feat: New OpenAI compat embeddings API (#2314)
Some checks failed
Integration Tests / test-matrix (http, agents) (push) Failing after 9s
Integration Tests / test-matrix (http, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, inspect) (push) Failing after 9s
Integration Tests / test-matrix (library, post_training) (push) Failing after 15s
Integration Tests / test-matrix (library, providers) (push) Failing after 14s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 43s
Integration Tests / test-matrix (library, scoring) (push) Failing after 8s
Integration Tests / test-matrix (http, inference) (push) Failing after 46s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 8s
Integration Tests / test-matrix (library, agents) (push) Failing after 44s
Integration Tests / test-matrix (http, inspect) (push) Failing after 47s
Integration Tests / test-matrix (http, providers) (push) Failing after 45s
Integration Tests / test-matrix (library, datasets) (push) Failing after 45s
Integration Tests / test-matrix (http, post_training) (push) Failing after 46s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 47s
Integration Tests / test-matrix (http, datasets) (push) Failing after 49s
Test External Providers / test-external-providers (venv) (push) Failing after 6s
Update ReadTheDocs / update-readthedocs (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 7s
Unit Tests / unit-tests (3.10) (push) Failing after 8s
Unit Tests / unit-tests (3.11) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Pre-commit / pre-commit (push) Successful in 1m12s

# What does this PR do?
Adds a new endpoint that is compatible with OpenAI for embeddings api. 
`/openai/v1/embeddings`
Added providers for OpenAI, LiteLLM and SentenceTransformer. 


## Test Plan
```
LLAMA_STACK_CONFIG=http://localhost:8321 pytest -sv tests/integration/inference/test_openai_embeddings.py --embedding-model all-MiniLM-L6-v2,text-embedding-3-small,gemini/text-embedding-004
```
This commit is contained in:
Hardik Shah 2025-05-31 22:11:47 -07:00 committed by GitHub
parent 277f8690ef
commit b21050935e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
21 changed files with 981 additions and 0 deletions

View file

@ -783,6 +783,48 @@ class OpenAICompletion(BaseModel):
object: Literal["text_completion"] = "text_completion"
@json_schema_type
class OpenAIEmbeddingData(BaseModel):
"""A single embedding data object from an OpenAI-compatible embeddings response.
:param object: The object type, which will be "embedding"
:param embedding: The embedding vector as a list of floats (when encoding_format="float") or as a base64-encoded string (when encoding_format="base64")
:param index: The index of the embedding in the input list
"""
object: Literal["embedding"] = "embedding"
embedding: list[float] | str
index: int
@json_schema_type
class OpenAIEmbeddingUsage(BaseModel):
"""Usage information for an OpenAI-compatible embeddings response.
:param prompt_tokens: The number of tokens in the input
:param total_tokens: The total number of tokens used
"""
prompt_tokens: int
total_tokens: int
@json_schema_type
class OpenAIEmbeddingsResponse(BaseModel):
"""Response from an OpenAI-compatible embeddings request.
:param object: The object type, which will be "list"
:param data: List of embedding data objects
:param model: The model that was used to generate the embeddings
:param usage: Usage information
"""
object: Literal["list"] = "list"
data: list[OpenAIEmbeddingData]
model: str
usage: OpenAIEmbeddingUsage
class ModelStore(Protocol):
async def get_model(self, identifier: str) -> Model: ...
@ -1076,6 +1118,26 @@ class InferenceProvider(Protocol):
"""
...
@webmethod(route="/openai/v1/embeddings", method="POST")
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
"""Generate OpenAI-compatible embeddings for the given input using the specified model.
:param model: The identifier of the model to use. The model must be an embedding model registered with Llama Stack and available via the /models endpoint.
:param input: Input text to embed, encoded as a string or array of strings. To embed multiple inputs in a single request, pass an array of strings.
:param encoding_format: (Optional) The format to return the embeddings in. Can be either "float" or "base64". Defaults to "float".
:param dimensions: (Optional) The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
:param user: (Optional) A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
:returns: An OpenAIEmbeddingsResponse containing the embeddings.
"""
...
class Inference(InferenceProvider):
"""Llama Stack Inference API for generating completions, chat completions, and embeddings.

View file

@ -45,6 +45,7 @@ from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingsResponse,
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
@ -546,6 +547,34 @@ class InferenceRouter(Inference):
await self.store.store_chat_completion(response, messages)
return response
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
logger.debug(
f"InferenceRouter.openai_embeddings: {model=}, input_type={type(input)}, {encoding_format=}, {dimensions=}",
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ValueError(f"Model '{model}' not found")
if model_obj.model_type != ModelType.embedding:
raise ValueError(f"Model '{model}' is not an embedding model")
params = dict(
model=model_obj.identifier,
input=input,
encoding_format=encoding_format,
dimensions=dimensions,
user=user,
)
provider = self.routing_table.get_provider_impl(model_obj.identifier)
return await provider.openai_embeddings(**params)
async def list_chat_completions(
self,
after: str | None = None,

View file

@ -40,6 +40,7 @@ from llama_stack.apis.inference import (
JsonSchemaResponseFormat,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
@ -410,6 +411,16 @@ class VLLMInferenceImpl(
) -> EmbeddingsResponse:
raise NotImplementedError()
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def chat_completion(
self,
model_id: str,

View file

@ -22,6 +22,7 @@ from llama_stack.apis.inference import (
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
@ -197,3 +198,13 @@ class BedrockInferenceAdapter(
response_body = json.loads(response.get("body").read())
embeddings.append(response_body.get("embedding"))
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()

View file

@ -21,6 +21,7 @@ from llama_stack.apis.inference import (
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
@ -194,3 +195,13 @@ class CerebrasInferenceAdapter(
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
raise NotImplementedError()
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()

View file

@ -20,6 +20,7 @@ from llama_stack.apis.inference import (
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
@ -152,3 +153,13 @@ class DatabricksInferenceAdapter(
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
raise NotImplementedError()
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()

View file

@ -37,6 +37,7 @@ from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingsResponse,
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
@ -286,6 +287,16 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
embeddings = [data.embedding for data in response.data]
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def openai_completion(
self,
model: str,

View file

@ -29,6 +29,7 @@ from llama_stack.apis.inference import (
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
@ -238,6 +239,16 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
#
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def chat_completion(
self,
model_id: str,

View file

@ -32,6 +32,7 @@ from llama_stack.apis.inference import (
JsonSchemaResponseFormat,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
@ -370,6 +371,16 @@ class OllamaInferenceAdapter(
return model
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def openai_completion(
self,
model: str,

View file

@ -14,6 +14,9 @@ from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingData,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
@ -38,6 +41,7 @@ logger = logging.getLogger(__name__)
# | batch_chat_completion | LiteLLMOpenAIMixin |
# | openai_completion | AsyncOpenAI |
# | openai_chat_completion | AsyncOpenAI |
# | openai_embeddings | AsyncOpenAI |
#
class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
def __init__(self, config: OpenAIConfig) -> None:
@ -171,3 +175,51 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
user=user,
)
return await self._openai_client.chat.completions.create(**params)
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
model_id = (await self.model_store.get_model(model)).provider_resource_id
if model_id.startswith("openai/"):
model_id = model_id[len("openai/") :]
# Prepare parameters for OpenAI embeddings API
params = {
"model": model_id,
"input": input,
}
if encoding_format is not None:
params["encoding_format"] = encoding_format
if dimensions is not None:
params["dimensions"] = dimensions
if user is not None:
params["user"] = user
# Call OpenAI embeddings API
response = await self._openai_client.embeddings.create(**params)
data = []
for i, embedding_data in enumerate(response.data):
data.append(
OpenAIEmbeddingData(
embedding=embedding_data.embedding,
index=i,
)
)
usage = OpenAIEmbeddingUsage(
prompt_tokens=response.usage.prompt_tokens,
total_tokens=response.usage.total_tokens,
)
return OpenAIEmbeddingsResponse(
data=data,
model=response.model,
usage=usage,
)

View file

@ -19,6 +19,7 @@ from llama_stack.apis.inference import (
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
@ -210,6 +211,16 @@ class PassthroughInferenceAdapter(Inference):
task_type=task_type,
)
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def openai_completion(
self,
model: str,

View file

@ -8,6 +8,7 @@ from collections.abc import AsyncGenerator
from openai import OpenAI
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.inference.inference import OpenAIEmbeddingsResponse
# from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
@ -134,3 +135,13 @@ class RunpodInferenceAdapter(
task_type: Optional[EmbeddingTaskType] = None,
) -> EmbeddingsResponse:
raise NotImplementedError()
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()

View file

@ -23,6 +23,7 @@ from llama_stack.apis.inference import (
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
ResponseFormatType,
SamplingParams,
@ -291,6 +292,16 @@ class _HfAdapter(
) -> EmbeddingsResponse:
raise NotImplementedError()
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
class TGIAdapter(_HfAdapter):
async def initialize(self, config: TGIImplConfig) -> None:

View file

@ -23,6 +23,7 @@ from llama_stack.apis.inference import (
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
ResponseFormatType,
SamplingParams,
@ -267,6 +268,16 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
embeddings = [item.embedding for item in r.data]
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def openai_completion(
self,
model: str,

View file

@ -38,6 +38,7 @@ from llama_stack.apis.inference import (
JsonSchemaResponseFormat,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
@ -507,6 +508,16 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
embeddings = [data.embedding for data in response.data]
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def openai_completion(
self,
model: str,

View file

@ -21,6 +21,7 @@ from llama_stack.apis.inference import (
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
@ -260,6 +261,16 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
) -> EmbeddingsResponse:
raise NotImplementedError("embedding is not supported for watsonx")
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
async def openai_completion(
self,
model: str,

View file

@ -4,7 +4,9 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import logging
import struct
from typing import TYPE_CHECKING
if TYPE_CHECKING:
@ -15,6 +17,9 @@ from llama_stack.apis.inference import (
EmbeddingTaskType,
InterleavedContentItem,
ModelStore,
OpenAIEmbeddingData,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
TextTruncation,
)
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
@ -43,6 +48,50 @@ class SentenceTransformerEmbeddingMixin:
)
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
# Convert input to list format if it's a single string
input_list = [input] if isinstance(input, str) else input
if not input_list:
raise ValueError("Empty list not supported")
# Get the model and generate embeddings
model_obj = await self.model_store.get_model(model)
embedding_model = self._load_sentence_transformer_model(model_obj.provider_resource_id)
embeddings = embedding_model.encode(input_list, show_progress_bar=False)
# Convert embeddings to the requested format
data = []
for i, embedding in enumerate(embeddings):
if encoding_format == "base64":
# Convert float array to base64 string
float_bytes = struct.pack(f"{len(embedding)}f", *embedding)
embedding_value = base64.b64encode(float_bytes).decode("ascii")
else:
# Default to float format
embedding_value = embedding.tolist()
data.append(
OpenAIEmbeddingData(
embedding=embedding_value,
index=i,
)
)
# Not returning actual token usage
usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
return OpenAIEmbeddingsResponse(
data=data,
model=model_obj.provider_resource_id,
usage=usage,
)
def _load_sentence_transformer_model(self, model: str) -> "SentenceTransformer":
global EMBEDDING_MODELS

View file

@ -4,6 +4,8 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import struct
from collections.abc import AsyncGenerator, AsyncIterator
from typing import Any
@ -35,6 +37,9 @@ from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingData,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
@ -264,6 +269,52 @@ class LiteLLMOpenAIMixin(
embeddings = [data["embedding"] for data in response["data"]]
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
model_obj = await self.model_store.get_model(model)
# Convert input to list if it's a string
input_list = [input] if isinstance(input, str) else input
# Call litellm embedding function
# litellm.drop_params = True
response = litellm.embedding(
model=self.get_litellm_model_name(model_obj.provider_resource_id),
input=input_list,
api_key=self.get_api_key(),
api_base=self.api_base,
dimensions=dimensions,
)
# Convert response to OpenAI format
data = []
for i, embedding_data in enumerate(response["data"]):
# we encode to base64 if the encoding format is base64 in the request
if encoding_format == "base64":
byte_data = b"".join(struct.pack("f", f) for f in embedding_data["embedding"])
embedding = base64.b64encode(byte_data).decode("utf-8")
else:
embedding = embedding_data["embedding"]
data.append(OpenAIEmbeddingData(embedding=embedding, index=i))
usage = OpenAIEmbeddingUsage(
prompt_tokens=response["usage"]["prompt_tokens"],
total_tokens=response["usage"]["total_tokens"],
)
return OpenAIEmbeddingsResponse(
data=data,
model=model_obj.provider_resource_id,
usage=usage,
)
async def openai_completion(
self,
model: str,