mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-13 21:32:37 +00:00
move distribution folders
This commit is contained in:
parent
fd90d2ae97
commit
b4aca0aeb6
13 changed files with 274 additions and 57 deletions
|
|
@ -1,28 +0,0 @@
|
|||
# Docker Compose Scripts
|
||||
|
||||
This folder contains scripts to enable starting a distribution using `docker compose`.
|
||||
|
||||
|
||||
#### Example: TGI Inference Adapter
|
||||
```
|
||||
$ cd llama_stack/distribution/docker/tgi
|
||||
$ ls
|
||||
compose.yaml tgi-run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
|
||||
```
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
docker compose down
|
||||
```
|
||||
|
|
@ -1,67 +0,0 @@
|
|||
# Ollama GPU Distribution
|
||||
|
||||
The scripts in these folders help you spin up a Llama Stack distribution with Ollama Inference provider.
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a Ollama server with access to your GPU. Please see Ollama CPU Distribution if you wish to run Ollama on CPU.
|
||||
|
||||
### Getting Started
|
||||
|
||||
```
|
||||
$ cd llama_stack/distribution/docker/ollama
|
||||
$ ls
|
||||
compose.yaml ollama-run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
You will see outputs similar to following ---
|
||||
```
|
||||
[ollama] | [GIN] 2024/10/18 - 21:19:41 | 200 | 226.841µs | ::1 | GET "/api/ps"
|
||||
[ollama] | [GIN] 2024/10/18 - 21:19:42 | 200 | 60.908µs | ::1 | GET "/api/ps"
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
[llamastack-local-cpu] | Resolved 12 providers
|
||||
[llamastack-local-cpu] | inner-inference => ollama0
|
||||
[llamastack-local-cpu] | models => __routing_table__
|
||||
[llamastack-local-cpu] | inference => __autorouted__
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
docker compose down
|
||||
```
|
||||
|
||||
### (Alternative) Docker Run
|
||||
|
||||
If you wish to separately spin up a Ollama server, and connect with Llama Stack, you may use the following commands.
|
||||
|
||||
##### Start Ollama server.
|
||||
- Please check the [Ollama Documentations](https://github.com/ollama/ollama) for more details.
|
||||
|
||||
**Via Docker**
|
||||
```
|
||||
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||||
```
|
||||
|
||||
**Via CLI**
|
||||
```
|
||||
ollama run <model_id>
|
||||
```
|
||||
|
||||
|
||||
##### Start Llama Stack server pointing to Ollama server
|
||||
|
||||
```
|
||||
docker run --network host -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./ollama-run.yaml:/root/llamastack-run-ollama.yaml --gpus=all llamastack-local-cpu --yaml_config /root/llamastack-run-ollama.yaml
|
||||
```
|
||||
|
||||
Make sure in you `ollama-run.yaml` file, you inference provider is pointing to the correct Ollama endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: ollama0
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: http://127.0.0.1:14343
|
||||
```
|
||||
|
|
@ -1,48 +0,0 @@
|
|||
services:
|
||||
ollama:
|
||||
image: ollama/ollama:latest
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ollama:/root/.ollama # this solution synchronizes with the docker volume and loads the model rocket fast
|
||||
ports:
|
||||
- "11434:11434"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
command: []
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
llamastack-local-cpu:
|
||||
depends_on:
|
||||
- ollama
|
||||
image: llamastack/llamastack-local-cpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to ollama run.yaml file
|
||||
- ./ollama-run.yaml:/root/llamastack-run-ollama.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for ollama server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-ollama.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
volumes:
|
||||
ollama:
|
||||
|
|
@ -1,46 +0,0 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ollama0
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: http://127.0.0.1:14343
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
|
|
@ -1,56 +0,0 @@
|
|||
# TGI GPU Distribution
|
||||
|
||||
The scripts in these folders help you spin up a Llama Stack distribution with TGI Inference provider.
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a TGI server with access to your GPU. Please see TGI CPU Distribution if you wish connect to a hosted TGI endpoint.
|
||||
|
||||
### Getting Started
|
||||
|
||||
```
|
||||
$ cd llama_stack/distribution/docker/tgi
|
||||
$ ls
|
||||
compose.yaml tgi-run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
|
||||
```
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
docker compose down
|
||||
```
|
||||
|
||||
### (Alternative) Docker Run
|
||||
|
||||
If you wish to separately spin up a TGI server, and connect with Llama Stack, you may use the following commands.
|
||||
|
||||
##### Start TGI server.
|
||||
```
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.1-8B-Instruct --port 5009
|
||||
```
|
||||
- Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) for more details.
|
||||
|
||||
##### Start Llama Stack server pointing to TGI server
|
||||
|
||||
```
|
||||
docker run --network host -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./tgi-run.yaml:/root/llamastack-run-tgi.yaml --gpus=all llamastack-local-cpu --yaml_config /root/llamastack-run-tgi.yaml
|
||||
```
|
||||
|
||||
Make sure in you `tgi-run.yaml` file, you inference provider is pointing to the correct TGI endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
```
|
||||
|
|
@ -1,55 +0,0 @@
|
|||
services:
|
||||
text-generation-inference:
|
||||
image: ghcr.io/huggingface/text-generation-inference:latest
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/data
|
||||
ports:
|
||||
- "5009:5009"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
- HF_HOME=/data
|
||||
- HF_DATASETS_CACHE=/data
|
||||
- HF_MODULES_CACHE=/data
|
||||
- HF_HUB_CACHE=/data
|
||||
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.1-8B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://text-generation-inference:5009/health"]
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 30
|
||||
llamastack-local-cpu:
|
||||
depends_on:
|
||||
text-generation-inference:
|
||||
condition: service_healthy
|
||||
image: llamastack/llamastack-local-cpu
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to TGI run.yaml file
|
||||
- ./tgi-run.yaml:/root/llamastack-run-tgi.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
# Hack: wait for TGI server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-tgi.yaml"
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
|
|
@ -1,46 +0,0 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
llama_guard_shield:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
disable_input_check: false
|
||||
disable_output_check: false
|
||||
prompt_guard_shield:
|
||||
model: Prompt-Guard-86M
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
|
|
@ -3,7 +3,10 @@ distribution_spec:
|
|||
description: Like local, but use ollama for running LLM inference
|
||||
providers:
|
||||
inference: remote::ollama
|
||||
memory: meta-reference
|
||||
memory:
|
||||
- meta-reference
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety: meta-reference
|
||||
agents: meta-reference
|
||||
telemetry: meta-reference
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue