mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-02 20:40:36 +00:00
Folder restructure for evals/datasets/scoring (#419)
* rename evals related stuff * fix datasetio * fix scoring test * localfs -> LocalFS * refactor scoring * refactor scoring * remove 8b_correctness scoring_fn from tests * tests w/ eval params * scoring fn braintrust fixture * import
This commit is contained in:
parent
2b7d70ba86
commit
b4416b72fd
37 changed files with 141 additions and 100 deletions
133
llama_stack/providers/inline/datasetio/localfs/datasetio.py
Normal file
133
llama_stack/providers/inline/datasetio/localfs/datasetio.py
Normal file
|
@ -0,0 +1,133 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import List, Optional
|
||||
|
||||
import pandas
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
from llama_stack.apis.datasetio import * # noqa: F403
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
|
||||
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
||||
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
||||
|
||||
from .config import LocalFSDatasetIOConfig
|
||||
|
||||
|
||||
class BaseDataset(ABC):
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
@abstractmethod
|
||||
def __len__(self) -> int:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def __getitem__(self, idx):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def load(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
@dataclass
|
||||
class DatasetInfo:
|
||||
dataset_def: DatasetDef
|
||||
dataset_impl: BaseDataset
|
||||
|
||||
|
||||
class PandasDataframeDataset(BaseDataset):
|
||||
def __init__(self, dataset_def: DatasetDef, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.dataset_def = dataset_def
|
||||
self.df = None
|
||||
|
||||
def __len__(self) -> int:
|
||||
assert self.df is not None, "Dataset not loaded. Please call .load() first"
|
||||
return len(self.df)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
assert self.df is not None, "Dataset not loaded. Please call .load() first"
|
||||
if isinstance(idx, slice):
|
||||
return self.df.iloc[idx].to_dict(orient="records")
|
||||
else:
|
||||
return self.df.iloc[idx].to_dict()
|
||||
|
||||
def _validate_dataset_schema(self, df) -> pandas.DataFrame:
|
||||
# note that we will drop any columns in dataset that are not in the schema
|
||||
df = df[self.dataset_def.dataset_schema.keys()]
|
||||
# check all columns in dataset schema are present
|
||||
assert len(df.columns) == len(self.dataset_def.dataset_schema)
|
||||
# TODO: type checking against column types in dataset schema
|
||||
return df
|
||||
|
||||
def load(self) -> None:
|
||||
if self.df is not None:
|
||||
return
|
||||
|
||||
df = get_dataframe_from_url(self.dataset_def.url)
|
||||
if df is None:
|
||||
raise ValueError(f"Failed to load dataset from {self.dataset_def.url}")
|
||||
|
||||
self.df = self._validate_dataset_schema(df)
|
||||
|
||||
|
||||
class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
||||
def __init__(self, config: LocalFSDatasetIOConfig) -> None:
|
||||
self.config = config
|
||||
# local registry for keeping track of datasets within the provider
|
||||
self.dataset_infos = {}
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def register_dataset(
|
||||
self,
|
||||
dataset_def: DatasetDef,
|
||||
) -> None:
|
||||
dataset_impl = PandasDataframeDataset(dataset_def)
|
||||
self.dataset_infos[dataset_def.identifier] = DatasetInfo(
|
||||
dataset_def=dataset_def,
|
||||
dataset_impl=dataset_impl,
|
||||
)
|
||||
|
||||
async def list_datasets(self) -> List[DatasetDef]:
|
||||
return [i.dataset_def for i in self.dataset_infos.values()]
|
||||
|
||||
async def get_rows_paginated(
|
||||
self,
|
||||
dataset_id: str,
|
||||
rows_in_page: int,
|
||||
page_token: Optional[str] = None,
|
||||
filter_condition: Optional[str] = None,
|
||||
) -> PaginatedRowsResult:
|
||||
dataset_info = self.dataset_infos.get(dataset_id)
|
||||
dataset_info.dataset_impl.load()
|
||||
|
||||
if page_token and not page_token.isnumeric():
|
||||
raise ValueError("Invalid page_token")
|
||||
|
||||
if page_token is None or len(page_token) == 0:
|
||||
next_page_token = 0
|
||||
else:
|
||||
next_page_token = int(page_token)
|
||||
|
||||
start = next_page_token
|
||||
if rows_in_page == -1:
|
||||
end = len(dataset_info.dataset_impl)
|
||||
else:
|
||||
end = min(start + rows_in_page, len(dataset_info.dataset_impl))
|
||||
|
||||
rows = dataset_info.dataset_impl[start:end]
|
||||
|
||||
return PaginatedRowsResult(
|
||||
rows=rows,
|
||||
total_count=len(rows),
|
||||
next_page_token=str(end),
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue