mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-26 07:38:03 +00:00
feat: add auto-generated CI documentation pre-commit hook (#2890)
Our CI is entirely undocumented, this commit adds a README.md file with a table of the current CI and what is does --------- Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
This commit is contained in:
parent
7f834339ba
commit
b381ed6d64
93 changed files with 495 additions and 477 deletions
|
|
@ -5,7 +5,6 @@
|
|||
# the root directory of this source tree.
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
from typing import Any
|
||||
from urllib.parse import urlparse
|
||||
|
||||
|
|
@ -20,6 +19,7 @@ from llama_stack.apis.vector_io import (
|
|||
QueryChunksResponse,
|
||||
VectorIO,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
|
|
@ -32,8 +32,6 @@ from llama_stack.providers.utils.memory.vector_store import (
|
|||
|
||||
from .config import ChromaVectorIOConfig as RemoteChromaVectorIOConfig
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
ChromaClientType = chromadb.api.AsyncClientAPI | chromadb.api.ClientAPI
|
||||
|
||||
VERSION = "v3"
|
||||
|
|
@ -43,6 +41,8 @@ OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:chroma:{VERSION}::"
|
|||
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:chroma:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:chroma:{VERSION}::"
|
||||
|
||||
logger = get_logger(__name__, category="core")
|
||||
|
||||
|
||||
# this is a helper to allow us to use async and non-async chroma clients interchangeably
|
||||
async def maybe_await(result):
|
||||
|
|
@ -92,7 +92,7 @@ class ChromaIndex(EmbeddingIndex):
|
|||
doc = json.loads(doc)
|
||||
chunk = Chunk(**doc)
|
||||
except Exception:
|
||||
log.exception(f"Failed to parse document: {doc}")
|
||||
logger.exception(f"Failed to parse document: {doc}")
|
||||
continue
|
||||
|
||||
score = 1.0 / float(dist) if dist != 0 else float("inf")
|
||||
|
|
@ -137,7 +137,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
inference_api: Api.inference,
|
||||
files_api: Files | None,
|
||||
) -> None:
|
||||
log.info(f"Initializing ChromaVectorIOAdapter with url: {config}")
|
||||
logger.info(f"Initializing ChromaVectorIOAdapter with url: {config}")
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.client = None
|
||||
|
|
@ -150,7 +150,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self.vector_db_store = self.kvstore
|
||||
|
||||
if isinstance(self.config, RemoteChromaVectorIOConfig):
|
||||
log.info(f"Connecting to Chroma server at: {self.config.url}")
|
||||
logger.info(f"Connecting to Chroma server at: {self.config.url}")
|
||||
url = self.config.url.rstrip("/")
|
||||
parsed = urlparse(url)
|
||||
|
||||
|
|
@ -159,7 +159,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
|
||||
self.client = await chromadb.AsyncHttpClient(host=parsed.hostname, port=parsed.port)
|
||||
else:
|
||||
log.info(f"Connecting to Chroma local db at: {self.config.db_path}")
|
||||
logger.info(f"Connecting to Chroma local db at: {self.config.db_path}")
|
||||
self.client = chromadb.PersistentClient(path=self.config.db_path)
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
|
|
@ -182,7 +182,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
if vector_db_id not in self.cache:
|
||||
log.warning(f"Vector DB {vector_db_id} not found")
|
||||
logger.warning(f"Vector DB {vector_db_id} not found")
|
||||
return
|
||||
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue