mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
Merge 8f0413e743
into 48a551ecbc
This commit is contained in:
commit
b3271c6c9e
14 changed files with 905 additions and 17 deletions
15
docs/_static/llama-stack-spec.html
vendored
15
docs/_static/llama-stack-spec.html
vendored
|
@ -13616,6 +13616,10 @@
|
|||
"unit": {
|
||||
"type": "string",
|
||||
"description": "The unit of measurement for the metric value"
|
||||
},
|
||||
"metric_type": {
|
||||
"$ref": "#/components/schemas/MetricType",
|
||||
"description": "The type of metric (optional, inferred if not provided for backwards compatibility)"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -13631,6 +13635,17 @@
|
|||
"title": "MetricEvent",
|
||||
"description": "A metric event containing a measured value."
|
||||
},
|
||||
"MetricType": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"counter",
|
||||
"up_down_counter",
|
||||
"histogram",
|
||||
"gauge"
|
||||
],
|
||||
"title": "MetricType",
|
||||
"description": "The type of metric being recorded."
|
||||
},
|
||||
"SpanEndPayload": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
|
13
docs/_static/llama-stack-spec.yaml
vendored
13
docs/_static/llama-stack-spec.yaml
vendored
|
@ -10122,6 +10122,10 @@ components:
|
|||
type: string
|
||||
description: >-
|
||||
The unit of measurement for the metric value
|
||||
metric_type:
|
||||
$ref: '#/components/schemas/MetricType'
|
||||
description: >-
|
||||
The type of metric (optional, inferred if not provided for backwards compatibility)
|
||||
additionalProperties: false
|
||||
required:
|
||||
- trace_id
|
||||
|
@ -10134,6 +10138,15 @@ components:
|
|||
title: MetricEvent
|
||||
description: >-
|
||||
A metric event containing a measured value.
|
||||
MetricType:
|
||||
type: string
|
||||
enum:
|
||||
- counter
|
||||
- up_down_counter
|
||||
- histogram
|
||||
- gauge
|
||||
title: MetricType
|
||||
description: The type of metric being recorded.
|
||||
SpanEndPayload:
|
||||
type: object
|
||||
properties:
|
||||
|
|
|
@ -90,6 +90,21 @@ class EventType(Enum):
|
|||
METRIC = "metric"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class MetricType(Enum):
|
||||
"""The type of metric being recorded.
|
||||
:cvar COUNTER: A counter metric that only increases (e.g., requests_total)
|
||||
:cvar UP_DOWN_COUNTER: A counter that can increase or decrease (e.g., active_connections)
|
||||
:cvar HISTOGRAM: A histogram metric for measuring distributions (e.g., request_duration_seconds)
|
||||
:cvar GAUGE: A gauge metric for point-in-time values (e.g., cpu_usage_percent)
|
||||
"""
|
||||
|
||||
COUNTER = "counter"
|
||||
UP_DOWN_COUNTER = "up_down_counter"
|
||||
HISTOGRAM = "histogram"
|
||||
GAUGE = "gauge"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class LogSeverity(Enum):
|
||||
"""The severity level of a log message.
|
||||
|
@ -143,12 +158,14 @@ class MetricEvent(EventCommon):
|
|||
:param metric: The name of the metric being measured
|
||||
:param value: The numeric value of the metric measurement
|
||||
:param unit: The unit of measurement for the metric value
|
||||
:param metric_type: The type of metric (optional, inferred if not provided for backwards compatibility)
|
||||
"""
|
||||
|
||||
type: Literal[EventType.METRIC] = EventType.METRIC
|
||||
metric: str # this would be an enum
|
||||
value: int | float
|
||||
unit: str
|
||||
metric_type: MetricType | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
@ -4,17 +4,20 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import copy
|
||||
import json
|
||||
import re
|
||||
import secrets
|
||||
import string
|
||||
import time
|
||||
import uuid
|
||||
import warnings
|
||||
from collections.abc import AsyncGenerator
|
||||
from datetime import UTC, datetime
|
||||
|
||||
import httpx
|
||||
from opentelemetry.trace import get_current_span
|
||||
|
||||
from llama_stack.apis.agents import (
|
||||
AgentConfig,
|
||||
|
@ -60,6 +63,7 @@ from llama_stack.apis.inference import (
|
|||
UserMessage,
|
||||
)
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.telemetry import MetricEvent, MetricType, Telemetry
|
||||
from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.core.datatypes import AccessRule
|
||||
|
@ -97,6 +101,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
tool_runtime_api: ToolRuntime,
|
||||
tool_groups_api: ToolGroups,
|
||||
vector_io_api: VectorIO,
|
||||
telemetry_api: Telemetry | None,
|
||||
persistence_store: KVStore,
|
||||
created_at: str,
|
||||
policy: list[AccessRule],
|
||||
|
@ -106,6 +111,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
self.inference_api = inference_api
|
||||
self.safety_api = safety_api
|
||||
self.vector_io_api = vector_io_api
|
||||
self.telemetry_api = telemetry_api
|
||||
self.storage = AgentPersistence(agent_id, persistence_store, policy)
|
||||
self.tool_runtime_api = tool_runtime_api
|
||||
self.tool_groups_api = tool_groups_api
|
||||
|
@ -118,6 +124,9 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
output_shields=agent_config.output_shields,
|
||||
)
|
||||
|
||||
# Initialize workflow start time to None
|
||||
self._workflow_start_time: float | None = None
|
||||
|
||||
def turn_to_messages(self, turn: Turn) -> list[Message]:
|
||||
messages = []
|
||||
|
||||
|
@ -167,6 +176,72 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
async def create_session(self, name: str) -> str:
|
||||
return await self.storage.create_session(name)
|
||||
|
||||
def _emit_metric(
|
||||
self,
|
||||
metric_name: str,
|
||||
value: int | float,
|
||||
unit: str,
|
||||
attributes: dict[str, str] | None = None,
|
||||
metric_type: MetricType | None = None,
|
||||
) -> None:
|
||||
"""Emit a single metric event"""
|
||||
logger.info(f"_emit_metric called: {metric_name} = {value} {unit}")
|
||||
|
||||
if not self.telemetry_api:
|
||||
logger.warning(f"No telemetry_api available for metric {metric_name}")
|
||||
return
|
||||
|
||||
span = get_current_span()
|
||||
if not span:
|
||||
logger.warning(f"No current span available for metric {metric_name}")
|
||||
return
|
||||
|
||||
context = span.get_span_context()
|
||||
metric = MetricEvent(
|
||||
trace_id=format(context.trace_id, "x"),
|
||||
span_id=format(context.span_id, "x"),
|
||||
metric=metric_name,
|
||||
value=value,
|
||||
timestamp=time.time(),
|
||||
unit=unit,
|
||||
attributes={"agent_id": self.agent_id, **(attributes or {})},
|
||||
metric_type=metric_type,
|
||||
)
|
||||
|
||||
# Create task with name for better debugging and capture any async errors
|
||||
task_name = f"metric-{metric_name}-{self.agent_id}"
|
||||
logger.info(f"Creating telemetry task: {task_name}")
|
||||
task = asyncio.create_task(self.telemetry_api.log_event(metric), name=task_name)
|
||||
|
||||
def _on_metric_task_done(t: asyncio.Task) -> None:
|
||||
try:
|
||||
exc = t.exception()
|
||||
except asyncio.CancelledError:
|
||||
logger.debug("Metric task %s was cancelled", task_name)
|
||||
return
|
||||
if exc is not None:
|
||||
logger.warning("Metric task %s failed: %s", task_name, exc)
|
||||
|
||||
# Only add callback if task creation succeeded (not None from mocking)
|
||||
if task is not None:
|
||||
task.add_done_callback(_on_metric_task_done)
|
||||
|
||||
def _track_step(self):
|
||||
logger.info("_track_step called")
|
||||
self._emit_metric("llama_stack_agent_steps_total", 1, "1", metric_type=MetricType.COUNTER)
|
||||
|
||||
def _track_workflow(self, status: str, duration: float):
|
||||
logger.info(f"_track_workflow called: status={status}, duration={duration:.2f}s")
|
||||
self._emit_metric("llama_stack_agent_workflows_total", 1, "1", {"status": status}, MetricType.COUNTER)
|
||||
self._emit_metric(
|
||||
"llama_stack_agent_workflow_duration_seconds", duration, "s", metric_type=MetricType.HISTOGRAM
|
||||
)
|
||||
|
||||
def _track_tool(self, tool_name: str):
|
||||
logger.info(f"_track_tool called: {tool_name}")
|
||||
normalized_name = "rag" if tool_name == "knowledge_search" else tool_name
|
||||
self._emit_metric("llama_stack_agent_tool_calls_total", 1, "1", {"tool": normalized_name}, MetricType.COUNTER)
|
||||
|
||||
async def get_messages_from_turns(self, turns: list[Turn]) -> list[Message]:
|
||||
messages = []
|
||||
if self.agent_config.instructions != "":
|
||||
|
@ -201,6 +276,9 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
if self.agent_config.name:
|
||||
span.set_attribute("agent_name", self.agent_config.name)
|
||||
|
||||
# Set workflow start time for resume operations
|
||||
self._workflow_start_time = time.time()
|
||||
|
||||
await self._initialize_tools()
|
||||
async for chunk in self._run_turn(request):
|
||||
yield chunk
|
||||
|
@ -212,6 +290,9 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
) -> AsyncGenerator:
|
||||
assert request.stream is True, "Non-streaming not supported"
|
||||
|
||||
# Track workflow start time for metrics
|
||||
self._workflow_start_time = time.time()
|
||||
|
||||
is_resume = isinstance(request, AgentTurnResumeRequest)
|
||||
session_info = await self.storage.get_session_info(request.session_id)
|
||||
if session_info is None:
|
||||
|
@ -313,6 +394,10 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
)
|
||||
)
|
||||
else:
|
||||
# Track workflow completion when turn is actually complete
|
||||
workflow_duration = time.time() - (self._workflow_start_time or time.time())
|
||||
self._track_workflow("completed", workflow_duration)
|
||||
|
||||
chunk = AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseTurnCompletePayload(
|
||||
|
@ -726,6 +811,10 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
)
|
||||
)
|
||||
|
||||
# Track step execution metric
|
||||
self._track_step()
|
||||
self._track_tool(tool_call.tool_name)
|
||||
|
||||
# Add the result message to input_messages for the next iteration
|
||||
input_messages.append(result_message)
|
||||
|
||||
|
@ -900,6 +989,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
},
|
||||
)
|
||||
logger.debug(f"tool call {tool_name_str} completed with result: {result}")
|
||||
|
||||
return result
|
||||
|
||||
|
||||
|
|
|
@ -38,6 +38,7 @@ from llama_stack.apis.inference import (
|
|||
UserMessage,
|
||||
)
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.telemetry import Telemetry
|
||||
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.core.datatypes import AccessRule
|
||||
|
@ -64,6 +65,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
tool_runtime_api: ToolRuntime,
|
||||
tool_groups_api: ToolGroups,
|
||||
policy: list[AccessRule],
|
||||
telemetry_api: Telemetry | None = None,
|
||||
):
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
|
@ -71,6 +73,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
self.safety_api = safety_api
|
||||
self.tool_runtime_api = tool_runtime_api
|
||||
self.tool_groups_api = tool_groups_api
|
||||
self.telemetry_api = telemetry_api
|
||||
|
||||
self.in_memory_store = InmemoryKVStoreImpl()
|
||||
self.openai_responses_impl: OpenAIResponsesImpl | None = None
|
||||
|
@ -130,6 +133,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
vector_io_api=self.vector_io_api,
|
||||
tool_runtime_api=self.tool_runtime_api,
|
||||
tool_groups_api=self.tool_groups_api,
|
||||
telemetry_api=self.telemetry_api,
|
||||
persistence_store=(
|
||||
self.persistence_store if agent_info.enable_session_persistence else self.in_memory_store
|
||||
),
|
||||
|
|
|
@ -12,7 +12,9 @@ from opentelemetry import metrics, trace
|
|||
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
|
||||
from opentelemetry.sdk.metrics import MeterProvider
|
||||
from opentelemetry.sdk.metrics._internal.aggregation import ExplicitBucketHistogramAggregation
|
||||
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
|
||||
from opentelemetry.sdk.metrics.view import View
|
||||
from opentelemetry.sdk.resources import Resource
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.trace.export import BatchSpanProcessor
|
||||
|
@ -24,6 +26,7 @@ from llama_stack.apis.telemetry import (
|
|||
MetricEvent,
|
||||
MetricLabelMatcher,
|
||||
MetricQueryType,
|
||||
MetricType,
|
||||
QueryCondition,
|
||||
QueryMetricsResponse,
|
||||
QuerySpanTreeResponse,
|
||||
|
@ -56,6 +59,7 @@ _GLOBAL_STORAGE: dict[str, dict[str | int, Any]] = {
|
|||
"counters": {},
|
||||
"gauges": {},
|
||||
"up_down_counters": {},
|
||||
"histograms": {},
|
||||
}
|
||||
_global_lock = threading.Lock()
|
||||
_TRACER_PROVIDER = None
|
||||
|
@ -108,7 +112,17 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
|
||||
if TelemetrySink.OTEL_METRIC in self.config.sinks:
|
||||
metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
|
||||
metric_provider = MeterProvider(resource=resource, metric_readers=[metric_reader])
|
||||
|
||||
# decent default buckets for agent workflow timings
|
||||
hist_buckets = [0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 25.0, 50.0, 100.0]
|
||||
views = [
|
||||
View(
|
||||
instrument_type=metrics.Histogram,
|
||||
aggregation=ExplicitBucketHistogramAggregation(boundaries=hist_buckets),
|
||||
)
|
||||
]
|
||||
|
||||
metric_provider = MeterProvider(resource=resource, metric_readers=[metric_reader], views=views)
|
||||
metrics.set_meter_provider(metric_provider)
|
||||
|
||||
if TelemetrySink.SQLITE in self.config.sinks:
|
||||
|
@ -138,8 +152,6 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
self._log_metric(event)
|
||||
elif isinstance(event, StructuredLogEvent):
|
||||
self._log_structured(event, ttl_seconds)
|
||||
else:
|
||||
raise ValueError(f"Unknown event type: {event}")
|
||||
|
||||
async def query_metrics(
|
||||
self,
|
||||
|
@ -209,7 +221,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
_GLOBAL_STORAGE["counters"][name] = self.meter.create_counter(
|
||||
name=name,
|
||||
unit=unit,
|
||||
description=f"Counter for {name}",
|
||||
description=name.replace("_", " "),
|
||||
)
|
||||
return _GLOBAL_STORAGE["counters"][name]
|
||||
|
||||
|
@ -219,7 +231,7 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
_GLOBAL_STORAGE["gauges"][name] = self.meter.create_gauge(
|
||||
name=name,
|
||||
unit=unit,
|
||||
description=f"Gauge for {name}",
|
||||
description=name.replace("_", " "),
|
||||
)
|
||||
return _GLOBAL_STORAGE["gauges"][name]
|
||||
|
||||
|
@ -258,12 +270,19 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
# Log to OpenTelemetry meter if available
|
||||
if self.meter is None:
|
||||
return
|
||||
if isinstance(event.value, int):
|
||||
counter = self._get_or_create_counter(event.metric, event.unit)
|
||||
counter.add(event.value, attributes=event.attributes)
|
||||
elif isinstance(event.value, float):
|
||||
|
||||
if event.metric_type == MetricType.HISTOGRAM:
|
||||
histogram = self._get_or_create_histogram(
|
||||
event.metric,
|
||||
event.unit,
|
||||
)
|
||||
histogram.record(event.value, attributes=event.attributes)
|
||||
elif event.metric_type == MetricType.UP_DOWN_COUNTER:
|
||||
up_down_counter = self._get_or_create_up_down_counter(event.metric, event.unit)
|
||||
up_down_counter.add(event.value, attributes=event.attributes)
|
||||
else:
|
||||
counter = self._get_or_create_counter(event.metric, event.unit)
|
||||
counter.add(event.value, attributes=event.attributes)
|
||||
|
||||
def _get_or_create_up_down_counter(self, name: str, unit: str) -> metrics.UpDownCounter:
|
||||
assert self.meter is not None
|
||||
|
@ -271,10 +290,20 @@ class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
|||
_GLOBAL_STORAGE["up_down_counters"][name] = self.meter.create_up_down_counter(
|
||||
name=name,
|
||||
unit=unit,
|
||||
description=f"UpDownCounter for {name}",
|
||||
description=name.replace("_", " "),
|
||||
)
|
||||
return _GLOBAL_STORAGE["up_down_counters"][name]
|
||||
|
||||
def _get_or_create_histogram(self, name: str, unit: str) -> metrics.Histogram:
|
||||
assert self.meter is not None
|
||||
if name not in _GLOBAL_STORAGE["histograms"]:
|
||||
_GLOBAL_STORAGE["histograms"][name] = self.meter.create_histogram(
|
||||
name=name,
|
||||
unit=unit,
|
||||
description=name.replace("_", " "),
|
||||
)
|
||||
return _GLOBAL_STORAGE["histograms"][name]
|
||||
|
||||
def _log_structured(self, event: StructuredLogEvent, ttl_seconds: int) -> None:
|
||||
with self._lock:
|
||||
span_id = int(event.span_id, 16)
|
||||
|
|
|
@ -35,6 +35,7 @@ def available_providers() -> list[ProviderSpec]:
|
|||
Api.vector_dbs,
|
||||
Api.tool_runtime,
|
||||
Api.tool_groups,
|
||||
Api.telemetry,
|
||||
],
|
||||
description="Meta's reference implementation of an agent system that can use tools, access vector databases, and perform complex reasoning tasks.",
|
||||
),
|
||||
|
|
|
@ -25,8 +25,8 @@ classifiers = [
|
|||
]
|
||||
dependencies = [
|
||||
"aiohttp",
|
||||
"fastapi>=0.115.0,<1.0", # server
|
||||
"fire", # for MCP in LLS client
|
||||
"fastapi>=0.115.0,<1.0", # server
|
||||
"fire", # for MCP in LLS client
|
||||
"httpx",
|
||||
"huggingface-hub>=0.34.0,<1.0",
|
||||
"jinja2>=3.1.6",
|
||||
|
@ -43,12 +43,12 @@ dependencies = [
|
|||
"tiktoken",
|
||||
"pillow",
|
||||
"h11>=0.16.0",
|
||||
"python-multipart>=0.0.20", # For fastapi Form
|
||||
"uvicorn>=0.34.0", # server
|
||||
"opentelemetry-sdk>=1.30.0", # server
|
||||
"python-multipart>=0.0.20", # For fastapi Form
|
||||
"uvicorn>=0.34.0", # server
|
||||
"opentelemetry-sdk>=1.30.0", # server
|
||||
"opentelemetry-exporter-otlp-proto-http>=1.30.0", # server
|
||||
"aiosqlite>=0.21.0", # server - for metadata store
|
||||
"asyncpg", # for metadata store
|
||||
"aiosqlite>=0.21.0", # server - for metadata store
|
||||
"asyncpg", # for metadata store
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
|
|
170
tests/integration/agents/conftest.py
Normal file
170
tests/integration/agents/conftest.py
Normal file
|
@ -0,0 +1,170 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator, Callable
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.inference import ToolDefinition
|
||||
from llama_stack.apis.tools import ToolInvocationResult
|
||||
from llama_stack.providers.inline.agents.meta_reference.agent_instance import ChatAgent
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.config import (
|
||||
TelemetryConfig,
|
||||
TelemetrySink,
|
||||
)
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import (
|
||||
TelemetryAdapter,
|
||||
)
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
from llama_stack.providers.utils.kvstore.sqlite.sqlite import SqliteKVStoreImpl
|
||||
from llama_stack.providers.utils.telemetry import tracing as telemetry_tracing
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def make_agent_fixture():
|
||||
def _make(telemetry, kvstore) -> ChatAgent:
|
||||
agent = ChatAgent(
|
||||
agent_id="test-agent",
|
||||
agent_config=Mock(),
|
||||
inference_api=Mock(),
|
||||
safety_api=Mock(),
|
||||
tool_runtime_api=Mock(),
|
||||
tool_groups_api=Mock(),
|
||||
vector_io_api=Mock(),
|
||||
telemetry_api=telemetry,
|
||||
persistence_store=kvstore,
|
||||
created_at="2025-01-01T00:00:00Z",
|
||||
policy=[],
|
||||
)
|
||||
agent.agent_config.client_tools = []
|
||||
agent.agent_config.max_infer_iters = 5
|
||||
agent.input_shields = []
|
||||
agent.output_shields = []
|
||||
agent.tool_defs = [
|
||||
ToolDefinition(tool_name="web_search", description="", parameters={}),
|
||||
ToolDefinition(tool_name="knowledge_search", description="", parameters={}),
|
||||
]
|
||||
agent.tool_name_to_args = {}
|
||||
|
||||
# Stub tool runtime invoke_tool
|
||||
async def _mock_invoke_tool(
|
||||
*args: Any,
|
||||
tool_name: str | None = None,
|
||||
kwargs: dict | None = None,
|
||||
**extra: Any,
|
||||
):
|
||||
return ToolInvocationResult(content="Tool execution result")
|
||||
|
||||
agent.tool_runtime_api.invoke_tool = _mock_invoke_tool
|
||||
return agent
|
||||
|
||||
return _make
|
||||
|
||||
|
||||
def _chat_stream(tool_name: str | None, content: str = ""):
|
||||
from llama_stack.apis.common.content_types import (
|
||||
TextDelta,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponseEvent,
|
||||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
StopReason,
|
||||
)
|
||||
from llama_stack.models.llama.datatypes import ToolCall
|
||||
|
||||
async def gen():
|
||||
# Start
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
delta=TextDelta(text=""),
|
||||
)
|
||||
)
|
||||
|
||||
# Content
|
||||
if content:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=TextDelta(text=content),
|
||||
)
|
||||
)
|
||||
|
||||
# Tool call if specified
|
||||
if tool_name:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
tool_call=ToolCall(call_id="call_0", tool_name=tool_name, arguments={}),
|
||||
parse_status=ToolCallParseStatus.succeeded,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# Complete
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta=TextDelta(text=""),
|
||||
stop_reason=StopReason.end_of_turn,
|
||||
)
|
||||
)
|
||||
|
||||
return gen()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def telemetry(tmp_path: Path) -> AsyncGenerator[TelemetryAdapter, None]:
|
||||
db_path = tmp_path / "trace_store.db"
|
||||
cfg = TelemetryConfig(
|
||||
sinks=[TelemetrySink.CONSOLE, TelemetrySink.SQLITE],
|
||||
sqlite_db_path=str(db_path),
|
||||
)
|
||||
telemetry = TelemetryAdapter(cfg, deps={})
|
||||
telemetry_tracing.setup_logger(telemetry)
|
||||
try:
|
||||
yield telemetry
|
||||
finally:
|
||||
await telemetry.shutdown()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def kvstore(tmp_path: Path) -> SqliteKVStoreImpl:
|
||||
kv_path = tmp_path / "agent_kvstore.db"
|
||||
kv = SqliteKVStoreImpl(SqliteKVStoreConfig(db_path=str(kv_path)))
|
||||
await kv.initialize()
|
||||
return kv
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def span_patch():
|
||||
with (
|
||||
patch("llama_stack.providers.inline.agents.meta_reference.agent_instance.get_current_span") as mock_span,
|
||||
patch(
|
||||
"llama_stack.providers.utils.telemetry.tracing.generate_span_id",
|
||||
return_value="0000000000000abc",
|
||||
),
|
||||
):
|
||||
mock_span.return_value = Mock(get_span_context=Mock(return_value=Mock(trace_id=0x123, span_id=0xABC)))
|
||||
yield
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def make_completion_fn() -> Callable[[str | None, str], Callable]:
|
||||
def _factory(tool_name: str | None = None, content: str = "") -> Callable:
|
||||
async def chat_completion(*args: Any, **kwargs: Any):
|
||||
return _chat_stream(tool_name, content)
|
||||
|
||||
return chat_completion
|
||||
|
||||
return _factory
|
83
tests/integration/agents/test_agent_metrics_integration.py
Normal file
83
tests/integration/agents/test_agent_metrics_integration.py
Normal file
|
@ -0,0 +1,83 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.providers.utils.telemetry import tracing as telemetry_tracing
|
||||
|
||||
|
||||
class TestAgentMetricsIntegration:
|
||||
async def test_agent_metrics_end_to_end(
|
||||
self: Any,
|
||||
telemetry: Any,
|
||||
kvstore: Any,
|
||||
make_agent_fixture: Any,
|
||||
span_patch: Any,
|
||||
make_completion_fn: Any,
|
||||
) -> None:
|
||||
from llama_stack.apis.inference import (
|
||||
SamplingParams,
|
||||
UserMessage,
|
||||
)
|
||||
|
||||
agent: Any = make_agent_fixture(telemetry, kvstore)
|
||||
|
||||
session_id = await agent.create_session("s")
|
||||
sampling_params = SamplingParams(max_tokens=64)
|
||||
|
||||
# single trace: plain, knowledge_search, web_search
|
||||
await telemetry_tracing.start_trace("agent_metrics")
|
||||
agent.inference_api.chat_completion = make_completion_fn(None, "Hello! I can help you with that.")
|
||||
async for _ in agent.run(
|
||||
session_id,
|
||||
"t1",
|
||||
[UserMessage(content="Hello")],
|
||||
sampling_params,
|
||||
stream=True,
|
||||
):
|
||||
pass
|
||||
agent.inference_api.chat_completion = make_completion_fn("knowledge_search", "")
|
||||
async for _ in agent.run(
|
||||
session_id,
|
||||
"t2",
|
||||
[UserMessage(content="Please search knowledge")],
|
||||
sampling_params,
|
||||
stream=True,
|
||||
):
|
||||
pass
|
||||
agent.inference_api.chat_completion = make_completion_fn("web_search", "")
|
||||
async for _ in agent.run(
|
||||
session_id,
|
||||
"t3",
|
||||
[UserMessage(content="Please search web")],
|
||||
sampling_params,
|
||||
stream=True,
|
||||
):
|
||||
pass
|
||||
await telemetry_tracing.end_trace()
|
||||
|
||||
# Poll briefly to avoid flake with async persistence
|
||||
tool_labels: set[str] = set()
|
||||
for _ in range(10):
|
||||
resp = await telemetry.query_metrics("llama_stack_agent_tool_calls_total", start_time=0, end_time=None)
|
||||
tool_labels.clear()
|
||||
for series in getattr(resp, "data", []) or []:
|
||||
for lbl in getattr(series, "labels", []) or []:
|
||||
name = getattr(lbl, "name", None) or getattr(lbl, "key", None)
|
||||
value = getattr(lbl, "value", None)
|
||||
if name == "tool" and value:
|
||||
tool_labels.add(value)
|
||||
|
||||
# Look for both web_search AND some form of knowledge search
|
||||
if ("web_search" in tool_labels) and ("rag" in tool_labels or "knowledge_search" in tool_labels):
|
||||
break
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
# More descriptive assertion
|
||||
assert bool(tool_labels & {"web_search", "rag", "knowledge_search"}), (
|
||||
f"Expected tool calls not found. Got: {tool_labels}"
|
||||
)
|
5
tests/unit/providers/agents/__init__.py
Normal file
5
tests/unit/providers/agents/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
212
tests/unit/providers/agents/test_agent_metrics.py
Normal file
212
tests/unit/providers/agents/test_agent_metrics.py
Normal file
|
@ -0,0 +1,212 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
from unittest.mock import AsyncMock, Mock
|
||||
|
||||
import pytest
|
||||
from opentelemetry.trace import SpanContext, TraceFlags
|
||||
|
||||
from llama_stack.providers.inline.agents.meta_reference.agent_instance import ChatAgent
|
||||
|
||||
|
||||
class FakeSpan:
|
||||
def __init__(self, trace_id: int = 123, span_id: int = 456):
|
||||
self._context = SpanContext(
|
||||
trace_id=trace_id,
|
||||
span_id=span_id,
|
||||
is_remote=False,
|
||||
trace_flags=TraceFlags(0x01),
|
||||
)
|
||||
|
||||
def get_span_context(self):
|
||||
return self._context
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent_with_telemetry():
|
||||
"""Create a real ChatAgent with telemetry API"""
|
||||
telemetry_api = AsyncMock()
|
||||
|
||||
agent = ChatAgent(
|
||||
agent_id="test-agent",
|
||||
agent_config=Mock(),
|
||||
inference_api=Mock(),
|
||||
safety_api=Mock(),
|
||||
tool_runtime_api=Mock(),
|
||||
tool_groups_api=Mock(),
|
||||
vector_io_api=Mock(),
|
||||
telemetry_api=telemetry_api,
|
||||
persistence_store=Mock(),
|
||||
created_at="2025-01-01T00:00:00Z",
|
||||
policy=[],
|
||||
)
|
||||
return agent
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent_without_telemetry():
|
||||
"""Create a real ChatAgent without telemetry API"""
|
||||
agent = ChatAgent(
|
||||
agent_id="test-agent",
|
||||
agent_config=Mock(),
|
||||
inference_api=Mock(),
|
||||
safety_api=Mock(),
|
||||
tool_runtime_api=Mock(),
|
||||
tool_groups_api=Mock(),
|
||||
vector_io_api=Mock(),
|
||||
telemetry_api=None,
|
||||
persistence_store=Mock(),
|
||||
created_at="2025-01-01T00:00:00Z",
|
||||
policy=[],
|
||||
)
|
||||
return agent
|
||||
|
||||
|
||||
class TestAgentMetrics:
|
||||
def test_step_execution_metrics(self, agent_with_telemetry, monkeypatch):
|
||||
"""Test that step execution metrics are emitted correctly"""
|
||||
fake_span = FakeSpan()
|
||||
monkeypatch.setattr(
|
||||
"llama_stack.providers.inline.agents.meta_reference.agent_instance.get_current_span", lambda: fake_span
|
||||
)
|
||||
|
||||
# Capture the metric instead of actually creating async task
|
||||
captured_metrics = []
|
||||
|
||||
async def capture_metric(metric):
|
||||
captured_metrics.append(metric)
|
||||
|
||||
monkeypatch.setattr(agent_with_telemetry.telemetry_api, "log_event", capture_metric)
|
||||
|
||||
def mock_create_task(coro, *, name=None):
|
||||
return asyncio.run(coro)
|
||||
|
||||
monkeypatch.setattr(
|
||||
"llama_stack.providers.inline.agents.meta_reference.agent_instance.asyncio.create_task", mock_create_task
|
||||
)
|
||||
|
||||
agent_with_telemetry._track_step()
|
||||
|
||||
assert len(captured_metrics) == 1
|
||||
metric = captured_metrics[0]
|
||||
assert metric.metric == "llama_stack_agent_steps_total"
|
||||
assert metric.value == 1
|
||||
assert metric.unit == "1"
|
||||
assert metric.attributes["agent_id"] == "test-agent"
|
||||
|
||||
def test_workflow_completion_metrics(self, agent_with_telemetry, monkeypatch):
|
||||
"""Test that workflow completion metrics are emitted correctly"""
|
||||
fake_span = FakeSpan()
|
||||
monkeypatch.setattr(
|
||||
"llama_stack.providers.inline.agents.meta_reference.agent_instance.get_current_span", lambda: fake_span
|
||||
)
|
||||
|
||||
captured_metrics = []
|
||||
|
||||
async def capture_metric(metric):
|
||||
captured_metrics.append(metric)
|
||||
|
||||
monkeypatch.setattr(agent_with_telemetry.telemetry_api, "log_event", capture_metric)
|
||||
|
||||
def mock_create_task(coro, *, name=None):
|
||||
return asyncio.run(coro)
|
||||
|
||||
monkeypatch.setattr(
|
||||
"llama_stack.providers.inline.agents.meta_reference.agent_instance.asyncio.create_task", mock_create_task
|
||||
)
|
||||
|
||||
agent_with_telemetry._track_workflow("completed", 2.5)
|
||||
|
||||
assert len(captured_metrics) == 2
|
||||
|
||||
# Check workflow count metric
|
||||
count_metric = captured_metrics[0]
|
||||
assert count_metric.metric == "llama_stack_agent_workflows_total"
|
||||
assert count_metric.value == 1
|
||||
assert count_metric.attributes["status"] == "completed"
|
||||
|
||||
# Check duration metric
|
||||
duration_metric = captured_metrics[1]
|
||||
assert duration_metric.metric == "llama_stack_agent_workflow_duration_seconds"
|
||||
assert duration_metric.value == 2.5
|
||||
assert duration_metric.unit == "s"
|
||||
|
||||
def test_tool_usage_metrics(self, agent_with_telemetry, monkeypatch):
|
||||
"""Test that tool usage metrics are emitted correctly"""
|
||||
fake_span = FakeSpan()
|
||||
monkeypatch.setattr(
|
||||
"llama_stack.providers.inline.agents.meta_reference.agent_instance.get_current_span", lambda: fake_span
|
||||
)
|
||||
|
||||
captured_metrics = []
|
||||
|
||||
async def capture_metric(metric):
|
||||
captured_metrics.append(metric)
|
||||
|
||||
monkeypatch.setattr(agent_with_telemetry.telemetry_api, "log_event", capture_metric)
|
||||
|
||||
def mock_create_task(coro, *, name=None):
|
||||
return asyncio.run(coro)
|
||||
|
||||
monkeypatch.setattr(
|
||||
"llama_stack.providers.inline.agents.meta_reference.agent_instance.asyncio.create_task", mock_create_task
|
||||
)
|
||||
|
||||
agent_with_telemetry._track_tool("web_search")
|
||||
|
||||
assert len(captured_metrics) == 1
|
||||
metric = captured_metrics[0]
|
||||
assert metric.metric == "llama_stack_agent_tool_calls_total"
|
||||
assert metric.attributes["tool"] == "web_search"
|
||||
|
||||
def test_knowledge_search_tool_mapping(self, agent_with_telemetry, monkeypatch):
|
||||
"""Test that knowledge_search tool is mapped to rag"""
|
||||
fake_span = FakeSpan()
|
||||
monkeypatch.setattr(
|
||||
"llama_stack.providers.inline.agents.meta_reference.agent_instance.get_current_span", lambda: fake_span
|
||||
)
|
||||
|
||||
captured_metrics = []
|
||||
|
||||
async def capture_metric(metric):
|
||||
captured_metrics.append(metric)
|
||||
|
||||
monkeypatch.setattr(agent_with_telemetry.telemetry_api, "log_event", capture_metric)
|
||||
|
||||
def mock_create_task(coro, *, name=None):
|
||||
return asyncio.run(coro)
|
||||
|
||||
monkeypatch.setattr(
|
||||
"llama_stack.providers.inline.agents.meta_reference.agent_instance.asyncio.create_task", mock_create_task
|
||||
)
|
||||
|
||||
agent_with_telemetry._track_tool("knowledge_search")
|
||||
|
||||
assert len(captured_metrics) == 1
|
||||
metric = captured_metrics[0]
|
||||
assert metric.attributes["tool"] == "rag"
|
||||
|
||||
def test_no_telemetry_api(self, agent_without_telemetry):
|
||||
"""Test that methods work gracefully when telemetry_api is None"""
|
||||
# These should not crash
|
||||
agent_without_telemetry._track_step()
|
||||
agent_without_telemetry._track_workflow("failed", 1.0)
|
||||
agent_without_telemetry._track_tool("web_search")
|
||||
|
||||
def test_no_active_span(self, agent_with_telemetry, monkeypatch):
|
||||
"""Test that methods work gracefully when no span is active"""
|
||||
monkeypatch.setattr(
|
||||
"llama_stack.providers.inline.agents.meta_reference.agent_instance.get_current_span", lambda: None
|
||||
)
|
||||
|
||||
# These should not crash and should not call telemetry
|
||||
agent_with_telemetry._track_step()
|
||||
agent_with_telemetry._track_workflow("failed", 1.0)
|
||||
agent_with_telemetry._track_tool("web_search")
|
||||
|
||||
# Telemetry should not have been called
|
||||
agent_with_telemetry.telemetry_api.log_event.assert_not_called()
|
5
tests/unit/providers/telemetry/__init__.py
Normal file
5
tests/unit/providers/telemetry/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
244
tests/unit/providers/telemetry/test_agent_metrics_histogram.py
Normal file
244
tests/unit/providers/telemetry/test_agent_metrics_histogram.py
Normal file
|
@ -0,0 +1,244 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from unittest.mock import Mock
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.telemetry import MetricEvent, MetricType
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.config import TelemetryConfig
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import TelemetryAdapter
|
||||
|
||||
|
||||
class TestAgentMetricsHistogram:
|
||||
"""Tests for agent histogram metrics"""
|
||||
|
||||
@pytest.fixture
|
||||
def config(self):
|
||||
return TelemetryConfig(service_name="test-service", sinks=[])
|
||||
|
||||
@pytest.fixture
|
||||
def adapter(self, config):
|
||||
adapter = TelemetryAdapter(config, {})
|
||||
adapter.meter = Mock() # skip otel setup
|
||||
return adapter
|
||||
|
||||
def test_histogram_creation(self, adapter):
|
||||
mock_hist = Mock()
|
||||
adapter.meter.create_histogram.return_value = mock_hist
|
||||
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
|
||||
result = adapter._get_or_create_histogram("test_histogram", "s")
|
||||
|
||||
assert result == mock_hist
|
||||
adapter.meter.create_histogram.assert_called_once_with(
|
||||
name="test_histogram",
|
||||
unit="s",
|
||||
description="test histogram",
|
||||
)
|
||||
assert _GLOBAL_STORAGE["histograms"]["test_histogram"] == mock_hist
|
||||
|
||||
def test_histogram_reuse(self, adapter):
|
||||
mock_hist = Mock()
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {"existing_histogram": mock_hist}
|
||||
|
||||
result = adapter._get_or_create_histogram("existing_histogram", "ms")
|
||||
|
||||
assert result == mock_hist
|
||||
adapter.meter.create_histogram.assert_not_called()
|
||||
|
||||
def test_workflow_duration_histogram(self, adapter):
|
||||
mock_hist = Mock()
|
||||
adapter.meter.create_histogram.return_value = mock_hist
|
||||
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
|
||||
event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="llama_stack_agent_workflow_duration_seconds",
|
||||
value=15.7,
|
||||
timestamp=1234567890.0,
|
||||
unit="s",
|
||||
attributes={"agent_id": "test-agent"},
|
||||
metric_type=MetricType.HISTOGRAM,
|
||||
)
|
||||
|
||||
adapter._log_metric(event)
|
||||
|
||||
adapter.meter.create_histogram.assert_called_once_with(
|
||||
name="llama_stack_agent_workflow_duration_seconds",
|
||||
unit="s",
|
||||
description="llama stack agent workflow duration seconds",
|
||||
)
|
||||
mock_hist.record.assert_called_once_with(15.7, attributes={"agent_id": "test-agent"})
|
||||
|
||||
def test_duration_buckets_configured_via_views(self, adapter):
|
||||
mock_hist = Mock()
|
||||
adapter.meter.create_histogram.return_value = mock_hist
|
||||
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
|
||||
event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="custom_duration_seconds",
|
||||
value=5.2,
|
||||
timestamp=1234567890.0,
|
||||
unit="s",
|
||||
attributes={},
|
||||
metric_type=MetricType.HISTOGRAM,
|
||||
)
|
||||
|
||||
adapter._log_metric(event)
|
||||
|
||||
# buckets configured via otel views, not passed to create_histogram
|
||||
mock_hist.record.assert_called_once_with(5.2, attributes={})
|
||||
|
||||
def test_non_duration_uses_counter(self, adapter):
|
||||
mock_counter = Mock()
|
||||
adapter.meter.create_counter.return_value = mock_counter
|
||||
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["counters"] = {}
|
||||
|
||||
event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="llama_stack_agent_workflows_total",
|
||||
value=1,
|
||||
timestamp=1234567890.0,
|
||||
unit="1",
|
||||
attributes={"agent_id": "test-agent", "status": "completed"},
|
||||
)
|
||||
|
||||
adapter._log_metric(event)
|
||||
|
||||
adapter.meter.create_counter.assert_called_once()
|
||||
adapter.meter.create_histogram.assert_not_called()
|
||||
mock_counter.add.assert_called_once_with(1, attributes={"agent_id": "test-agent", "status": "completed"})
|
||||
|
||||
def test_no_meter_doesnt_crash(self, adapter):
|
||||
adapter.meter = None
|
||||
|
||||
event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="test_duration_seconds",
|
||||
value=1.0,
|
||||
timestamp=1234567890.0,
|
||||
unit="s",
|
||||
attributes={},
|
||||
)
|
||||
|
||||
adapter._log_metric(event) # shouldn't crash
|
||||
|
||||
def test_histogram_vs_counter_by_type(self, adapter):
|
||||
mock_hist = Mock()
|
||||
mock_counter = Mock()
|
||||
adapter.meter.create_histogram.return_value = mock_hist
|
||||
adapter.meter.create_counter.return_value = mock_counter
|
||||
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
_GLOBAL_STORAGE["counters"] = {}
|
||||
|
||||
# histogram metric
|
||||
hist_event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="workflow_duration_seconds",
|
||||
value=1.0,
|
||||
timestamp=1234567890.0,
|
||||
unit="s",
|
||||
attributes={},
|
||||
metric_type=MetricType.HISTOGRAM,
|
||||
)
|
||||
adapter._log_metric(hist_event)
|
||||
mock_hist.record.assert_called()
|
||||
|
||||
# counter metric (default type)
|
||||
counter_event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="workflow_total",
|
||||
value=1,
|
||||
timestamp=1234567890.0,
|
||||
unit="1",
|
||||
attributes={},
|
||||
)
|
||||
adapter._log_metric(counter_event)
|
||||
mock_counter.add.assert_called()
|
||||
|
||||
def test_storage_separation(self, adapter):
|
||||
mock_hist = Mock()
|
||||
mock_counter = Mock()
|
||||
adapter.meter.create_histogram.return_value = mock_hist
|
||||
adapter.meter.create_counter.return_value = mock_counter
|
||||
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
_GLOBAL_STORAGE["counters"] = {}
|
||||
|
||||
# create both types
|
||||
hist_event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="test_duration_seconds",
|
||||
value=1.0,
|
||||
timestamp=1234567890.0,
|
||||
unit="s",
|
||||
attributes={},
|
||||
metric_type=MetricType.HISTOGRAM,
|
||||
)
|
||||
counter_event = MetricEvent(
|
||||
trace_id="123",
|
||||
span_id="456",
|
||||
metric="test_counter",
|
||||
value=1,
|
||||
timestamp=1234567890.0,
|
||||
unit="1",
|
||||
attributes={},
|
||||
)
|
||||
|
||||
adapter._log_metric(hist_event)
|
||||
adapter._log_metric(counter_event)
|
||||
|
||||
# check they're stored separately
|
||||
assert "test_duration_seconds" in _GLOBAL_STORAGE["histograms"]
|
||||
assert "test_counter" in _GLOBAL_STORAGE["counters"]
|
||||
assert "test_duration_seconds" not in _GLOBAL_STORAGE["counters"]
|
||||
assert "test_counter" not in _GLOBAL_STORAGE["histograms"]
|
||||
|
||||
def test_histogram_uses_views_for_buckets(self, adapter):
|
||||
mock_hist = Mock()
|
||||
adapter.meter.create_histogram.return_value = mock_hist
|
||||
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
|
||||
|
||||
_GLOBAL_STORAGE["histograms"] = {}
|
||||
|
||||
result = adapter._get_or_create_histogram("test_histogram", "s")
|
||||
|
||||
# buckets come from otel views, not create_histogram params
|
||||
adapter.meter.create_histogram.assert_called_once_with(
|
||||
name="test_histogram",
|
||||
unit="s",
|
||||
description="test histogram",
|
||||
)
|
||||
assert result == mock_hist
|
Loading…
Add table
Add a link
Reference in a new issue