diff --git a/llama_stack/distribution/ui/page/evaluations/native_eval.py b/llama_stack/distribution/ui/page/evaluations/native_eval.py index c7b39db37..872cc40c5 100644 --- a/llama_stack/distribution/ui/page/evaluations/native_eval.py +++ b/llama_stack/distribution/ui/page/evaluations/native_eval.py @@ -229,9 +229,7 @@ def run_evaluation_3(): output_res[scoring_fn] = [] output_res[scoring_fn].append(eval_res.scores[scoring_fn].score_rows[0]) - progress_text_container.write( - f"Expand to see current processed result ({i + 1} / {len(rows)})" - ) + progress_text_container.write(f"Expand to see current processed result ({i + 1} / {len(rows)})") results_container.json(eval_res, expanded=2) progress_bar.progress(1.0, text="Evaluation complete!") diff --git a/llama_stack/providers/inline/eval/meta_reference/eval.py b/llama_stack/providers/inline/eval/meta_reference/eval.py index ffc9c33f6..ae5b81a09 100644 --- a/llama_stack/providers/inline/eval/meta_reference/eval.py +++ b/llama_stack/providers/inline/eval/meta_reference/eval.py @@ -89,16 +89,10 @@ class MetaReferenceEvalImpl( dataset_id = task_def.dataset_id scoring_functions = task_def.scoring_functions dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id) - validate_dataset_schema( - dataset_def.dataset_schema, get_valid_schemas(Api.eval.value) - ) + validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.eval.value)) all_rows = await self.datasetio_api.iterrows( dataset_id=dataset_id, - limit=( - -1 - if benchmark_config.num_examples is None - else benchmark_config.num_examples - ), + limit=(-1 if benchmark_config.num_examples is None else benchmark_config.num_examples), ) res = await self.evaluate_rows( benchmark_id=benchmark_id, @@ -124,14 +118,10 @@ class MetaReferenceEvalImpl( for i, x in tqdm(enumerate(input_rows)): assert ColumnName.chat_completion_input.value in x, "Invalid input row" input_messages = json.loads(x[ColumnName.chat_completion_input.value]) - input_messages = [ - UserMessage(**x) for x in input_messages if x["role"] == "user" - ] + input_messages = [UserMessage(**x) for x in input_messages if x["role"] == "user"] # NOTE: only single-turn agent generation is supported. Create a new session for each input row - session_create_response = await self.agents_api.create_agent_session( - agent_id, f"session-{i}" - ) + session_create_response = await self.agents_api.create_agent_session(agent_id, f"session-{i}") session_id = session_create_response.session_id turn_request = dict( @@ -140,12 +130,7 @@ class MetaReferenceEvalImpl( messages=input_messages, stream=True, ) - turn_response = [ - chunk - async for chunk in await self.agents_api.create_agent_turn( - **turn_request - ) - ] + turn_response = [chunk async for chunk in await self.agents_api.create_agent_turn(**turn_request)] final_event = turn_response[-1].event.payload # check if there's a memory retrieval step and extract the context @@ -154,14 +139,10 @@ class MetaReferenceEvalImpl( if step.step_type == StepType.tool_execution.value: for tool_response in step.tool_responses: if tool_response.tool_name == MEMORY_QUERY_TOOL: - memory_rag_context = " ".join( - x.text for x in tool_response.content - ) + memory_rag_context = " ".join(x.text for x in tool_response.content) agent_generation = {} - agent_generation[ColumnName.generated_answer.value] = ( - final_event.turn.output_message.content - ) + agent_generation[ColumnName.generated_answer.value] = final_event.turn.output_message.content if memory_rag_context: agent_generation[ColumnName.context.value] = memory_rag_context @@ -173,9 +154,7 @@ class MetaReferenceEvalImpl( self, input_rows: List[Dict[str, Any]], benchmark_config: BenchmarkConfig ) -> List[Dict[str, Any]]: candidate = benchmark_config.eval_candidate - assert ( - candidate.sampling_params.max_tokens is not None - ), "SamplingParams.max_tokens must be provided" + assert candidate.sampling_params.max_tokens is not None, "SamplingParams.max_tokens must be provided" generations = [] for x in tqdm(input_rows): @@ -186,39 +165,21 @@ class MetaReferenceEvalImpl( content=input_content, sampling_params=candidate.sampling_params, ) - generations.append( - { - ColumnName.generated_answer.value: response.completion_message.content - } - ) + generations.append({ColumnName.generated_answer.value: response.completion_message.content}) elif ColumnName.chat_completion_input.value in x: - chat_completion_input_json = json.loads( - x[ColumnName.chat_completion_input.value] - ) - input_messages = [ - UserMessage(**x) - for x in chat_completion_input_json - if x["role"] == "user" - ] + chat_completion_input_json = json.loads(x[ColumnName.chat_completion_input.value]) + input_messages = [UserMessage(**x) for x in chat_completion_input_json if x["role"] == "user"] messages = [] if candidate.system_message: messages.append(candidate.system_message) - messages += [ - SystemMessage(**x) - for x in chat_completion_input_json - if x["role"] == "system" - ] + messages += [SystemMessage(**x) for x in chat_completion_input_json if x["role"] == "system"] messages += input_messages response = await self.inference_api.chat_completion( model_id=candidate.model, messages=messages, sampling_params=candidate.sampling_params, ) - generations.append( - { - ColumnName.generated_answer.value: response.completion_message.content - } - ) + generations.append({ColumnName.generated_answer.value: response.completion_message.content}) else: raise ValueError("Invalid input row") @@ -241,8 +202,7 @@ class MetaReferenceEvalImpl( # scoring with generated_answer score_input_rows = [ - input_r | generated_r - for input_r, generated_r in zip(input_rows, generations, strict=False) + input_r | generated_r for input_r, generated_r in zip(input_rows, generations, strict=False) ] if benchmark_config.scoring_params is not None: @@ -251,9 +211,7 @@ class MetaReferenceEvalImpl( for scoring_fn_id in scoring_functions } else: - scoring_functions_dict = { - scoring_fn_id: None for scoring_fn_id in scoring_functions - } + scoring_functions_dict = {scoring_fn_id: None for scoring_fn_id in scoring_functions} score_response = await self.scoring_api.score( input_rows=score_input_rows, scoring_functions=scoring_functions_dict diff --git a/llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py b/llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py index bb55d0f17..0f89b4064 100644 --- a/llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py +++ b/llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py @@ -17,7 +17,8 @@ import torch from torch import nn from torch.optim import Optimizer from torch.utils.data import DataLoader, DistributedSampler -from torchtune import modules, training, utils as torchtune_utils +from torchtune import modules, training +from torchtune import utils as torchtune_utils from torchtune.data import padded_collate_sft from torchtune.modules.loss import CEWithChunkedOutputLoss from torchtune.modules.peft import ( @@ -88,9 +89,7 @@ class LoraFinetuningSingleDevice: self.job_uuid = job_uuid self.training_config = training_config if not isinstance(algorithm_config, LoraFinetuningConfig): - raise ValueError( - "You need to speicifc LoraFinetuningConfig for LoRA finetuning" - ) + raise ValueError("You need to speicifc LoraFinetuningConfig for LoRA finetuning") self.algorithm_config = algorithm_config self._device = torchtune_utils.get_device() self._dtype = training.get_dtype(training_config.dtype, device=self._device) @@ -99,10 +98,7 @@ class LoraFinetuningSingleDevice: def model_checkpoint_dir(model) -> str: checkpoint_dir = Path(model_local_dir(model.descriptor())) - paths = [ - Path(checkpoint_dir / f"consolidated.{ext}") - for ext in ["pth", "00.pth"] - ] + paths = [Path(checkpoint_dir / f"consolidated.{ext}") for ext in ["pth", "00.pth"]] if not any(p.exists() for p in paths): checkpoint_dir = checkpoint_dir / "original" @@ -117,9 +113,7 @@ class LoraFinetuningSingleDevice: else: model = resolve_model(self.model_id) if model is None: - raise ValueError( - f"{self.model_id} not found. Your model id should be in the llama models SKU list" - ) + raise ValueError(f"{self.model_id} not found. Your model id should be in the llama models SKU list") self.checkpoint_dir = model_checkpoint_dir(model) self._output_dir = str(DEFAULT_CHECKPOINT_DIR) @@ -191,9 +185,7 @@ class LoraFinetuningSingleDevice: self._tokenizer = await self._setup_tokenizer() log.info("Tokenizer is initialized.") - self._optimizer = await self._setup_optimizer( - optimizer_config=self.training_config.optimizer_config - ) + self._optimizer = await self._setup_optimizer(optimizer_config=self.training_config.optimizer_config) log.info("Optimizer is initialized.") self._loss_fn = CEWithChunkedOutputLoss() @@ -221,13 +213,8 @@ class LoraFinetuningSingleDevice: # by the dataloader and the max_steps_per_epoch param set by the user and is used # for logging and tracking training state. This should be computed after the dataloader # has been setup - self._steps_per_epoch = ( - len(self._training_dataloader) // self._gradient_accumulation_steps - ) - if ( - self.max_steps_per_epoch is not None - and self.max_steps_per_epoch < self._steps_per_epoch - ): + self._steps_per_epoch = len(self._training_dataloader) // self._gradient_accumulation_steps + if self.max_steps_per_epoch is not None and self.max_steps_per_epoch < self._steps_per_epoch: self._steps_per_epoch = self.max_steps_per_epoch self.global_step = self.epochs_run * self._steps_per_epoch @@ -241,9 +228,7 @@ class LoraFinetuningSingleDevice: log.info("Learning rate scheduler is initialized.") # Used to ignore labels for loss computation - self.ignore_labels_cache = torch.full( - (self._batch_size, 1), self._loss_fn.ignore_index, device=self._device - ) + self.ignore_labels_cache = torch.full((self._batch_size, 1), self._loss_fn.ignore_index, device=self._device) def _log_memory_stats(self): # torchtune raises: "Logging memory stats is not supported on CPU devices"; do nothing @@ -284,13 +269,9 @@ class LoraFinetuningSingleDevice: set_trainable_params(model, self.adapter_params) if enable_activation_checkpointing: - training.set_activation_checkpointing( - model, auto_wrap_policy={modules.TransformerSelfAttentionLayer} - ) + training.set_activation_checkpointing(model, auto_wrap_policy={modules.TransformerSelfAttentionLayer}) - base_missing, base_unexpected = model.load_state_dict( - base_model_state_dict, strict=False - ) + base_missing, base_unexpected = model.load_state_dict(base_model_state_dict, strict=False) # This is for any adapters that need to be initialized after base weights # have been loaded (e.g. DoRA). @@ -299,9 +280,7 @@ class LoraFinetuningSingleDevice: if hasattr(m, "initialize_dora_magnitude"): m.initialize_dora_magnitude() if lora_weights_state_dict: - lora_missing, lora_unexpected = model.load_state_dict( - lora_weights_state_dict, strict=False - ) + lora_missing, lora_unexpected = model.load_state_dict(lora_weights_state_dict, strict=False) else: lora_missing, lora_unexpected = None, None validate_missing_and_unexpected_for_lora( @@ -315,14 +294,10 @@ class LoraFinetuningSingleDevice: ) # Validate model adapter params were loaded in with the expected dtype - training.validate_expected_param_dtype( - self.adapter_params.items(), dtype=self._dtype - ) + training.validate_expected_param_dtype(self.adapter_params.items(), dtype=self._dtype) # activation offloading - self.activations_handling_ctx = training.get_act_offloading_ctx_manager( - model, enable_activation_offloading - ) + self.activations_handling_ctx = training.get_act_offloading_ctx_manager(model, enable_activation_offloading) self._log_memory_stats() @@ -458,9 +433,7 @@ class LoraFinetuningSingleDevice: # Shift labels to compute loss # equivalent to doing labels[..., 1:] and logits[..., :-1, :] # But this way we dont need to slice the logits. We just add an ignore index to labels. - labels = torch.hstack( - (labels[..., 1:], self.ignore_labels_cache[: labels.shape[0]]) - ) + labels = torch.hstack((labels[..., 1:], self.ignore_labels_cache[: labels.shape[0]])) if not isinstance(logits, list): labels = labels.reshape(-1) logits = logits.reshape(-1, logits.size(-1)) @@ -489,9 +462,7 @@ class LoraFinetuningSingleDevice: for curr_epoch in range(self.epochs_run, self.total_epochs): # Update the sampler to ensure data is correctly shuffled across epochs # in case shuffle is True - metric_logger = DiskLogger( - log_dir=self._output_dir + f"/{self.model_id}-sft-{curr_epoch}/log" - ) + metric_logger = DiskLogger(log_dir=self._output_dir + f"/{self.model_id}-sft-{curr_epoch}/log") self._training_sampler.set_epoch(curr_epoch) loss_to_log = 0.0 @@ -499,8 +470,7 @@ class LoraFinetuningSingleDevice: for idx, batch in enumerate(self._training_dataloader): if ( self.max_steps_per_epoch is not None - and (idx // self._gradient_accumulation_steps) - == self.max_steps_per_epoch + and (idx // self._gradient_accumulation_steps) == self.max_steps_per_epoch ): break @@ -508,9 +478,7 @@ class LoraFinetuningSingleDevice: # Calculate the number of unmasked tokens in the current batch # and increment the total number of tokens seen in the step - current_num_tokens = ( - batch["labels"] != self._loss_fn.ignore_index - ).sum() + current_num_tokens = (batch["labels"] != self._loss_fn.ignore_index).sum() num_tokens += current_num_tokens # Loss is normalized by default so we multiply by the number of tokens @@ -535,9 +503,7 @@ class LoraFinetuningSingleDevice: loss_to_log = running_loss.item() / num_tokens pbar.update(1) - pbar.set_description( - f"{curr_epoch + 1}|{self.global_step}|Loss: {loss_to_log}" - ) + pbar.set_description(f"{curr_epoch + 1}|{self.global_step}|Loss: {loss_to_log}") time_per_step = time.perf_counter() - t0 log_dict = { diff --git a/llama_stack/providers/inline/scoring/basic/scoring.py b/llama_stack/providers/inline/scoring/basic/scoring.py index cf85d928e..a735166e1 100644 --- a/llama_stack/providers/inline/scoring/basic/scoring.py +++ b/llama_stack/providers/inline/scoring/basic/scoring.py @@ -64,15 +64,11 @@ class BasicScoringImpl( async def list_scoring_functions(self) -> List[ScoringFn]: scoring_fn_defs_list = [ - fn_def - for impl in self.scoring_fn_id_impls.values() - for fn_def in impl.get_supported_scoring_fn_defs() + fn_def for impl in self.scoring_fn_id_impls.values() for fn_def in impl.get_supported_scoring_fn_defs() ] for f in scoring_fn_defs_list: - assert f.identifier.startswith( - "basic" - ), "All basic scoring fn must have identifier prefixed with 'basic'! " + assert f.identifier.startswith("basic"), "All basic scoring fn must have identifier prefixed with 'basic'! " return scoring_fn_defs_list @@ -86,9 +82,7 @@ class BasicScoringImpl( save_results_dataset: bool = False, ) -> ScoreBatchResponse: dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id) - validate_dataset_schema( - dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value) - ) + validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)) all_rows = await self.datasetio_api.iterrows( dataset_id=dataset_id, @@ -118,12 +112,8 @@ class BasicScoringImpl( raise ValueError(f"Scoring function {scoring_fn_id} is not supported.") scoring_fn = self.scoring_fn_id_impls[scoring_fn_id] scoring_fn_params = scoring_functions.get(scoring_fn_id, None) - score_results = await scoring_fn.score( - input_rows, scoring_fn_id, scoring_fn_params - ) - agg_results = await scoring_fn.aggregate( - score_results, scoring_fn_id, scoring_fn_params - ) + score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params) + agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params) res[scoring_fn_id] = ScoringResult( score_rows=score_results, aggregated_results=agg_results, diff --git a/llama_stack/providers/inline/scoring/braintrust/braintrust.py b/llama_stack/providers/inline/scoring/braintrust/braintrust.py index 49119cb19..3fae83340 100644 --- a/llama_stack/providers/inline/scoring/braintrust/braintrust.py +++ b/llama_stack/providers/inline/scoring/braintrust/braintrust.py @@ -122,12 +122,10 @@ class BraintrustScoringImpl( self.datasets_api = datasets_api self.braintrust_evaluators = { - entry.identifier: entry.evaluator - for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY + entry.identifier: entry.evaluator for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY } self.supported_fn_defs_registry = { - entry.identifier: entry.fn_def - for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY + entry.identifier: entry.fn_def for entry in SUPPORTED_BRAINTRUST_SCORING_FN_ENTRY } async def initialize(self) -> None: ... @@ -137,16 +135,14 @@ class BraintrustScoringImpl( async def list_scoring_functions(self) -> List[ScoringFn]: scoring_fn_defs_list = list(self.supported_fn_defs_registry.values()) for f in scoring_fn_defs_list: - assert f.identifier.startswith( - "braintrust" - ), "All braintrust scoring fn must have identifier prefixed with 'braintrust'! " + assert f.identifier.startswith("braintrust"), ( + "All braintrust scoring fn must have identifier prefixed with 'braintrust'! " + ) return scoring_fn_defs_list async def register_scoring_function(self, scoring_fn: ScoringFn) -> None: - raise NotImplementedError( - "Registering scoring function not allowed for braintrust provider" - ) + raise NotImplementedError("Registering scoring function not allowed for braintrust provider") async def set_api_key(self) -> None: # api key is in the request headers @@ -169,17 +165,13 @@ class BraintrustScoringImpl( await self.set_api_key() dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id) - validate_dataset_schema( - dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value) - ) + validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)) all_rows = await self.datasetio_api.iterrows( dataset_id=dataset_id, limit=-1, ) - res = await self.score( - input_rows=all_rows.data, scoring_functions=scoring_functions - ) + res = await self.score(input_rows=all_rows.data, scoring_functions=scoring_functions) if save_results_dataset: # TODO: persist and register dataset on to server for reading # self.datasets_api.register_dataset() @@ -220,13 +212,8 @@ class BraintrustScoringImpl( if scoring_fn_id not in self.supported_fn_defs_registry: raise ValueError(f"Scoring function {scoring_fn_id} is not supported.") - score_results = [ - await self.score_row(input_row, scoring_fn_id) - for input_row in input_rows - ] - aggregation_functions = self.supported_fn_defs_registry[ - scoring_fn_id - ].params.aggregation_functions + score_results = [await self.score_row(input_row, scoring_fn_id) for input_row in input_rows] + aggregation_functions = self.supported_fn_defs_registry[scoring_fn_id].params.aggregation_functions # override scoring_fn params if provided if scoring_functions[scoring_fn_id] is not None: diff --git a/llama_stack/providers/inline/scoring/llm_as_judge/scoring.py b/llama_stack/providers/inline/scoring/llm_as_judge/scoring.py index f63a77161..7f004fbb6 100644 --- a/llama_stack/providers/inline/scoring/llm_as_judge/scoring.py +++ b/llama_stack/providers/inline/scoring/llm_as_judge/scoring.py @@ -54,9 +54,9 @@ class LlmAsJudgeScoringImpl( scoring_fn_defs_list = self.llm_as_judge_fn.get_supported_scoring_fn_defs() for f in self.llm_as_judge_fn.get_supported_scoring_fn_defs(): - assert f.identifier.startswith( - "llm-as-judge" - ), "All llm-as-judge scoring fn must have identifier prefixed with 'llm-as-judge'! " + assert f.identifier.startswith("llm-as-judge"), ( + "All llm-as-judge scoring fn must have identifier prefixed with 'llm-as-judge'! " + ) return scoring_fn_defs_list @@ -70,9 +70,7 @@ class LlmAsJudgeScoringImpl( save_results_dataset: bool = False, ) -> ScoreBatchResponse: dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id) - validate_dataset_schema( - dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value) - ) + validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value)) all_rows = await self.datasetio_api.iterrows( dataset_id=dataset_id, @@ -100,12 +98,8 @@ class LlmAsJudgeScoringImpl( for scoring_fn_id in scoring_functions.keys(): scoring_fn = self.llm_as_judge_fn scoring_fn_params = scoring_functions.get(scoring_fn_id, None) - score_results = await scoring_fn.score( - input_rows, scoring_fn_id, scoring_fn_params - ) - agg_results = await scoring_fn.aggregate( - score_results, scoring_fn_id, scoring_fn_params - ) + score_results = await scoring_fn.score(input_rows, scoring_fn_id, scoring_fn_params) + agg_results = await scoring_fn.aggregate(score_results, scoring_fn_id, scoring_fn_params) res[scoring_fn_id] = ScoringResult( score_rows=score_results, aggregated_results=agg_results,