mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-26 00:41:59 +00:00
feat: add auto-generated CI documentation pre-commit hook (#2890)
Our CI is entirely undocumented, this commit adds a README.md file with a table of the current CI and what is does --------- Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
This commit is contained in:
parent
7f834339ba
commit
b381ed6d64
93 changed files with 495 additions and 477 deletions
|
|
@ -5,7 +5,6 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
|
|
@ -24,6 +23,7 @@ from llama_stack.apis.vector_io import (
|
|||
VectorStoreChunkingStrategy,
|
||||
VectorStoreFileObject,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
|
||||
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
|
||||
|
|
@ -35,13 +35,14 @@ from llama_stack.providers.utils.memory.vector_store import (
|
|||
|
||||
from .config import QdrantVectorIOConfig as RemoteQdrantVectorIOConfig
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
CHUNK_ID_KEY = "_chunk_id"
|
||||
|
||||
# KV store prefixes for vector databases
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_dbs:qdrant:{VERSION}::"
|
||||
|
||||
logger = get_logger(__name__, category="core")
|
||||
|
||||
|
||||
def convert_id(_id: str) -> str:
|
||||
"""
|
||||
|
|
@ -96,7 +97,7 @@ class QdrantIndex(EmbeddingIndex):
|
|||
points_selector=models.PointIdsList(points=[convert_id(chunk_id)]),
|
||||
)
|
||||
except Exception as e:
|
||||
log.error(f"Error deleting chunk {chunk_id} from Qdrant collection {self.collection_name}: {e}")
|
||||
logger.error(f"Error deleting chunk {chunk_id} from Qdrant collection {self.collection_name}: {e}")
|
||||
raise
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
|
|
@ -118,7 +119,7 @@ class QdrantIndex(EmbeddingIndex):
|
|||
try:
|
||||
chunk = Chunk(**point.payload["chunk_content"])
|
||||
except Exception:
|
||||
log.exception("Failed to parse chunk")
|
||||
logger.exception("Failed to parse chunk")
|
||||
continue
|
||||
|
||||
chunks.append(chunk)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue