Folder restructure for evals/datasets/scoring (#419)

* rename evals related stuff

* fix datasetio

* fix scoring test

* localfs -> LocalFS

* refactor scoring

* refactor scoring

* remove 8b_correctness scoring_fn from tests

* tests w/ eval params

* scoring fn braintrust fixture

* import
This commit is contained in:
Xi Yan 2024-11-11 17:35:40 -05:00 committed by GitHub
parent 2b7d70ba86
commit b4416b72fd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
37 changed files with 141 additions and 100 deletions

View file

@ -19,12 +19,12 @@ def datasetio_remote() -> ProviderFixture:
@pytest.fixture(scope="session")
def datasetio_meta_reference() -> ProviderFixture:
def datasetio_localfs() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="meta-reference",
provider_type="meta-reference",
provider_id="localfs",
provider_type="localfs",
config={},
)
],
@ -44,7 +44,7 @@ def datasetio_huggingface() -> ProviderFixture:
)
DATASETIO_FIXTURES = ["meta_reference", "remote", "huggingface"]
DATASETIO_FIXTURES = ["localfs", "remote", "huggingface"]
@pytest_asyncio.fixture(scope="session")

View file

@ -0,0 +1,20 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
JUDGE_PROMPT = """
You will be given a question, a expected_answer, and a system_answer.
Your task is to provide a 'total rating' scoring how well the system_answer answers compared with ground truth in expected_answer in terms of factual correctness to the question.
Give your answer as a integer on a scale of 0 to 5, where 0 means that the system_answer is not correct at all compared with expected_answer, and 5 means that the answer completely and correctly answers the question.
Provide your feedback as follows:
Feedback:::
Total rating: (your rating, as a int between 0 and 5)
Now here are the question, expected_answer, system_answer.
Question: {input_query}
Expected Answer: {expected_answer}
System Answer: {generated_answer}
Feedback:::
Total rating:
"""

View file

@ -19,9 +19,10 @@ from llama_stack.apis.eval.eval import (
EvalTaskDefWithProvider,
ModelCandidate,
)
from llama_stack.apis.scoring_functions import LLMAsJudgeScoringFnParams
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
from .constants import JUDGE_PROMPT
# How to run this test:
#
@ -65,7 +66,7 @@ class Testeval:
assert len(rows.rows) == 3
scoring_functions = [
"meta-reference::llm_as_judge_8b_correctness",
"meta-reference::llm_as_judge_base",
"meta-reference::equality",
]
task_id = "meta-reference::app_eval"
@ -85,11 +86,22 @@ class Testeval:
model="Llama3.2-3B-Instruct",
sampling_params=SamplingParams(),
),
scoring_params={
"meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
judge_model="Llama3.1-8B-Instruct",
prompt_template=JUDGE_PROMPT,
judge_score_regexes=[
r"Total rating: (\d+)",
r"rating: (\d+)",
r"Rating: (\d+)",
],
)
},
),
)
assert len(response.generations) == 3
assert "meta-reference::llm_as_judge_8b_correctness" in response.scores
assert "meta-reference::equality" in response.scores
assert "meta-reference::llm_as_judge_base" in response.scores
@pytest.mark.asyncio
async def test_eval_run_eval(self, eval_stack):
@ -109,7 +121,6 @@ class Testeval:
)
scoring_functions = [
"meta-reference::llm_as_judge_8b_correctness",
"meta-reference::subset_of",
]
@ -138,7 +149,6 @@ class Testeval:
assert eval_response is not None
assert len(eval_response.generations) == 5
assert "meta-reference::subset_of" in eval_response.scores
assert "meta-reference::llm_as_judge_8b_correctness" in eval_response.scores
@pytest.mark.asyncio
async def test_eval_run_benchmark_eval(self, eval_stack):

View file

@ -16,7 +16,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"scoring": "meta_reference",
"datasetio": "meta_reference",
"datasetio": "localfs",
"inference": "fireworks",
},
id="meta_reference_scoring_fireworks_inference",
@ -25,12 +25,21 @@ DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"scoring": "meta_reference",
"datasetio": "meta_reference",
"datasetio": "localfs",
"inference": "together",
},
id="meta_reference_scoring_together_inference",
marks=pytest.mark.meta_reference_scoring_together_inference,
),
pytest.param(
{
"scoring": "braintrust",
"datasetio": "localfs",
"inference": "together",
},
id="braintrust_scoring_together_inference",
marks=pytest.mark.braintrust_scoring_together_inference,
),
]
@ -38,6 +47,7 @@ def pytest_configure(config):
for fixture_name in [
"meta_reference_scoring_fireworks_inference",
"meta_reference_scoring_together_inference",
"braintrust_scoring_together_inference",
]:
config.addinivalue_line(
"markers",

View file

@ -31,7 +31,20 @@ def scoring_meta_reference() -> ProviderFixture:
)
SCORING_FIXTURES = ["meta_reference", "remote"]
@pytest.fixture(scope="session")
def scoring_braintrust() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="braintrust",
provider_type="braintrust",
config={},
)
],
)
SCORING_FIXTURES = ["meta_reference", "remote", "braintrust"]
@pytest_asyncio.fixture(scope="session")
@ -52,9 +65,4 @@ async def scoring_stack(request):
provider_data,
)
return (
impls[Api.scoring],
impls[Api.scoring_functions],
impls[Api.datasetio],
impls[Api.datasets],
)
return impls

View file

@ -8,7 +8,7 @@
import pytest
from llama_stack.apis.scoring_functions import * # noqa: F403
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
# How to run this test:
@ -23,20 +23,36 @@ class TestScoring:
async def test_scoring_functions_list(self, scoring_stack):
# NOTE: this needs you to ensure that you are starting from a clean state
# but so far we don't have an unregister API unfortunately, so be careful
_, scoring_functions_impl, _, _ = scoring_stack
scoring_functions_impl = scoring_stack[Api.scoring_functions]
response = await scoring_functions_impl.list_scoring_functions()
assert isinstance(response, list)
assert len(response) > 0
@pytest.mark.asyncio
async def test_scoring_score(self, scoring_stack):
scoring_impl, scoring_functions_impl, datasetio_impl, datasets_impl = (
scoring_stack
(
scoring_impl,
scoring_functions_impl,
datasetio_impl,
datasets_impl,
models_impl,
) = (
scoring_stack[Api.scoring],
scoring_stack[Api.scoring_functions],
scoring_stack[Api.datasetio],
scoring_stack[Api.datasets],
scoring_stack[Api.models],
)
await register_dataset(datasets_impl)
response = await datasets_impl.list_datasets()
assert len(response) == 1
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
# scoring individual rows
rows = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset",
@ -44,10 +60,11 @@ class TestScoring:
)
assert len(rows.rows) == 3
scoring_fns_list = await scoring_functions_impl.list_scoring_functions()
scoring_functions = {
"meta-reference::llm_as_judge_8b_correctness": None,
"meta-reference::equality": None,
scoring_fns_list[0].identifier: None,
}
response = await scoring_impl.score(
input_rows=rows.rows,
scoring_functions=scoring_functions,
@ -69,13 +86,34 @@ class TestScoring:
@pytest.mark.asyncio
async def test_scoring_score_with_params(self, scoring_stack):
scoring_impl, scoring_functions_impl, datasetio_impl, datasets_impl = (
scoring_stack
(
scoring_impl,
scoring_functions_impl,
datasetio_impl,
datasets_impl,
models_impl,
) = (
scoring_stack[Api.scoring],
scoring_stack[Api.scoring_functions],
scoring_stack[Api.datasetio],
scoring_stack[Api.datasets],
scoring_stack[Api.models],
)
await register_dataset(datasets_impl)
response = await datasets_impl.list_datasets()
assert len(response) == 1
for model_id in ["Llama3.1-405B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
scoring_fns_list = await scoring_functions_impl.list_scoring_functions()
provider_id = scoring_fns_list[0].provider_id
if provider_id == "braintrust":
pytest.skip("Braintrust provider does not support scoring with params")
# scoring individual rows
rows = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset",
@ -84,7 +122,7 @@ class TestScoring:
assert len(rows.rows) == 3
scoring_functions = {
"meta-reference::llm_as_judge_8b_correctness": LLMAsJudgeScoringFnParams(
"meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
judge_model="Llama3.1-405B-Instruct",
prompt_template="Output a number response in the following format: Score: <number>, where <number> is the number between 0 and 9.",
judge_score_regexes=[r"Score: (\d+)"],