to messages for next iteration
|
||||
messages.append(choice.message)
|
||||
messages.extend(tool_response_messages)
|
||||
|
||||
n_iter += 1
|
||||
if n_iter >= max_infer_iters:
|
||||
break
|
||||
|
||||
# Continue with next iteration of the loop
|
||||
continue
|
||||
else:
|
||||
# No tool calls - convert response to message and we're done
|
||||
for choice in completion.choices:
|
||||
output_messages.append(await _convert_chat_choice_to_response_message(choice))
|
||||
break
|
||||
|
||||
response = OpenAIResponseObject(
|
||||
created_at=completion.created,
|
||||
id=f"resp-{uuid.uuid4()}",
|
||||
model=model,
|
||||
object="response",
|
||||
status="completed",
|
||||
output=output_messages,
|
||||
text=text,
|
||||
)
|
||||
logger.debug(f"OpenAI Responses response: {response}")
|
||||
|
||||
# Store response if requested
|
||||
if store:
|
||||
await self._store_response(
|
||||
response=response,
|
||||
input=input,
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
async def _create_streaming_response(
|
||||
self,
|
||||
ctx: ChatCompletionContext,
|
||||
output_messages: list[OpenAIResponseOutput],
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
store: bool | None,
|
||||
text: OpenAIResponseText,
|
||||
tools: list[OpenAIResponseInputTool] | None,
|
||||
max_infer_iters: int | None,
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
# Create initial response and emit response.created immediately
|
||||
response_id = f"resp-{uuid.uuid4()}"
|
||||
created_at = int(time.time())
|
||||
|
@ -539,15 +408,13 @@ class OpenAIResponsesImpl:
|
|||
text=text,
|
||||
)
|
||||
|
||||
# Emit response.created immediately
|
||||
yield OpenAIResponseObjectStreamResponseCreated(response=initial_response)
|
||||
|
||||
# Implement tool execution loop for streaming - handle ALL inference rounds including the first
|
||||
n_iter = 0
|
||||
messages = ctx.messages.copy()
|
||||
|
||||
while True:
|
||||
current_inference_result = await self.inference_api.openai_chat_completion(
|
||||
completion_result = await self.inference_api.openai_chat_completion(
|
||||
model=ctx.model,
|
||||
messages=messages,
|
||||
tools=ctx.tools,
|
||||
|
@ -568,7 +435,7 @@ class OpenAIResponsesImpl:
|
|||
# Create a placeholder message item for delta events
|
||||
message_item_id = f"msg_{uuid.uuid4()}"
|
||||
|
||||
async for chunk in current_inference_result:
|
||||
async for chunk in completion_result:
|
||||
chat_response_id = chunk.id
|
||||
chunk_created = chunk.created
|
||||
chunk_model = chunk.model
|
||||
|
@ -628,49 +495,54 @@ class OpenAIResponsesImpl:
|
|||
model=chunk_model,
|
||||
)
|
||||
|
||||
# Separate function vs non-function tool calls
|
||||
function_tool_calls = []
|
||||
non_function_tool_calls = []
|
||||
|
||||
next_turn_messages = messages.copy()
|
||||
for choice in current_response.choices:
|
||||
next_turn_messages.append(choice.message)
|
||||
|
||||
if choice.message.tool_calls and tools:
|
||||
for tool_call in choice.message.tool_calls:
|
||||
if self._is_function_tool_call(tool_call, tools):
|
||||
if _is_function_tool_call(tool_call, tools):
|
||||
function_tool_calls.append(tool_call)
|
||||
else:
|
||||
non_function_tool_calls.append(tool_call)
|
||||
else:
|
||||
output_messages.append(await _convert_chat_choice_to_response_message(choice))
|
||||
|
||||
# Process response choices based on tool call types
|
||||
if function_tool_calls:
|
||||
# For function tool calls, use existing logic and break
|
||||
current_output_messages = await self._process_response_choices(
|
||||
chat_response=current_response,
|
||||
ctx=ctx,
|
||||
tools=tools,
|
||||
# execute non-function tool calls
|
||||
for tool_call in non_function_tool_calls:
|
||||
tool_call_log, tool_response_message = await self._execute_tool_call(tool_call, ctx)
|
||||
if tool_call_log:
|
||||
output_messages.append(tool_call_log)
|
||||
if tool_response_message:
|
||||
next_turn_messages.append(tool_response_message)
|
||||
|
||||
for tool_call in function_tool_calls:
|
||||
output_messages.append(
|
||||
OpenAIResponseOutputMessageFunctionToolCall(
|
||||
arguments=tool_call.function.arguments or "",
|
||||
call_id=tool_call.id,
|
||||
name=tool_call.function.name or "",
|
||||
id=f"fc_{uuid.uuid4()}",
|
||||
status="completed",
|
||||
)
|
||||
)
|
||||
output_messages.extend(current_output_messages)
|
||||
break
|
||||
elif non_function_tool_calls:
|
||||
# For non-function tool calls, execute them and continue loop
|
||||
for choice in current_response.choices:
|
||||
tool_outputs, tool_response_messages = await self._execute_tool_calls_only(choice, ctx)
|
||||
output_messages.extend(tool_outputs)
|
||||
|
||||
# Add assistant message and tool responses to messages for next iteration
|
||||
messages.append(choice.message)
|
||||
messages.extend(tool_response_messages)
|
||||
if not function_tool_calls and not non_function_tool_calls:
|
||||
break
|
||||
|
||||
if function_tool_calls:
|
||||
logger.info("Exiting inference loop since there is a function (client-side) tool call")
|
||||
break
|
||||
|
||||
n_iter += 1
|
||||
if n_iter >= (max_infer_iters or 10):
|
||||
if n_iter >= max_infer_iters:
|
||||
logger.info(f"Exiting inference loop since iteration count({n_iter}) exceeds {max_infer_iters=}")
|
||||
break
|
||||
|
||||
# Continue with next iteration of the loop
|
||||
continue
|
||||
else:
|
||||
# No tool calls - convert response to message and we're done
|
||||
for choice in current_response.choices:
|
||||
output_messages.append(await _convert_chat_choice_to_response_message(choice))
|
||||
break
|
||||
messages = next_turn_messages
|
||||
|
||||
# Create final response
|
||||
final_response = OpenAIResponseObject(
|
||||
|
@ -683,15 +555,15 @@ class OpenAIResponsesImpl:
|
|||
output=output_messages,
|
||||
)
|
||||
|
||||
# Emit response.completed
|
||||
yield OpenAIResponseObjectStreamResponseCompleted(response=final_response)
|
||||
|
||||
if store:
|
||||
await self._store_response(
|
||||
response=final_response,
|
||||
input=input,
|
||||
)
|
||||
|
||||
# Emit response.completed
|
||||
yield OpenAIResponseObjectStreamResponseCompleted(response=final_response)
|
||||
|
||||
async def _convert_response_tools_to_chat_tools(
|
||||
self, tools: list[OpenAIResponseInputTool]
|
||||
) -> tuple[
|
||||
|
@ -784,73 +656,6 @@ class OpenAIResponsesImpl:
|
|||
raise ValueError(f"Llama Stack OpenAI Responses does not yet support tool type: {input_tool.type}")
|
||||
return chat_tools, mcp_tool_to_server, mcp_list_message
|
||||
|
||||
async def _execute_tool_calls_only(
|
||||
self,
|
||||
choice: OpenAIChoice,
|
||||
ctx: ChatCompletionContext,
|
||||
) -> tuple[list[OpenAIResponseOutput], list[OpenAIMessageParam]]:
|
||||
"""Execute tool calls and return output messages and tool response messages for next inference."""
|
||||
output_messages: list[OpenAIResponseOutput] = []
|
||||
tool_response_messages: list[OpenAIMessageParam] = []
|
||||
|
||||
if not isinstance(choice.message, OpenAIAssistantMessageParam):
|
||||
return output_messages, tool_response_messages
|
||||
|
||||
if not choice.message.tool_calls:
|
||||
return output_messages, tool_response_messages
|
||||
|
||||
for tool_call in choice.message.tool_calls:
|
||||
tool_call_log, further_input = await self._execute_tool_call(tool_call, ctx)
|
||||
if tool_call_log:
|
||||
output_messages.append(tool_call_log)
|
||||
if further_input:
|
||||
tool_response_messages.append(further_input)
|
||||
|
||||
return output_messages, tool_response_messages
|
||||
|
||||
async def _execute_tool_and_return_final_output(
|
||||
self,
|
||||
choice: OpenAIChoice,
|
||||
ctx: ChatCompletionContext,
|
||||
) -> list[OpenAIResponseOutput]:
|
||||
output_messages: list[OpenAIResponseOutput] = []
|
||||
|
||||
if not isinstance(choice.message, OpenAIAssistantMessageParam):
|
||||
return output_messages
|
||||
|
||||
if not choice.message.tool_calls:
|
||||
return output_messages
|
||||
|
||||
next_turn_messages = ctx.messages.copy()
|
||||
|
||||
# Add the assistant message with tool_calls response to the messages list
|
||||
next_turn_messages.append(choice.message)
|
||||
|
||||
for tool_call in choice.message.tool_calls:
|
||||
# TODO: telemetry spans for tool calls
|
||||
tool_call_log, further_input = await self._execute_tool_call(tool_call, ctx)
|
||||
if tool_call_log:
|
||||
output_messages.append(tool_call_log)
|
||||
if further_input:
|
||||
next_turn_messages.append(further_input)
|
||||
|
||||
tool_results_chat_response = await self.inference_api.openai_chat_completion(
|
||||
model=ctx.model,
|
||||
messages=next_turn_messages,
|
||||
stream=ctx.stream,
|
||||
temperature=ctx.temperature,
|
||||
)
|
||||
# type cast to appease mypy: this is needed because we don't handle streaming properly :)
|
||||
tool_results_chat_response = cast(OpenAIChatCompletion, tool_results_chat_response)
|
||||
|
||||
# Huge TODO: these are NOT the final outputs, we must keep the loop going
|
||||
tool_final_outputs = [
|
||||
await _convert_chat_choice_to_response_message(choice) for choice in tool_results_chat_response.choices
|
||||
]
|
||||
# TODO: Wire in annotations with URLs, titles, etc to these output messages
|
||||
output_messages.extend(tool_final_outputs)
|
||||
return output_messages
|
||||
|
||||
async def _execute_tool_call(
|
||||
self,
|
||||
tool_call: OpenAIChatCompletionToolCall,
|
||||
|
@ -939,3 +744,15 @@ class OpenAIResponsesImpl:
|
|||
input_message = OpenAIToolMessageParam(content=text, tool_call_id=tool_call_id)
|
||||
|
||||
return message, input_message
|
||||
|
||||
|
||||
def _is_function_tool_call(
|
||||
tool_call: OpenAIChatCompletionToolCall,
|
||||
tools: list[OpenAIResponseInputTool],
|
||||
) -> bool:
|
||||
if not tool_call.function:
|
||||
return False
|
||||
for t in tools:
|
||||
if t.type == "function" and t.name == tool_call.function.name:
|
||||
return True
|
||||
return False
|
||||
|
|
|
@ -24,7 +24,7 @@ def available_providers() -> list[ProviderSpec]:
|
|||
"pandas",
|
||||
"scikit-learn",
|
||||
]
|
||||
+ kvstore_dependencies(),
|
||||
+ kvstore_dependencies(), # TODO make this dynamic based on the kvstore config
|
||||
module="llama_stack.providers.inline.agents.meta_reference",
|
||||
config_class="llama_stack.providers.inline.agents.meta_reference.MetaReferenceAgentsImplConfig",
|
||||
api_dependencies=[
|
||||
|
|
|
@ -345,21 +345,27 @@ class OllamaInferenceAdapter(
|
|||
model = await self.register_helper.register_model(model)
|
||||
except ValueError:
|
||||
pass # Ignore statically unknown model, will check live listing
|
||||
|
||||
if model.provider_resource_id is None:
|
||||
raise ValueError("Model provider_resource_id cannot be None")
|
||||
|
||||
if model.model_type == ModelType.embedding:
|
||||
logger.info(f"Pulling embedding model `{model.provider_resource_id}` if necessary...")
|
||||
# TODO: you should pull here only if the model is not found in a list
|
||||
response = await self.client.list()
|
||||
if model.provider_resource_id not in [m.model for m in response.models]:
|
||||
await self.client.pull(model.provider_resource_id)
|
||||
|
||||
# we use list() here instead of ps() -
|
||||
# - ps() only lists running models, not available models
|
||||
# - models not currently running are run by the ollama server as needed
|
||||
response = await self.client.list()
|
||||
available_models = [m["model"] for m in response["models"]]
|
||||
if model.provider_resource_id is None:
|
||||
raise ValueError("Model provider_resource_id cannot be None")
|
||||
available_models = [m.model for m in response.models]
|
||||
provider_resource_id = self.register_helper.get_provider_model_id(model.provider_resource_id)
|
||||
if provider_resource_id is None:
|
||||
provider_resource_id = model.provider_resource_id
|
||||
if provider_resource_id not in available_models:
|
||||
available_models_latest = [m["model"].split(":latest")[0] for m in response["models"]]
|
||||
available_models_latest = [m.model.split(":latest")[0] for m in response.models]
|
||||
if provider_resource_id in available_models_latest:
|
||||
logger.warning(
|
||||
f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'"
|
||||
|
|
|
@ -36,6 +36,10 @@ class RedisKVStoreConfig(CommonConfig):
|
|||
def url(self) -> str:
|
||||
return f"redis://{self.host}:{self.port}"
|
||||
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
return ["redis"]
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls):
|
||||
return {
|
||||
|
@ -53,6 +57,10 @@ class SqliteKVStoreConfig(CommonConfig):
|
|||
description="File path for the sqlite database",
|
||||
)
|
||||
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
return ["aiosqlite"]
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, db_name: str = "kvstore.db"):
|
||||
return {
|
||||
|
@ -100,6 +108,10 @@ class PostgresKVStoreConfig(CommonConfig):
|
|||
raise ValueError("Table name must be less than 63 characters")
|
||||
return v
|
||||
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
return ["psycopg2-binary"]
|
||||
|
||||
|
||||
class MongoDBKVStoreConfig(CommonConfig):
|
||||
type: Literal[KVStoreType.mongodb.value] = KVStoreType.mongodb.value
|
||||
|
@ -110,6 +122,10 @@ class MongoDBKVStoreConfig(CommonConfig):
|
|||
password: str | None = None
|
||||
collection_name: str = "llamastack_kvstore"
|
||||
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
return ["pymongo"]
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, collection_name: str = "llamastack_kvstore"):
|
||||
return {
|
||||
|
|
|
@ -10,6 +10,13 @@ from .config import KVStoreConfig, KVStoreType
|
|||
|
||||
|
||||
def kvstore_dependencies():
|
||||
"""
|
||||
Returns all possible kvstore dependencies for registry/provider specifications.
|
||||
|
||||
NOTE: For specific kvstore implementations, use config.pip_packages instead.
|
||||
This function returns the union of all dependencies for cases where the specific
|
||||
kvstore type is not known at declaration time (e.g., provider registries).
|
||||
"""
|
||||
return ["aiosqlite", "psycopg2-binary", "redis", "pymongo"]
|
||||
|
||||
|
||||
|
|
|
@ -21,4 +21,5 @@ distribution_spec:
|
|||
image_type: conda
|
||||
additional_pip_packages:
|
||||
- asyncpg
|
||||
- psycopg2-binary
|
||||
- sqlalchemy[asyncio]
|
||||
|
|
|
@ -186,8 +186,14 @@ class DistributionTemplate(BaseModel):
|
|||
additional_pip_packages: list[str] = []
|
||||
for run_config in self.run_configs.values():
|
||||
run_config_ = run_config.run_config(self.name, self.providers, self.container_image)
|
||||
|
||||
# TODO: This is a hack to get the dependencies for internal APIs into build
|
||||
# We should have a better way to do this by formalizing the concept of "internal" APIs
|
||||
# and providers, with a way to specify dependencies for them.
|
||||
if run_config_.inference_store:
|
||||
additional_pip_packages.extend(run_config_.inference_store.pip_packages)
|
||||
if run_config_.metadata_store:
|
||||
additional_pip_packages.extend(run_config_.metadata_store.pip_packages)
|
||||
|
||||
if self.additional_pip_packages:
|
||||
additional_pip_packages.extend(self.additional_pip_packages)
|
||||
|
|
|
@ -19,7 +19,7 @@
|
|||
"@radix-ui/react-tooltip": "^1.2.6",
|
||||
"class-variance-authority": "^0.7.1",
|
||||
"clsx": "^2.1.1",
|
||||
"llama-stack-client": "0.2.9",
|
||||
"llama-stack-client": "0.2.10",
|
||||
"lucide-react": "^0.510.0",
|
||||
"next": "15.3.2",
|
||||
"next-themes": "^0.4.6",
|
||||
|
|
|
@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|||
|
||||
[project]
|
||||
name = "llama_stack"
|
||||
version = "0.2.9"
|
||||
version = "0.2.10"
|
||||
authors = [{ name = "Meta Llama", email = "llama-oss@meta.com" }]
|
||||
description = "Llama Stack"
|
||||
readme = "README.md"
|
||||
|
@ -22,12 +22,13 @@ classifiers = [
|
|||
]
|
||||
dependencies = [
|
||||
"aiohttp",
|
||||
"fastapi>=0.115.0,<1.0",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface-hub",
|
||||
"jinja2>=3.1.6",
|
||||
"jsonschema",
|
||||
"llama-stack-client>=0.2.9",
|
||||
"llama-stack-client>=0.2.10",
|
||||
"openai>=1.66",
|
||||
"prompt-toolkit",
|
||||
"python-dotenv",
|
||||
|
@ -48,7 +49,7 @@ dependencies = [
|
|||
ui = [
|
||||
"streamlit",
|
||||
"pandas",
|
||||
"llama-stack-client>=0.2.9",
|
||||
"llama-stack-client>=0.2.10",
|
||||
"streamlit-option-menu",
|
||||
]
|
||||
|
||||
|
@ -67,7 +68,6 @@ dev = [
|
|||
"types-setuptools",
|
||||
"pre-commit",
|
||||
"uvicorn",
|
||||
"fastapi",
|
||||
"ruamel.yaml", # needed for openapi generator
|
||||
]
|
||||
# These are the dependencies required for running unit tests.
|
||||
|
@ -133,7 +133,8 @@ llama = "llama_stack.cli.llama:main"
|
|||
install-wheel-from-presigned = "llama_stack.cli.scripts.run:install_wheel_from_presigned"
|
||||
|
||||
[tool.setuptools.packages.find]
|
||||
include = ["llama_stack"]
|
||||
where = ["."]
|
||||
include = ["llama_stack", "llama_stack.*"]
|
||||
|
||||
[[tool.uv.index]]
|
||||
name = "pytorch-cpu"
|
||||
|
|
|
@ -42,6 +42,8 @@ ecdsa==0.19.1
|
|||
# via python-jose
|
||||
exceptiongroup==1.2.2 ; python_full_version < '3.11'
|
||||
# via anyio
|
||||
fastapi==0.115.8
|
||||
# via llama-stack
|
||||
filelock==3.17.0
|
||||
# via huggingface-hub
|
||||
fire==0.7.0
|
||||
|
@ -79,7 +81,7 @@ jsonschema==4.23.0
|
|||
# via llama-stack
|
||||
jsonschema-specifications==2024.10.1
|
||||
# via jsonschema
|
||||
llama-stack-client==0.2.9
|
||||
llama-stack-client==0.2.10
|
||||
# via llama-stack
|
||||
markdown-it-py==3.0.0
|
||||
# via rich
|
||||
|
@ -117,6 +119,7 @@ pyasn1==0.4.8
|
|||
# rsa
|
||||
pydantic==2.10.6
|
||||
# via
|
||||
# fastapi
|
||||
# llama-stack
|
||||
# llama-stack-client
|
||||
# openai
|
||||
|
@ -171,7 +174,9 @@ sniffio==1.3.1
|
|||
# llama-stack-client
|
||||
# openai
|
||||
starlette==0.45.3
|
||||
# via llama-stack
|
||||
# via
|
||||
# fastapi
|
||||
# llama-stack
|
||||
termcolor==2.5.0
|
||||
# via
|
||||
# fire
|
||||
|
@ -187,6 +192,7 @@ tqdm==4.67.1
|
|||
typing-extensions==4.12.2
|
||||
# via
|
||||
# anyio
|
||||
# fastapi
|
||||
# huggingface-hub
|
||||
# llama-stack-client
|
||||
# multidict
|
||||
|
|
|
@ -15,11 +15,6 @@ from pathlib import Path
|
|||
|
||||
from rich.progress import Progress, SpinnerColumn, TextColumn
|
||||
|
||||
from llama_stack.distribution.build import (
|
||||
SERVER_DEPENDENCIES,
|
||||
get_provider_dependencies,
|
||||
)
|
||||
|
||||
REPO_ROOT = Path(__file__).parent.parent
|
||||
|
||||
|
||||
|
@ -90,23 +85,6 @@ def check_for_changes(change_tracker: ChangedPathTracker) -> bool:
|
|||
return has_changes
|
||||
|
||||
|
||||
def collect_template_dependencies(template_dir: Path) -> tuple[str | None, list[str]]:
|
||||
try:
|
||||
module_name = f"llama_stack.templates.{template_dir.name}"
|
||||
module = importlib.import_module(module_name)
|
||||
|
||||
if template_func := getattr(module, "get_distribution_template", None):
|
||||
template = template_func()
|
||||
normal_deps, special_deps = get_provider_dependencies(template)
|
||||
# Combine all dependencies in order: normal deps, special deps, server deps
|
||||
all_deps = sorted(set(normal_deps + SERVER_DEPENDENCIES)) + sorted(set(special_deps))
|
||||
|
||||
return template.name, all_deps
|
||||
except Exception:
|
||||
return None, []
|
||||
return None, []
|
||||
|
||||
|
||||
def pre_import_templates(template_dirs: list[Path]) -> None:
|
||||
# Pre-import all template modules to avoid deadlocks.
|
||||
for template_dir in template_dirs:
|
||||
|
|
13
tests/Containerfile
Normal file
13
tests/Containerfile
Normal file
|
@ -0,0 +1,13 @@
|
|||
# Containerfile used to build our all in one ollama image to run tests in CI
|
||||
# podman build --platform linux/amd64 -f Containerfile -t ollama-with-models .
|
||||
#
|
||||
FROM --platform=linux/amd64 ollama/ollama:latest
|
||||
|
||||
# Start ollama and pull models in a single layer
|
||||
RUN ollama serve & \
|
||||
sleep 5 && \
|
||||
ollama pull llama3.2:3b-instruct-fp16 && \
|
||||
ollama pull all-minilm:latest
|
||||
|
||||
# Set the entrypoint to start ollama serve
|
||||
ENTRYPOINT ["ollama", "serve"]
|
|
@ -6,9 +6,15 @@
|
|||
|
||||
from io import BytesIO
|
||||
|
||||
import pytest
|
||||
|
||||
def test_openai_client_basic_operations(openai_client):
|
||||
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
||||
|
||||
|
||||
def test_openai_client_basic_operations(openai_client, client_with_models):
|
||||
"""Test basic file operations through OpenAI client."""
|
||||
if isinstance(client_with_models, LlamaStackAsLibraryClient):
|
||||
pytest.skip("OpenAI files are not supported when testing with library client yet.")
|
||||
client = openai_client
|
||||
|
||||
test_content = b"files test content"
|
||||
|
|
|
@ -80,6 +80,37 @@ def openai_responses_impl(mock_inference_api, mock_tool_groups_api, mock_tool_ru
|
|||
)
|
||||
|
||||
|
||||
async def fake_stream(fixture: str = "simple_chat_completion.yaml"):
|
||||
value = load_chat_completion_fixture(fixture)
|
||||
yield ChatCompletionChunk(
|
||||
id=value.id,
|
||||
choices=[
|
||||
Choice(
|
||||
index=0,
|
||||
delta=ChoiceDelta(
|
||||
content=c.message.content,
|
||||
role=c.message.role,
|
||||
tool_calls=[
|
||||
ChoiceDeltaToolCall(
|
||||
index=0,
|
||||
id=t.id,
|
||||
function=ChoiceDeltaToolCallFunction(
|
||||
name=t.function.name,
|
||||
arguments=t.function.arguments,
|
||||
),
|
||||
)
|
||||
for t in (c.message.tool_calls or [])
|
||||
],
|
||||
),
|
||||
)
|
||||
for c in value.choices
|
||||
],
|
||||
created=1,
|
||||
model=value.model,
|
||||
object="chat.completion.chunk",
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_openai_response_with_string_input(openai_responses_impl, mock_inference_api):
|
||||
"""Test creating an OpenAI response with a simple string input."""
|
||||
|
@ -88,8 +119,7 @@ async def test_create_openai_response_with_string_input(openai_responses_impl, m
|
|||
model = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
|
||||
# Load the chat completion fixture
|
||||
mock_chat_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
|
||||
mock_inference_api.openai_chat_completion.return_value = mock_chat_completion
|
||||
mock_inference_api.openai_chat_completion.return_value = fake_stream()
|
||||
|
||||
# Execute
|
||||
result = await openai_responses_impl.create_openai_response(
|
||||
|
@ -104,7 +134,7 @@ async def test_create_openai_response_with_string_input(openai_responses_impl, m
|
|||
messages=[OpenAIUserMessageParam(role="user", content="What is the capital of Ireland?", name=None)],
|
||||
response_format=OpenAIResponseFormatText(),
|
||||
tools=None,
|
||||
stream=False,
|
||||
stream=True,
|
||||
temperature=0.1,
|
||||
)
|
||||
openai_responses_impl.responses_store.store_response_object.assert_called_once()
|
||||
|
@ -121,20 +151,15 @@ async def test_create_openai_response_with_string_input_with_tools(openai_respon
|
|||
input_text = "What is the capital of Ireland?"
|
||||
model = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
|
||||
# Load the chat completion fixtures
|
||||
tool_call_completion = load_chat_completion_fixture("tool_call_completion.yaml")
|
||||
tool_response_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
|
||||
|
||||
mock_inference_api.openai_chat_completion.side_effect = [
|
||||
tool_call_completion,
|
||||
tool_response_completion,
|
||||
fake_stream("tool_call_completion.yaml"),
|
||||
fake_stream(),
|
||||
]
|
||||
|
||||
openai_responses_impl.tool_groups_api.get_tool.return_value = Tool(
|
||||
identifier="web_search",
|
||||
provider_id="client",
|
||||
toolgroup_id="web_search",
|
||||
tool_host="client",
|
||||
description="Search the web for information",
|
||||
parameters=[
|
||||
ToolParameter(name="query", parameter_type="string", description="The query to search for", required=True)
|
||||
|
@ -189,7 +214,7 @@ async def test_create_openai_response_with_tool_call_type_none(openai_responses_
|
|||
input_text = "How hot it is in San Francisco today?"
|
||||
model = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
|
||||
async def fake_stream():
|
||||
async def fake_stream_toolcall():
|
||||
yield ChatCompletionChunk(
|
||||
id="123",
|
||||
choices=[
|
||||
|
@ -212,7 +237,7 @@ async def test_create_openai_response_with_tool_call_type_none(openai_responses_
|
|||
object="chat.completion.chunk",
|
||||
)
|
||||
|
||||
mock_inference_api.openai_chat_completion.return_value = fake_stream()
|
||||
mock_inference_api.openai_chat_completion.return_value = fake_stream_toolcall()
|
||||
|
||||
# Execute
|
||||
result = await openai_responses_impl.create_openai_response(
|
||||
|
@ -271,7 +296,7 @@ async def test_create_openai_response_with_multiple_messages(openai_responses_im
|
|||
]
|
||||
model = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
|
||||
mock_inference_api.openai_chat_completion.return_value = load_chat_completion_fixture("simple_chat_completion.yaml")
|
||||
mock_inference_api.openai_chat_completion.return_value = fake_stream()
|
||||
|
||||
# Execute
|
||||
await openai_responses_impl.create_openai_response(
|
||||
|
@ -399,9 +424,7 @@ async def test_create_openai_response_with_instructions(openai_responses_impl, m
|
|||
model = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
instructions = "You are a geography expert. Provide concise answers."
|
||||
|
||||
# Load the chat completion fixture
|
||||
mock_chat_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
|
||||
mock_inference_api.openai_chat_completion.return_value = mock_chat_completion
|
||||
mock_inference_api.openai_chat_completion.return_value = fake_stream()
|
||||
|
||||
# Execute
|
||||
await openai_responses_impl.create_openai_response(
|
||||
|
@ -440,8 +463,7 @@ async def test_create_openai_response_with_instructions_and_multiple_messages(
|
|||
model = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
instructions = "You are a geography expert. Provide concise answers."
|
||||
|
||||
mock_chat_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
|
||||
mock_inference_api.openai_chat_completion.return_value = mock_chat_completion
|
||||
mock_inference_api.openai_chat_completion.return_value = fake_stream()
|
||||
|
||||
# Execute
|
||||
await openai_responses_impl.create_openai_response(
|
||||
|
@ -499,8 +521,8 @@ async def test_create_openai_response_with_instructions_and_previous_response(
|
|||
|
||||
model = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
instructions = "You are a geography expert. Provide concise answers."
|
||||
mock_chat_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
|
||||
mock_inference_api.openai_chat_completion.return_value = mock_chat_completion
|
||||
|
||||
mock_inference_api.openai_chat_completion.return_value = fake_stream()
|
||||
|
||||
# Execute
|
||||
await openai_responses_impl.create_openai_response(
|
||||
|
@ -674,8 +696,8 @@ async def test_store_response_uses_rehydrated_input_with_previous_response(
|
|||
|
||||
current_input = "Now what is 3+3?"
|
||||
model = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
mock_chat_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
|
||||
mock_inference_api.openai_chat_completion.return_value = mock_chat_completion
|
||||
|
||||
mock_inference_api.openai_chat_completion.return_value = fake_stream()
|
||||
|
||||
# Execute - Create response with previous_response_id
|
||||
result = await openai_responses_impl.create_openai_response(
|
||||
|
@ -732,9 +754,7 @@ async def test_create_openai_response_with_text_format(
|
|||
input_text = "How hot it is in San Francisco today?"
|
||||
model = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
|
||||
# Load the chat completion fixture
|
||||
mock_chat_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
|
||||
mock_inference_api.openai_chat_completion.return_value = mock_chat_completion
|
||||
mock_inference_api.openai_chat_completion.return_value = fake_stream()
|
||||
|
||||
# Execute
|
||||
_result = await openai_responses_impl.create_openai_response(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue