diff --git a/docs/source/providers/vector_io/remote_pgvector.md b/docs/source/providers/vector_io/remote_pgvector.md index 3e7d6e776..74f588a13 100644 --- a/docs/source/providers/vector_io/remote_pgvector.md +++ b/docs/source/providers/vector_io/remote_pgvector.md @@ -17,7 +17,7 @@ That means you'll get fast and efficient vector retrieval. To use PGVector in your Llama Stack project, follow these steps: 1. Install the necessary dependencies. -2. Configure your Llama Stack project to use Faiss. +2. Configure your Llama Stack project to use pgvector. (e.g. remote::pgvector). 3. Start storing and querying vectors. ## Installation diff --git a/llama_stack/providers/registry/vector_io.py b/llama_stack/providers/registry/vector_io.py index c13e65bbc..e391341b4 100644 --- a/llama_stack/providers/registry/vector_io.py +++ b/llama_stack/providers/registry/vector_io.py @@ -395,7 +395,7 @@ That means you'll get fast and efficient vector retrieval. To use PGVector in your Llama Stack project, follow these steps: 1. Install the necessary dependencies. -2. Configure your Llama Stack project to use Faiss. +2. Configure your Llama Stack project to use pgvector. (e.g. remote::pgvector). 3. Start storing and querying vectors. ## Installation