mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
feat: add static embedding metadata to dynamic model listings for providers using OpenAIMixin (#3547)
# What does this PR do? - remove auto-download of ollama embedding models - add embedding model metadata to dynamic listing w/ unit test - add support and tests for allowed_models - removed inference provider models.py files where dynamic listing is enabled - store embedding metadata in embedding_model_metadata field on inference providers - make model_entries optional on ModelRegistryHelper and LiteLLMOpenAIMixin - make OpenAIMixin a ModelRegistryHelper - skip base64 embedding test for remote::ollama, always returns floats - only use OpenAI client for ollama model listing - remove unused build_model_entry function - remove unused get_huggingface_repo function ## Test Plan ci w/ new tests
This commit is contained in:
parent
a50b63906c
commit
b67aef2fc4
43 changed files with 368 additions and 1015 deletions
|
@ -56,15 +56,22 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
)
|
||||
|
||||
from .config import TogetherImplConfig
|
||||
from .models import EMBEDDING_MODEL_ENTRIES, MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference::together")
|
||||
|
||||
|
||||
class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
embedding_model_metadata = {
|
||||
"togethercomputer/m2-bert-80M-32k-retrieval": {"embedding_dimension": 768, "context_length": 32768},
|
||||
"BAAI/bge-large-en-v1.5": {"embedding_dimension": 1024, "context_length": 512},
|
||||
"BAAI/bge-base-en-v1.5": {"embedding_dimension": 768, "context_length": 512},
|
||||
"Alibaba-NLP/gte-modernbert-base": {"embedding_dimension": 768, "context_length": 8192},
|
||||
"intfloat/multilingual-e5-large-instruct": {"embedding_dimension": 1024, "context_length": 512},
|
||||
}
|
||||
|
||||
def __init__(self, config: TogetherImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES, config.allowed_models)
|
||||
self.config = config
|
||||
self.allowed_models = config.allowed_models
|
||||
self._model_cache: dict[str, Model] = {}
|
||||
|
||||
def get_api_key(self):
|
||||
|
@ -264,15 +271,16 @@ class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Need
|
|||
# Together's /v1/models is not compatible with OpenAI's /v1/models. Together support ticket #13355 -> will not fix, use Together's own client
|
||||
for m in await self._get_client().models.list():
|
||||
if m.type == "embedding":
|
||||
if m.id not in EMBEDDING_MODEL_ENTRIES:
|
||||
if m.id not in self.embedding_model_metadata:
|
||||
logger.warning(f"Unknown embedding dimension for model {m.id}, skipping.")
|
||||
continue
|
||||
metadata = self.embedding_model_metadata[m.id]
|
||||
self._model_cache[m.id] = Model(
|
||||
provider_id=self.__provider_id__,
|
||||
provider_resource_id=EMBEDDING_MODEL_ENTRIES[m.id].provider_model_id,
|
||||
provider_resource_id=m.id,
|
||||
identifier=m.id,
|
||||
model_type=ModelType.embedding,
|
||||
metadata=EMBEDDING_MODEL_ENTRIES[m.id].metadata,
|
||||
metadata=metadata,
|
||||
)
|
||||
else:
|
||||
self._model_cache[m.id] = Model(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue