mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-23 01:02:25 +00:00
Merge branch 'main' into feature/dpo-training
This commit is contained in:
commit
b68b818539
265 changed files with 10254 additions and 7796 deletions
|
|
@ -43,10 +43,24 @@ class ModelsProtocolPrivate(Protocol):
|
|||
-> Provider uses provider-model-id for inference
|
||||
"""
|
||||
|
||||
# this should be called `on_model_register` or something like that.
|
||||
# the provider should _not_ be able to change the object in this
|
||||
# callback
|
||||
async def register_model(self, model: Model) -> Model: ...
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None: ...
|
||||
|
||||
# the Stack router will query each provider for their list of models
|
||||
# if a `refresh_interval_seconds` is provided, this method will be called
|
||||
# periodically to refresh the list of models
|
||||
#
|
||||
# NOTE: each model returned will be registered with the model registry. this means
|
||||
# a callback to the `register_model()` method will be made. this is duplicative and
|
||||
# may be removed in the future.
|
||||
async def list_models(self) -> list[Model] | None: ...
|
||||
|
||||
async def should_refresh_models(self) -> bool: ...
|
||||
|
||||
|
||||
class ShieldsProtocolPrivate(Protocol):
|
||||
async def register_shield(self, shield: Shield) -> None: ...
|
||||
|
|
@ -104,6 +118,19 @@ class ProviderSpec(BaseModel):
|
|||
description="If this provider is deprecated and does NOT work, specify the error message here",
|
||||
)
|
||||
|
||||
module: str | None = Field(
|
||||
default=None,
|
||||
description="""
|
||||
Fully-qualified name of the module to import. The module is expected to have:
|
||||
|
||||
- `get_adapter_impl(config, deps)`: returns the adapter implementation
|
||||
|
||||
Example: `module: ramalama_stack`
|
||||
""",
|
||||
)
|
||||
|
||||
is_external: bool = Field(default=False, description="Notes whether this provider is an external provider.")
|
||||
|
||||
# used internally by the resolver; this is a hack for now
|
||||
deps__: list[str] = Field(default_factory=list)
|
||||
|
||||
|
|
@ -113,7 +140,7 @@ class ProviderSpec(BaseModel):
|
|||
|
||||
|
||||
class RoutingTable(Protocol):
|
||||
def get_provider_impl(self, routing_key: str) -> Any: ...
|
||||
async def get_provider_impl(self, routing_key: str) -> Any: ...
|
||||
|
||||
|
||||
# TODO: this can now be inlined into RemoteProviderSpec
|
||||
|
|
@ -124,7 +151,7 @@ class AdapterSpec(BaseModel):
|
|||
description="Unique identifier for this adapter",
|
||||
)
|
||||
module: str = Field(
|
||||
...,
|
||||
default_factory=str,
|
||||
description="""
|
||||
Fully-qualified name of the module to import. The module is expected to have:
|
||||
|
||||
|
|
@ -162,14 +189,7 @@ The container image to use for this implementation. If one is provided, pip_pack
|
|||
If a provider depends on other providers, the dependencies MUST NOT specify a container image.
|
||||
""",
|
||||
)
|
||||
module: str = Field(
|
||||
...,
|
||||
description="""
|
||||
Fully-qualified name of the module to import. The module is expected to have:
|
||||
|
||||
- `get_provider_impl(config, deps)`: returns the local implementation
|
||||
""",
|
||||
)
|
||||
# module field is inherited from ProviderSpec
|
||||
provider_data_validator: str | None = Field(
|
||||
default=None,
|
||||
)
|
||||
|
|
@ -212,9 +232,7 @@ API responses, specify the adapter here.
|
|||
def container_image(self) -> str | None:
|
||||
return None
|
||||
|
||||
@property
|
||||
def module(self) -> str:
|
||||
return self.adapter.module
|
||||
# module field is inherited from ProviderSpec
|
||||
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
|
|
@ -226,14 +244,19 @@ API responses, specify the adapter here.
|
|||
|
||||
|
||||
def remote_provider_spec(
|
||||
api: Api, adapter: AdapterSpec, api_dependencies: list[Api] | None = None
|
||||
api: Api,
|
||||
adapter: AdapterSpec,
|
||||
api_dependencies: list[Api] | None = None,
|
||||
optional_api_dependencies: list[Api] | None = None,
|
||||
) -> RemoteProviderSpec:
|
||||
return RemoteProviderSpec(
|
||||
api=api,
|
||||
provider_type=f"remote::{adapter.adapter_type}",
|
||||
config_class=adapter.config_class,
|
||||
module=adapter.module,
|
||||
adapter=adapter,
|
||||
api_dependencies=api_dependencies or [],
|
||||
optional_api_dependencies=optional_api_dependencies or [],
|
||||
)
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -10,6 +10,7 @@ import re
|
|||
import secrets
|
||||
import string
|
||||
import uuid
|
||||
import warnings
|
||||
from collections.abc import AsyncGenerator
|
||||
from datetime import UTC, datetime
|
||||
|
||||
|
|
@ -911,8 +912,16 @@ async def load_data_from_url(url: str) -> str:
|
|||
|
||||
|
||||
async def get_raw_document_text(document: Document) -> str:
|
||||
if not document.mime_type.startswith("text/"):
|
||||
# Handle deprecated text/yaml mime type with warning
|
||||
if document.mime_type == "text/yaml":
|
||||
warnings.warn(
|
||||
"The 'text/yaml' MIME type is deprecated. Please use 'application/yaml' instead.",
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
elif not (document.mime_type.startswith("text/") or document.mime_type == "application/yaml"):
|
||||
raise ValueError(f"Unexpected document mime type: {document.mime_type}")
|
||||
|
||||
if isinstance(document.content, URL):
|
||||
return await load_data_from_url(document.content.uri)
|
||||
elif isinstance(document.content, str):
|
||||
|
|
|
|||
|
|
@ -128,6 +128,11 @@ class AgentPersistence:
|
|||
except Exception as e:
|
||||
log.error(f"Error parsing turn: {e}")
|
||||
continue
|
||||
|
||||
# The kvstore does not guarantee order, so we sort by started_at
|
||||
# to ensure consistent ordering of turns.
|
||||
turns.sort(key=lambda t: t.started_at)
|
||||
|
||||
return turns
|
||||
|
||||
async def get_session_turn(self, session_id: str, turn_id: str) -> Turn | None:
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
from llama_stack.distribution.datatypes import AccessRule, Api
|
||||
|
||||
from .config import LocalfsFilesImplConfig
|
||||
from .files import LocalfsFilesImpl
|
||||
|
|
@ -14,7 +14,7 @@ from .files import LocalfsFilesImpl
|
|||
__all__ = ["LocalfsFilesImpl", "LocalfsFilesImplConfig"]
|
||||
|
||||
|
||||
async def get_provider_impl(config: LocalfsFilesImplConfig, deps: dict[Api, Any]):
|
||||
impl = LocalfsFilesImpl(config)
|
||||
async def get_provider_impl(config: LocalfsFilesImplConfig, deps: dict[Api, Any], policy: list[AccessRule]):
|
||||
impl = LocalfsFilesImpl(config, policy)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -19,16 +19,19 @@ from llama_stack.apis.files import (
|
|||
OpenAIFileObject,
|
||||
OpenAIFilePurpose,
|
||||
)
|
||||
from llama_stack.distribution.datatypes import AccessRule
|
||||
from llama_stack.providers.utils.sqlstore.api import ColumnDefinition, ColumnType
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqlStore, sqlstore_impl
|
||||
from llama_stack.providers.utils.sqlstore.authorized_sqlstore import AuthorizedSqlStore
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import sqlstore_impl
|
||||
|
||||
from .config import LocalfsFilesImplConfig
|
||||
|
||||
|
||||
class LocalfsFilesImpl(Files):
|
||||
def __init__(self, config: LocalfsFilesImplConfig) -> None:
|
||||
def __init__(self, config: LocalfsFilesImplConfig, policy: list[AccessRule]) -> None:
|
||||
self.config = config
|
||||
self.sql_store: SqlStore | None = None
|
||||
self.policy = policy
|
||||
self.sql_store: AuthorizedSqlStore | None = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
"""Initialize the files provider by setting up storage directory and metadata database."""
|
||||
|
|
@ -37,7 +40,7 @@ class LocalfsFilesImpl(Files):
|
|||
storage_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Initialize SQL store for metadata
|
||||
self.sql_store = sqlstore_impl(self.config.metadata_store)
|
||||
self.sql_store = AuthorizedSqlStore(sqlstore_impl(self.config.metadata_store))
|
||||
await self.sql_store.create_table(
|
||||
"openai_files",
|
||||
{
|
||||
|
|
@ -126,6 +129,7 @@ class LocalfsFilesImpl(Files):
|
|||
|
||||
paginated_result = await self.sql_store.fetch_all(
|
||||
table="openai_files",
|
||||
policy=self.policy,
|
||||
where=where_conditions if where_conditions else None,
|
||||
order_by=[("created_at", order.value)],
|
||||
cursor=("id", after) if after else None,
|
||||
|
|
@ -156,7 +160,7 @@ class LocalfsFilesImpl(Files):
|
|||
if not self.sql_store:
|
||||
raise RuntimeError("Files provider not initialized")
|
||||
|
||||
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
|
||||
row = await self.sql_store.fetch_one("openai_files", policy=self.policy, where={"id": file_id})
|
||||
if not row:
|
||||
raise ValueError(f"File with id {file_id} not found")
|
||||
|
||||
|
|
@ -174,7 +178,7 @@ class LocalfsFilesImpl(Files):
|
|||
if not self.sql_store:
|
||||
raise RuntimeError("Files provider not initialized")
|
||||
|
||||
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
|
||||
row = await self.sql_store.fetch_one("openai_files", policy=self.policy, where={"id": file_id})
|
||||
if not row:
|
||||
raise ValueError(f"File with id {file_id} not found")
|
||||
|
||||
|
|
@ -197,7 +201,7 @@ class LocalfsFilesImpl(Files):
|
|||
raise RuntimeError("Files provider not initialized")
|
||||
|
||||
# Get file metadata
|
||||
row = await self.sql_store.fetch_one("openai_files", where={"id": file_id})
|
||||
row = await self.sql_store.fetch_one("openai_files", policy=self.policy, where={"id": file_id})
|
||||
if not row:
|
||||
raise ValueError(f"File with id {file_id} not found")
|
||||
|
||||
|
|
|
|||
|
|
@ -102,6 +102,12 @@ class MetaReferenceInferenceImpl(
|
|||
if self.config.create_distributed_process_group:
|
||||
self.generator.stop()
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
return False
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
return None
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
||||
|
|
|
|||
|
|
@ -20,6 +20,7 @@ from llama_stack.apis.inference import (
|
|||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.embedding_mixin import (
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
|
|
@ -41,6 +42,8 @@ class SentenceTransformersInferenceImpl(
|
|||
InferenceProvider,
|
||||
ModelsProtocolPrivate,
|
||||
):
|
||||
__provider_id__: str
|
||||
|
||||
def __init__(self, config: SentenceTransformersInferenceConfig) -> None:
|
||||
self.config = config
|
||||
|
||||
|
|
@ -50,6 +53,22 @@ class SentenceTransformersInferenceImpl(
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
return False
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
return [
|
||||
Model(
|
||||
identifier="all-MiniLM-L6-v2",
|
||||
provider_resource_id="all-MiniLM-L6-v2",
|
||||
provider_id=self.__provider_id__,
|
||||
metadata={
|
||||
"embedding_dimension": 384,
|
||||
},
|
||||
model_type=ModelType.embedding,
|
||||
),
|
||||
]
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
return model
|
||||
|
||||
|
|
|
|||
|
|
@ -1,17 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from .config import VLLMConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: VLLMConfig, _deps: dict[str, Any]):
|
||||
from .vllm import VLLMInferenceImpl
|
||||
|
||||
impl = VLLMInferenceImpl(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
@ -1,53 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VLLMConfig(BaseModel):
|
||||
"""Configuration for the vLLM inference provider.
|
||||
|
||||
Note that the model name is no longer part of this static configuration.
|
||||
You can bind an instance of this provider to a specific model with the
|
||||
``models.register()`` API call."""
|
||||
|
||||
tensor_parallel_size: int = Field(
|
||||
default=1,
|
||||
description="Number of tensor parallel replicas (number of GPUs to use).",
|
||||
)
|
||||
max_tokens: int = Field(
|
||||
default=4096,
|
||||
description="Maximum number of tokens to generate.",
|
||||
)
|
||||
max_model_len: int = Field(default=4096, description="Maximum context length to use during serving.")
|
||||
max_num_seqs: int = Field(default=4, description="Maximum parallel batch size for generation.")
|
||||
enforce_eager: bool = Field(
|
||||
default=False,
|
||||
description="Whether to use eager mode for inference (otherwise cuda graphs are used).",
|
||||
)
|
||||
gpu_memory_utilization: float = Field(
|
||||
default=0.3,
|
||||
description=(
|
||||
"How much GPU memory will be allocated when this provider has finished "
|
||||
"loading, including memory that was already allocated before loading."
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"tensor_parallel_size": "${env.TENSOR_PARALLEL_SIZE:=1}",
|
||||
"max_tokens": "${env.MAX_TOKENS:=4096}",
|
||||
"max_model_len": "${env.MAX_MODEL_LEN:=4096}",
|
||||
"max_num_seqs": "${env.MAX_NUM_SEQS:=4}",
|
||||
"enforce_eager": "${env.ENFORCE_EAGER:=False}",
|
||||
"gpu_memory_utilization": "${env.GPU_MEMORY_UTILIZATION:=0.3}",
|
||||
}
|
||||
|
|
@ -1,170 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
import vllm
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
GrammarResponseFormat,
|
||||
JsonSchemaResponseFormat,
|
||||
Message,
|
||||
ToolChoice,
|
||||
ToolDefinition,
|
||||
UserMessage,
|
||||
)
|
||||
from llama_stack.models.llama.datatypes import BuiltinTool
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_message_to_openai_dict,
|
||||
get_sampling_options,
|
||||
)
|
||||
|
||||
###############################################################################
|
||||
# This file contains OpenAI compatibility code that is currently only used
|
||||
# by the inline vLLM connector. Some or all of this code may be moved to a
|
||||
# central location at a later date.
|
||||
|
||||
|
||||
def _merge_context_into_content(message: Message) -> Message: # type: ignore
|
||||
"""
|
||||
Merge the ``context`` field of a Llama Stack ``Message`` object into
|
||||
the content field for compabilitiy with OpenAI-style APIs.
|
||||
|
||||
Generates a content string that emulates the current behavior
|
||||
of ``llama_models.llama3.api.chat_format.encode_message()``.
|
||||
|
||||
:param message: Message that may include ``context`` field
|
||||
|
||||
:returns: A version of ``message`` with any context merged into the
|
||||
``content`` field.
|
||||
"""
|
||||
if not isinstance(message, UserMessage): # Separate type check for linter
|
||||
return message
|
||||
if message.context is None:
|
||||
return message
|
||||
return UserMessage(
|
||||
role=message.role,
|
||||
# Emumate llama_models.llama3.api.chat_format.encode_message()
|
||||
content=message.content + "\n\n" + message.context,
|
||||
context=None,
|
||||
)
|
||||
|
||||
|
||||
def _llama_stack_tools_to_openai_tools(
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
) -> list[vllm.entrypoints.openai.protocol.ChatCompletionToolsParam]:
|
||||
"""
|
||||
Convert the list of available tools from Llama Stack's format to vLLM's
|
||||
version of OpenAI's format.
|
||||
"""
|
||||
if tools is None:
|
||||
return []
|
||||
|
||||
result = []
|
||||
for t in tools:
|
||||
if isinstance(t.tool_name, BuiltinTool):
|
||||
raise NotImplementedError("Built-in tools not yet implemented")
|
||||
if t.parameters is None:
|
||||
parameters = None
|
||||
else: # if t.parameters is not None
|
||||
# Convert the "required" flags to a list of required params
|
||||
required_params = [k for k, v in t.parameters.items() if v.required]
|
||||
parameters = {
|
||||
"type": "object", # Mystery value that shows up in OpenAI docs
|
||||
"properties": {
|
||||
k: {"type": v.param_type, "description": v.description} for k, v in t.parameters.items()
|
||||
},
|
||||
"required": required_params,
|
||||
}
|
||||
|
||||
function_def = vllm.entrypoints.openai.protocol.FunctionDefinition(
|
||||
name=t.tool_name, description=t.description, parameters=parameters
|
||||
)
|
||||
|
||||
# Every tool definition is double-boxed in a ChatCompletionToolsParam
|
||||
result.append(vllm.entrypoints.openai.protocol.ChatCompletionToolsParam(function=function_def))
|
||||
return result
|
||||
|
||||
|
||||
async def llama_stack_chat_completion_to_openai_chat_completion_dict(
|
||||
request: ChatCompletionRequest,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert a chat completion request in Llama Stack format into an
|
||||
equivalent set of arguments to pass to an OpenAI-compatible
|
||||
chat completions API.
|
||||
|
||||
:param request: Bundled request parameters in Llama Stack format.
|
||||
|
||||
:returns: Dictionary of key-value pairs to use as an initializer
|
||||
for a dataclass or to be converted directly to JSON and sent
|
||||
over the wire.
|
||||
"""
|
||||
|
||||
converted_messages = [
|
||||
# This mystery async call makes the parent function also be async
|
||||
await convert_message_to_openai_dict(_merge_context_into_content(m), download=True)
|
||||
for m in request.messages
|
||||
]
|
||||
converted_tools = _llama_stack_tools_to_openai_tools(request.tools)
|
||||
|
||||
# Llama will try to use built-in tools with no tool catalog, so don't enable
|
||||
# tool choice unless at least one tool is enabled.
|
||||
converted_tool_choice = "none"
|
||||
if (
|
||||
request.tool_config is not None
|
||||
and request.tool_config.tool_choice == ToolChoice.auto
|
||||
and request.tools is not None
|
||||
and len(request.tools) > 0
|
||||
):
|
||||
converted_tool_choice = "auto"
|
||||
|
||||
# TODO: Figure out what to do with the tool_prompt_format argument.
|
||||
# Other connectors appear to drop it quietly.
|
||||
|
||||
# Use Llama Stack shared code to translate sampling parameters.
|
||||
sampling_options = get_sampling_options(request.sampling_params)
|
||||
|
||||
# get_sampling_options() translates repetition penalties to an option that
|
||||
# OpenAI's APIs don't know about.
|
||||
# vLLM's OpenAI-compatible API also handles repetition penalties wrong.
|
||||
# For now, translate repetition penalties into a format that vLLM's broken
|
||||
# API will handle correctly. Two wrongs make a right...
|
||||
if "repeat_penalty" in sampling_options:
|
||||
del sampling_options["repeat_penalty"]
|
||||
if request.sampling_params.repetition_penalty is not None and request.sampling_params.repetition_penalty != 1.0:
|
||||
sampling_options["repetition_penalty"] = request.sampling_params.repetition_penalty
|
||||
|
||||
# Convert a single response format into four different parameters, per
|
||||
# the OpenAI spec
|
||||
guided_decoding_options = dict()
|
||||
if request.response_format is None:
|
||||
# Use defaults
|
||||
pass
|
||||
elif isinstance(request.response_format, JsonSchemaResponseFormat):
|
||||
guided_decoding_options["guided_json"] = request.response_format.json_schema
|
||||
elif isinstance(request.response_format, GrammarResponseFormat):
|
||||
guided_decoding_options["guided_grammar"] = request.response_format.bnf
|
||||
else:
|
||||
raise TypeError(f"ResponseFormat object is of unexpected subtype '{type(request.response_format)}'")
|
||||
|
||||
logprob_options = dict()
|
||||
if request.logprobs is not None:
|
||||
logprob_options["logprobs"] = request.logprobs.top_k
|
||||
|
||||
# Marshall together all the arguments for a ChatCompletionRequest
|
||||
request_options = {
|
||||
"model": request.model,
|
||||
"messages": converted_messages,
|
||||
"tools": converted_tools,
|
||||
"tool_choice": converted_tool_choice,
|
||||
"stream": request.stream,
|
||||
**sampling_options,
|
||||
**guided_decoding_options,
|
||||
**logprob_options,
|
||||
}
|
||||
|
||||
return request_options
|
||||
|
|
@ -1,811 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import re
|
||||
import uuid
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
|
||||
# These vLLM modules contain names that overlap with Llama Stack names, so we import
|
||||
# fully-qualified names
|
||||
import vllm.entrypoints.openai.protocol
|
||||
import vllm.sampling_params
|
||||
from vllm.engine.arg_utils import AsyncEngineArgs
|
||||
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
||||
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
|
||||
from vllm.entrypoints.openai.serving_models import BaseModelPath, OpenAIServingModels
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
TextDelta,
|
||||
ToolCallDelta,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseEvent,
|
||||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionMessage,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
GrammarResponseFormat,
|
||||
Inference,
|
||||
JsonSchemaResponseFormat,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingsResponse,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
TokenLogProbs,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
TopKSamplingStrategy,
|
||||
TopPSamplingStrategy,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama import sku_list
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
StopReason,
|
||||
ToolCall,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.models.llama.llama3.chat_format import ChatFormat
|
||||
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
|
||||
from llama_stack.providers.remote.inference.vllm.vllm import build_hf_repo_model_entries
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
ModelsProtocolPrivate,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
get_stop_reason,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
)
|
||||
|
||||
from .config import VLLMConfig
|
||||
from .openai_utils import llama_stack_chat_completion_to_openai_chat_completion_dict
|
||||
|
||||
# Map from Hugging Face model architecture name to appropriate tool parser.
|
||||
# See vllm.entrypoints.openai.tool_parsers.ToolParserManager.tool_parsers for the full list of
|
||||
# available parsers.
|
||||
# TODO: Expand this list
|
||||
CONFIG_TYPE_TO_TOOL_PARSER = {
|
||||
"GraniteConfig": "granite",
|
||||
"MllamaConfig": "llama3_json",
|
||||
"LlamaConfig": "llama3_json",
|
||||
}
|
||||
DEFAULT_TOOL_PARSER = "pythonic"
|
||||
|
||||
|
||||
logger = get_logger(__name__, category="inference")
|
||||
|
||||
|
||||
def _random_uuid_str() -> str:
|
||||
return str(uuid.uuid4().hex)
|
||||
|
||||
|
||||
def _response_format_to_guided_decoding_params(
|
||||
response_format: ResponseFormat | None, # type: ignore
|
||||
) -> vllm.sampling_params.GuidedDecodingParams:
|
||||
"""
|
||||
Translate constrained decoding parameters from Llama Stack's format to vLLM's format.
|
||||
|
||||
:param response_format: Llama Stack version of constrained decoding info. Can be ``None``,
|
||||
indicating no constraints.
|
||||
:returns: The equivalent dataclass object for the low-level inference layer of vLLM.
|
||||
"""
|
||||
if response_format is None:
|
||||
# As of vLLM 0.6.3, the default constructor for GuidedDecodingParams() returns an invalid
|
||||
# value that crashes the executor on some code paths. Use ``None`` instead.
|
||||
return None
|
||||
|
||||
# Llama Stack currently implements fewer types of constrained decoding than vLLM does.
|
||||
# Translate the types that exist and detect if Llama Stack adds new ones.
|
||||
if isinstance(response_format, JsonSchemaResponseFormat):
|
||||
return vllm.sampling_params.GuidedDecodingParams(json=response_format.json_schema)
|
||||
elif isinstance(response_format, GrammarResponseFormat):
|
||||
# BNF grammar.
|
||||
# Llama Stack uses the parse tree of the grammar, while vLLM uses the string
|
||||
# representation of the grammar.
|
||||
raise TypeError(
|
||||
"Constrained decoding with BNF grammars is not currently implemented, because the "
|
||||
"reference implementation does not implement it."
|
||||
)
|
||||
else:
|
||||
raise TypeError(f"ResponseFormat object is of unexpected subtype '{type(response_format)}'")
|
||||
|
||||
|
||||
def _convert_sampling_params(
|
||||
sampling_params: SamplingParams | None,
|
||||
response_format: ResponseFormat | None, # type: ignore
|
||||
log_prob_config: LogProbConfig | None,
|
||||
) -> vllm.SamplingParams:
|
||||
"""Convert sampling and constrained decoding configuration from Llama Stack's format to vLLM's
|
||||
format."""
|
||||
# In the absence of provided config values, use Llama Stack defaults as encoded in the Llama
|
||||
# Stack dataclasses. These defaults are different from vLLM's defaults.
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
if log_prob_config is None:
|
||||
log_prob_config = LogProbConfig()
|
||||
|
||||
if isinstance(sampling_params.strategy, TopKSamplingStrategy):
|
||||
if sampling_params.strategy.top_k == 0:
|
||||
# vLLM treats "k" differently for top-k sampling
|
||||
vllm_top_k = -1
|
||||
else:
|
||||
vllm_top_k = sampling_params.strategy.top_k
|
||||
else:
|
||||
vllm_top_k = -1
|
||||
|
||||
if isinstance(sampling_params.strategy, TopPSamplingStrategy):
|
||||
vllm_top_p = sampling_params.strategy.top_p
|
||||
# Llama Stack only allows temperature with top-P.
|
||||
vllm_temperature = sampling_params.strategy.temperature
|
||||
else:
|
||||
vllm_top_p = 1.0
|
||||
vllm_temperature = 0.0
|
||||
|
||||
# vLLM allows top-p and top-k at the same time.
|
||||
vllm_sampling_params = vllm.SamplingParams.from_optional(
|
||||
max_tokens=(None if sampling_params.max_tokens == 0 else sampling_params.max_tokens),
|
||||
temperature=vllm_temperature,
|
||||
top_p=vllm_top_p,
|
||||
top_k=vllm_top_k,
|
||||
repetition_penalty=sampling_params.repetition_penalty,
|
||||
guided_decoding=_response_format_to_guided_decoding_params(response_format),
|
||||
logprobs=log_prob_config.top_k,
|
||||
)
|
||||
return vllm_sampling_params
|
||||
|
||||
|
||||
class VLLMInferenceImpl(
|
||||
Inference,
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
ModelsProtocolPrivate,
|
||||
):
|
||||
"""
|
||||
vLLM-based inference model adapter for Llama Stack with support for multiple models.
|
||||
|
||||
Requires the configuration parameters documented in the :class:`VllmConfig2` class.
|
||||
"""
|
||||
|
||||
config: VLLMConfig
|
||||
register_helper: ModelRegistryHelper
|
||||
model_ids: set[str]
|
||||
resolved_model_id: str | None
|
||||
engine: AsyncLLMEngine | None
|
||||
chat: OpenAIServingChat | None
|
||||
is_meta_llama_model: bool
|
||||
|
||||
def __init__(self, config: VLLMConfig):
|
||||
self.config = config
|
||||
logger.info(f"Config is: {self.config}")
|
||||
|
||||
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
# The following are initialized when paths are bound to this provider
|
||||
self.resolved_model_id = None
|
||||
self.model_ids = set()
|
||||
self.engine = None
|
||||
self.chat = None
|
||||
self.is_meta_llama_model = False
|
||||
|
||||
###########################################################################
|
||||
# METHODS INHERITED FROM IMPLICIT BASE CLASS.
|
||||
# TODO: Make this class inherit from the new base class ProviderBase once that class exists.
|
||||
|
||||
async def initialize(self) -> None:
|
||||
"""
|
||||
Callback that is invoked through many levels of indirection during provider class
|
||||
instantiation, sometime after when __init__() is called and before any model registration
|
||||
methods or methods connected to a REST API are called.
|
||||
|
||||
It's not clear what assumptions the class can make about the platform's initialization
|
||||
state here that can't be made during __init__(), and vLLM can't be started until we know
|
||||
what model it's supposed to be serving, so nothing happens here currently.
|
||||
"""
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
logger.info(f"Shutting down inline vLLM inference provider {self}.")
|
||||
if self.engine is not None:
|
||||
self.engine.shutdown_background_loop()
|
||||
self.engine = None
|
||||
self.chat = None
|
||||
self.model_ids = set()
|
||||
self.resolved_model_id = None
|
||||
|
||||
###########################################################################
|
||||
# METHODS INHERITED FROM ModelsProtocolPrivate INTERFACE
|
||||
|
||||
# Note that the return type of the superclass method is WRONG
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
"""
|
||||
Callback that is called when the server associates an inference endpoint with an
|
||||
inference provider.
|
||||
|
||||
:param model: Object that encapsulates parameters necessary for identifying a specific
|
||||
LLM.
|
||||
|
||||
:returns: The input ``Model`` object. It may or may not be permissible to change fields
|
||||
before returning this object.
|
||||
"""
|
||||
logger.debug(f"In register_model({model})")
|
||||
|
||||
# First attempt to interpret the model coordinates as a Llama model name
|
||||
resolved_llama_model = sku_list.resolve_model(model.provider_model_id)
|
||||
if resolved_llama_model is not None:
|
||||
# Load from Hugging Face repo into default local cache dir
|
||||
model_id_for_vllm = resolved_llama_model.huggingface_repo
|
||||
|
||||
# Detect a genuine Meta Llama model to trigger Meta-specific preprocessing.
|
||||
# Don't set self.is_meta_llama_model until we actually load the model.
|
||||
is_meta_llama_model = True
|
||||
else: # if resolved_llama_model is None
|
||||
# Not a Llama model name. Pass the model id through to vLLM's loader
|
||||
model_id_for_vllm = model.provider_model_id
|
||||
is_meta_llama_model = False
|
||||
|
||||
if self.resolved_model_id is not None:
|
||||
if model_id_for_vllm != self.resolved_model_id:
|
||||
raise ValueError(
|
||||
f"Attempted to serve two LLMs (ids '{self.resolved_model_id}') and "
|
||||
f"'{model_id_for_vllm}') from one copy of provider '{self}'. Use multiple "
|
||||
f"copies of the provider instead."
|
||||
)
|
||||
else:
|
||||
# Model already loaded
|
||||
logger.info(
|
||||
f"Requested id {model} resolves to {model_id_for_vllm}, which is already loaded. Continuing."
|
||||
)
|
||||
self.model_ids.add(model.model_id)
|
||||
return model
|
||||
|
||||
logger.info(f"Requested id {model} resolves to {model_id_for_vllm}. Loading {model_id_for_vllm}.")
|
||||
if is_meta_llama_model:
|
||||
logger.info(f"Model {model_id_for_vllm} is a Meta Llama model.")
|
||||
self.is_meta_llama_model = is_meta_llama_model
|
||||
|
||||
# If we get here, this is the first time registering a model.
|
||||
# Preload so that the first inference request won't time out.
|
||||
engine_args = AsyncEngineArgs(
|
||||
model=model_id_for_vllm,
|
||||
tokenizer=model_id_for_vllm,
|
||||
tensor_parallel_size=self.config.tensor_parallel_size,
|
||||
enforce_eager=self.config.enforce_eager,
|
||||
gpu_memory_utilization=self.config.gpu_memory_utilization,
|
||||
max_num_seqs=self.config.max_num_seqs,
|
||||
max_model_len=self.config.max_model_len,
|
||||
)
|
||||
self.engine = AsyncLLMEngine.from_engine_args(engine_args)
|
||||
|
||||
# vLLM currently requires the user to specify the tool parser manually. To choose a tool
|
||||
# parser, we need to determine what model architecture is being used. For now, we infer
|
||||
# that information from what config class the model uses.
|
||||
low_level_model_config = self.engine.engine.get_model_config()
|
||||
hf_config = low_level_model_config.hf_config
|
||||
hf_config_class_name = hf_config.__class__.__name__
|
||||
if hf_config_class_name in CONFIG_TYPE_TO_TOOL_PARSER:
|
||||
tool_parser = CONFIG_TYPE_TO_TOOL_PARSER[hf_config_class_name]
|
||||
else:
|
||||
# No info -- choose a default so we can at least attempt tool
|
||||
# use.
|
||||
tool_parser = DEFAULT_TOOL_PARSER
|
||||
logger.debug(f"{hf_config_class_name=}")
|
||||
logger.debug(f"{tool_parser=}")
|
||||
|
||||
# Wrap the lower-level engine in an OpenAI-compatible chat API
|
||||
model_config = await self.engine.get_model_config()
|
||||
self.chat = OpenAIServingChat(
|
||||
engine_client=self.engine,
|
||||
model_config=model_config,
|
||||
models=OpenAIServingModels(
|
||||
engine_client=self.engine,
|
||||
model_config=model_config,
|
||||
base_model_paths=[
|
||||
# The layer below us will only see resolved model IDs
|
||||
BaseModelPath(model_id_for_vllm, model_id_for_vllm)
|
||||
],
|
||||
),
|
||||
response_role="assistant",
|
||||
request_logger=None, # Use default logging
|
||||
chat_template=None, # Use default template from model checkpoint
|
||||
enable_auto_tools=True,
|
||||
tool_parser=tool_parser,
|
||||
chat_template_content_format="auto",
|
||||
)
|
||||
self.resolved_model_id = model_id_for_vllm
|
||||
self.model_ids.add(model.model_id)
|
||||
|
||||
logger.info(f"Finished preloading model: {model_id_for_vllm}")
|
||||
|
||||
return model
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
"""
|
||||
Callback that is called when the server removes an inference endpoint from an inference
|
||||
provider.
|
||||
|
||||
:param model_id: The same external ID that the higher layers of the stack previously passed
|
||||
to :func:`register_model()`
|
||||
"""
|
||||
if model_id not in self.model_ids:
|
||||
raise ValueError(
|
||||
f"Attempted to unregister model ID '{model_id}', but that ID is not registered to this provider."
|
||||
)
|
||||
self.model_ids.remove(model_id)
|
||||
|
||||
if len(self.model_ids) == 0:
|
||||
# Last model was just unregistered. Shut down the connection to vLLM and free up
|
||||
# resources.
|
||||
# Note that this operation may cause in-flight chat completion requests on the
|
||||
# now-unregistered model to return errors.
|
||||
self.resolved_model_id = None
|
||||
self.chat = None
|
||||
self.engine.shutdown_background_loop()
|
||||
self.engine = None
|
||||
|
||||
###########################################################################
|
||||
# METHODS INHERITED FROM Inference INTERFACE
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> CompletionResponse | AsyncIterator[CompletionResponseStreamChunk]:
|
||||
if model_id not in self.model_ids:
|
||||
raise ValueError(
|
||||
f"This adapter is not registered to model id '{model_id}'. Registered IDs are: {self.model_ids}"
|
||||
)
|
||||
if not isinstance(content, str):
|
||||
raise NotImplementedError("Multimodal input not currently supported")
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
||||
converted_sampling_params = _convert_sampling_params(sampling_params, response_format, logprobs)
|
||||
|
||||
logger.debug(f"{converted_sampling_params=}")
|
||||
|
||||
if stream:
|
||||
return self._streaming_completion(content, converted_sampling_params)
|
||||
else:
|
||||
streaming_result = None
|
||||
async for _ in self._streaming_completion(content, converted_sampling_params):
|
||||
pass
|
||||
return CompletionResponse(
|
||||
content=streaming_result.delta,
|
||||
stop_reason=streaming_result.stop_reason,
|
||||
logprobs=streaming_result.logprobs,
|
||||
)
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message], # type: ignore
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None, # type: ignore
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> ChatCompletionResponse | ChatCompletionResponseStreamChunk:
|
||||
sampling_params = sampling_params or SamplingParams()
|
||||
if model_id not in self.model_ids:
|
||||
raise ValueError(
|
||||
f"This adapter is not registered to model id '{model_id}'. Registered IDs are: {self.model_ids}"
|
||||
)
|
||||
|
||||
# Convert to Llama Stack internal format for consistency
|
||||
request = ChatCompletionRequest(
|
||||
model=self.resolved_model_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
tools=tools,
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
if self.is_meta_llama_model:
|
||||
# Bypass vLLM chat templating layer for Meta Llama models, because the
|
||||
# templating layer in Llama Stack currently produces better results.
|
||||
logger.debug(
|
||||
f"Routing {self.resolved_model_id} chat completion through "
|
||||
f"Llama Stack's templating layer instead of vLLM's."
|
||||
)
|
||||
return await self._chat_completion_for_meta_llama(request)
|
||||
|
||||
logger.debug(f"{self.resolved_model_id} is not a Meta Llama model")
|
||||
|
||||
# Arguments to the vLLM call must be packaged as a ChatCompletionRequest dataclass.
|
||||
# Note that this dataclass has the same name as a similar dataclass in Llama Stack.
|
||||
request_options = await llama_stack_chat_completion_to_openai_chat_completion_dict(request)
|
||||
chat_completion_request = vllm.entrypoints.openai.protocol.ChatCompletionRequest(**request_options)
|
||||
|
||||
logger.debug(f"Converted request: {chat_completion_request}")
|
||||
|
||||
vllm_result = await self.chat.create_chat_completion(chat_completion_request)
|
||||
logger.debug(f"Result from vLLM: {vllm_result}")
|
||||
if isinstance(vllm_result, vllm.entrypoints.openai.protocol.ErrorResponse):
|
||||
raise ValueError(f"Error from vLLM layer: {vllm_result}")
|
||||
|
||||
# Return type depends on "stream" argument
|
||||
if stream:
|
||||
if not isinstance(vllm_result, AsyncGenerator):
|
||||
raise TypeError(f"Unexpected result type {type(vllm_result)} for streaming inference call")
|
||||
# vLLM client returns a stream of strings, which need to be parsed.
|
||||
# Stream comes in the form of an async generator.
|
||||
return self._convert_streaming_results(vllm_result)
|
||||
else:
|
||||
if not isinstance(vllm_result, vllm.entrypoints.openai.protocol.ChatCompletionResponse):
|
||||
raise TypeError(f"Unexpected result type {type(vllm_result)} for non-streaming inference call")
|
||||
return self._convert_non_streaming_results(vllm_result)
|
||||
|
||||
###########################################################################
|
||||
# INTERNAL METHODS
|
||||
|
||||
async def _streaming_completion(
|
||||
self, content: str, sampling_params: vllm.SamplingParams
|
||||
) -> AsyncIterator[CompletionResponseStreamChunk]:
|
||||
"""Internal implementation of :func:`completion()` API for the streaming case. Assumes
|
||||
that arguments have been validated upstream.
|
||||
|
||||
:param content: Must be a string
|
||||
:param sampling_params: Paramters from public API's ``response_format``
|
||||
and ``sampling_params`` arguments, converted to VLLM format
|
||||
"""
|
||||
# We run agains the vLLM generate() call directly instead of using the OpenAI-compatible
|
||||
# layer, because doing so simplifies the code here.
|
||||
|
||||
# The vLLM engine requires a unique identifier for each call to generate()
|
||||
request_id = _random_uuid_str()
|
||||
|
||||
# The vLLM generate() API is streaming-only and returns an async generator.
|
||||
# The generator returns objects of type vllm.RequestOutput.
|
||||
results_generator = self.engine.generate(content, sampling_params, request_id)
|
||||
|
||||
# Need to know the model's EOS token ID for the conversion code below.
|
||||
# AsyncLLMEngine is a wrapper around LLMEngine, and the tokenizer is only available if
|
||||
# we drill down to the LLMEngine inside the AsyncLLMEngine.
|
||||
# Similarly, the tokenizer in an LLMEngine is a wrapper around a BaseTokenizerGroup,
|
||||
# and we need to drill down to the Hugging Face tokenizer inside the BaseTokenizerGroup.
|
||||
llm_engine = self.engine.engine
|
||||
tokenizer_group = llm_engine.tokenizer
|
||||
eos_token_id = tokenizer_group.tokenizer.eos_token_id
|
||||
|
||||
request_output: vllm.RequestOutput = None
|
||||
async for request_output in results_generator:
|
||||
# Check for weird inference failures
|
||||
if request_output.outputs is None or len(request_output.outputs) == 0:
|
||||
# This case also should never happen
|
||||
raise ValueError("Inference produced empty result")
|
||||
|
||||
# If we get here, then request_output contains the final output of the generate() call.
|
||||
# The result may include multiple alternate outputs, but Llama Stack APIs only allow
|
||||
# us to return one.
|
||||
output: vllm.CompletionOutput = request_output.outputs[0]
|
||||
completion_string = output.text
|
||||
|
||||
# Convert logprobs from vLLM's format to Llama Stack's format
|
||||
logprobs = [
|
||||
TokenLogProbs(logprobs_by_token={v.decoded_token: v.logprob for _, v in logprob_dict.items()})
|
||||
for logprob_dict in output.logprobs
|
||||
]
|
||||
|
||||
# The final output chunk should be labeled with the reason that the overall generate()
|
||||
# call completed.
|
||||
logger.debug(f"{output.stop_reason=}; {type(output.stop_reason)=}")
|
||||
if output.stop_reason is None:
|
||||
stop_reason = None # Still going
|
||||
elif output.stop_reason == "stop":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif output.stop_reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
elif isinstance(output.stop_reason, int):
|
||||
# If the model config specifies multiple end-of-sequence tokens, then vLLM
|
||||
# will return the token ID of the EOS token in the stop_reason field.
|
||||
stop_reason = StopReason.end_of_turn
|
||||
else:
|
||||
raise ValueError(f"Unrecognized stop reason '{output.stop_reason}'")
|
||||
|
||||
# vLLM's protocol outputs the stop token, then sets end of message on the next step for
|
||||
# some reason.
|
||||
if request_output.outputs[-1].token_ids[-1] == eos_token_id:
|
||||
stop_reason = StopReason.end_of_message
|
||||
|
||||
yield CompletionResponseStreamChunk(delta=completion_string, stop_reason=stop_reason, logprobs=logprobs)
|
||||
|
||||
# Llama Stack requires that the last chunk have a stop reason, but vLLM doesn't always
|
||||
# provide one if it runs out of tokens.
|
||||
if stop_reason is None:
|
||||
yield CompletionResponseStreamChunk(
|
||||
delta=completion_string,
|
||||
stop_reason=StopReason.out_of_tokens,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
def _convert_non_streaming_results(
|
||||
self, vllm_result: vllm.entrypoints.openai.protocol.ChatCompletionResponse
|
||||
) -> ChatCompletionResponse:
|
||||
"""
|
||||
Subroutine to convert the non-streaming output of vLLM's OpenAI-compatible API into an
|
||||
equivalent Llama Stack object.
|
||||
|
||||
The result from vLLM's non-streaming API is a dataclass with the same name as the Llama
|
||||
Stack ChatCompletionResponse dataclass, but with more and different field names. We ignore
|
||||
the fields that aren't currently present in the Llama Stack dataclass.
|
||||
"""
|
||||
|
||||
# There may be multiple responses, but we can only pass through the first one.
|
||||
if len(vllm_result.choices) == 0:
|
||||
raise ValueError("Don't know how to convert response object without any responses")
|
||||
vllm_message = vllm_result.choices[0].message
|
||||
vllm_finish_reason = vllm_result.choices[0].finish_reason
|
||||
|
||||
converted_message = CompletionMessage(
|
||||
role=vllm_message.role,
|
||||
# Llama Stack API won't accept None for content field.
|
||||
content=("" if vllm_message.content is None else vllm_message.content),
|
||||
stop_reason=get_stop_reason(vllm_finish_reason),
|
||||
tool_calls=[
|
||||
ToolCall(
|
||||
call_id=t.id,
|
||||
tool_name=t.function.name,
|
||||
# vLLM function args come back as a string. Llama Stack expects JSON.
|
||||
arguments=json.loads(t.function.arguments),
|
||||
arguments_json=t.function.arguments,
|
||||
)
|
||||
for t in vllm_message.tool_calls
|
||||
],
|
||||
)
|
||||
|
||||
# TODO: Convert logprobs
|
||||
|
||||
logger.debug(f"Converted message: {converted_message}")
|
||||
|
||||
return ChatCompletionResponse(
|
||||
completion_message=converted_message,
|
||||
)
|
||||
|
||||
async def _chat_completion_for_meta_llama(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]:
|
||||
"""
|
||||
Subroutine that routes chat completions for Meta Llama models through Llama Stack's
|
||||
chat template instead of using vLLM's version of that template. The Llama Stack version
|
||||
of the chat template currently produces more reliable outputs.
|
||||
|
||||
Once vLLM's support for Meta Llama models has matured more, we should consider routing
|
||||
Meta Llama requests through the vLLM chat completions API instead of using this method.
|
||||
"""
|
||||
formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
# Note that this function call modifies `request` in place.
|
||||
prompt = await chat_completion_request_to_prompt(request, self.resolved_model_id)
|
||||
|
||||
model_id = list(self.model_ids)[0] # Any model ID will do here
|
||||
completion_response_or_iterator = await self.completion(
|
||||
model_id=model_id,
|
||||
content=prompt,
|
||||
sampling_params=request.sampling_params,
|
||||
response_format=request.response_format,
|
||||
stream=request.stream,
|
||||
logprobs=request.logprobs,
|
||||
)
|
||||
|
||||
if request.stream:
|
||||
if not isinstance(completion_response_or_iterator, AsyncIterator):
|
||||
raise TypeError(
|
||||
f"Received unexpected result type {type(completion_response_or_iterator)}for streaming request."
|
||||
)
|
||||
return self._chat_completion_for_meta_llama_streaming(completion_response_or_iterator, request)
|
||||
|
||||
# elsif not request.stream:
|
||||
if not isinstance(completion_response_or_iterator, CompletionResponse):
|
||||
raise TypeError(
|
||||
f"Received unexpected result type {type(completion_response_or_iterator)}for non-streaming request."
|
||||
)
|
||||
completion_response: CompletionResponse = completion_response_or_iterator
|
||||
raw_message = formatter.decode_assistant_message_from_content(
|
||||
completion_response.content, completion_response.stop_reason
|
||||
)
|
||||
return ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content=raw_message.content,
|
||||
stop_reason=raw_message.stop_reason,
|
||||
tool_calls=raw_message.tool_calls,
|
||||
),
|
||||
logprobs=completion_response.logprobs,
|
||||
)
|
||||
|
||||
async def _chat_completion_for_meta_llama_streaming(
|
||||
self, results_iterator: AsyncIterator, request: ChatCompletionRequest
|
||||
) -> AsyncIterator:
|
||||
"""
|
||||
Code from :func:`_chat_completion_for_meta_llama()` that needs to be a separate
|
||||
method to keep asyncio happy.
|
||||
"""
|
||||
|
||||
# Convert to OpenAI format, then use shared code to convert to Llama Stack format.
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
chunk: CompletionResponseStreamChunk # Make Pylance happy
|
||||
last_text_len = 0
|
||||
async for chunk in results_iterator:
|
||||
if chunk.stop_reason == StopReason.end_of_turn:
|
||||
finish_reason = "stop"
|
||||
elif chunk.stop_reason == StopReason.end_of_message:
|
||||
finish_reason = "eos"
|
||||
elif chunk.stop_reason == StopReason.out_of_tokens:
|
||||
finish_reason = "length"
|
||||
else:
|
||||
finish_reason = None
|
||||
|
||||
# Convert delta back to an actual delta
|
||||
text_delta = chunk.delta[last_text_len:]
|
||||
last_text_len = len(chunk.delta)
|
||||
|
||||
logger.debug(f"{text_delta=}; {finish_reason=}")
|
||||
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[OpenAICompatCompletionChoice(finish_reason=finish_reason, text=text_delta)]
|
||||
)
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
logger.debug(f"Returning chunk: {chunk}")
|
||||
yield chunk
|
||||
|
||||
async def _convert_streaming_results(self, vllm_result: AsyncIterator) -> AsyncIterator:
|
||||
"""
|
||||
Subroutine that wraps the streaming outputs of vLLM's OpenAI-compatible
|
||||
API into a second async iterator that returns Llama Stack objects.
|
||||
|
||||
:param vllm_result: Stream of strings that need to be parsed
|
||||
"""
|
||||
# Tool calls come in pieces, but Llama Stack expects them in bigger chunks. We build up
|
||||
# those chunks and output them at the end.
|
||||
# This data structure holds the current set of partial tool calls.
|
||||
index_to_tool_call: dict[int, dict] = dict()
|
||||
|
||||
# The Llama Stack event stream must always start with a start event. Use an empty one to
|
||||
# simplify logic below
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
delta=TextDelta(text=""),
|
||||
stop_reason=None,
|
||||
)
|
||||
)
|
||||
|
||||
converted_stop_reason = None
|
||||
async for chunk_str in vllm_result:
|
||||
# Due to OpenAI compatibility, each event in the stream will start with "data: " and
|
||||
# end with "\n\n".
|
||||
_prefix = "data: "
|
||||
_suffix = "\n\n"
|
||||
if not chunk_str.startswith(_prefix) or not chunk_str.endswith(_suffix):
|
||||
raise ValueError(f"Can't parse result string from vLLM: '{re.escape(chunk_str)}'")
|
||||
|
||||
# In between the "data: " and newlines is an event record
|
||||
data_str = chunk_str[len(_prefix) : -len(_suffix)]
|
||||
|
||||
# The end of the stream is indicated with "[DONE]"
|
||||
if data_str == "[DONE]":
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta=TextDelta(text=""),
|
||||
stop_reason=converted_stop_reason,
|
||||
)
|
||||
)
|
||||
return
|
||||
|
||||
# Anything that is not "[DONE]" should be a JSON record
|
||||
parsed_chunk = json.loads(data_str)
|
||||
|
||||
logger.debug(f"Parsed JSON event to:\n{json.dumps(parsed_chunk, indent=2)}")
|
||||
|
||||
# The result may contain multiple completions, but Llama Stack APIs only support
|
||||
# returning one.
|
||||
first_choice = parsed_chunk["choices"][0]
|
||||
converted_stop_reason = get_stop_reason(first_choice["finish_reason"])
|
||||
delta_record = first_choice["delta"]
|
||||
|
||||
if "content" in delta_record:
|
||||
# Text delta
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=TextDelta(text=delta_record["content"]),
|
||||
stop_reason=converted_stop_reason,
|
||||
)
|
||||
)
|
||||
elif "tool_calls" in delta_record:
|
||||
# Tool call(s). Llama Stack APIs do not have a clear way to return partial tool
|
||||
# calls, so buffer until we get a "tool calls" stop reason
|
||||
for tc in delta_record["tool_calls"]:
|
||||
index = tc["index"]
|
||||
if index not in index_to_tool_call:
|
||||
# First time this tool call is showing up
|
||||
index_to_tool_call[index] = dict()
|
||||
tool_call = index_to_tool_call[index]
|
||||
if "id" in tc:
|
||||
tool_call["call_id"] = tc["id"]
|
||||
if "function" in tc:
|
||||
if "name" in tc["function"]:
|
||||
tool_call["tool_name"] = tc["function"]["name"]
|
||||
if "arguments" in tc["function"]:
|
||||
# Arguments comes in as pieces of a string
|
||||
if "arguments_str" not in tool_call:
|
||||
tool_call["arguments_str"] = ""
|
||||
tool_call["arguments_str"] += tc["function"]["arguments"]
|
||||
else:
|
||||
raise ValueError(f"Don't know how to parse event delta: {delta_record}")
|
||||
|
||||
if first_choice["finish_reason"] == "tool_calls":
|
||||
# Special OpenAI code for "tool calls complete".
|
||||
# Output the buffered tool calls. Llama Stack requires a separate event per tool
|
||||
# call.
|
||||
for tool_call_record in index_to_tool_call.values():
|
||||
# Arguments come in as a string. Parse the completed string.
|
||||
tool_call_record["arguments"] = json.loads(tool_call_record["arguments_str"])
|
||||
del tool_call_record["arguments_str"]
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(tool_call=tool_call_record, parse_status="succeeded"),
|
||||
stop_reason=converted_stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
# If we get here, we've lost the connection with the vLLM event stream before it ended
|
||||
# normally.
|
||||
raise ValueError("vLLM event stream ended without [DONE] message.")
|
||||
|
|
@ -319,7 +319,7 @@ class HFFinetuningSingleDevice:
|
|||
use_cpu=True if device.type == "cpu" and not torch.backends.mps.is_available() else False,
|
||||
save_strategy=save_strategy,
|
||||
report_to="none",
|
||||
max_seq_length=provider_config.max_seq_length,
|
||||
max_length=provider_config.max_seq_length,
|
||||
gradient_accumulation_steps=config.gradient_accumulation_steps,
|
||||
gradient_checkpointing=provider_config.gradient_checkpointing,
|
||||
learning_rate=lr,
|
||||
|
|
|
|||
|
|
@ -146,9 +146,9 @@ class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
|||
pass
|
||||
|
||||
async def register_shield(self, shield: Shield) -> None:
|
||||
# Allow any model to be registered as a shield
|
||||
# The model will be validated during runtime when making inference calls
|
||||
pass
|
||||
model_id = shield.provider_resource_id
|
||||
if not model_id:
|
||||
raise ValueError("Llama Guard shield must have a model id")
|
||||
|
||||
async def run_shield(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -11,19 +11,9 @@ from opentelemetry.sdk.trace import ReadableSpan
|
|||
from opentelemetry.sdk.trace.export import SpanProcessor
|
||||
from opentelemetry.trace.status import StatusCode
|
||||
|
||||
# Colors for console output
|
||||
COLORS = {
|
||||
"reset": "\033[0m",
|
||||
"bold": "\033[1m",
|
||||
"dim": "\033[2m",
|
||||
"red": "\033[31m",
|
||||
"green": "\033[32m",
|
||||
"yellow": "\033[33m",
|
||||
"blue": "\033[34m",
|
||||
"magenta": "\033[35m",
|
||||
"cyan": "\033[36m",
|
||||
"white": "\033[37m",
|
||||
}
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
logger = get_logger(name="console_span_processor", category="telemetry")
|
||||
|
||||
|
||||
class ConsoleSpanProcessor(SpanProcessor):
|
||||
|
|
@ -35,34 +25,21 @@ class ConsoleSpanProcessor(SpanProcessor):
|
|||
return
|
||||
|
||||
timestamp = datetime.fromtimestamp(span.start_time / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3]
|
||||
|
||||
print(
|
||||
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
|
||||
f"{COLORS['magenta']}[START]{COLORS['reset']} "
|
||||
f"{COLORS['dim']}{span.name}{COLORS['reset']}"
|
||||
)
|
||||
logger.info(f"[dim]{timestamp}[/dim] [bold magenta][START][/bold magenta] [dim]{span.name}[/dim]")
|
||||
|
||||
def on_end(self, span: ReadableSpan) -> None:
|
||||
if span.attributes and span.attributes.get("__autotraced__"):
|
||||
return
|
||||
|
||||
timestamp = datetime.fromtimestamp(span.end_time / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3]
|
||||
|
||||
span_context = (
|
||||
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
|
||||
f"{COLORS['magenta']}[END]{COLORS['reset']} "
|
||||
f"{COLORS['dim']}{span.name}{COLORS['reset']}"
|
||||
)
|
||||
|
||||
span_context = f"[dim]{timestamp}[/dim] [bold magenta][END][/bold magenta] [dim]{span.name}[/dim]"
|
||||
if span.status.status_code == StatusCode.ERROR:
|
||||
span_context += f"{COLORS['reset']} {COLORS['red']}[ERROR]{COLORS['reset']}"
|
||||
span_context += " [bold red][ERROR][/bold red]"
|
||||
elif span.status.status_code != StatusCode.UNSET:
|
||||
span_context += f"{COLORS['reset']} [{span.status.status_code}]"
|
||||
|
||||
span_context += f" [{span.status.status_code}]"
|
||||
duration_ms = (span.end_time - span.start_time) / 1e6
|
||||
span_context += f"{COLORS['reset']} ({duration_ms:.2f}ms)"
|
||||
|
||||
print(span_context)
|
||||
span_context += f" ({duration_ms:.2f}ms)"
|
||||
logger.info(span_context)
|
||||
|
||||
if self.print_attributes and span.attributes:
|
||||
for key, value in span.attributes.items():
|
||||
|
|
@ -71,31 +48,26 @@ class ConsoleSpanProcessor(SpanProcessor):
|
|||
str_value = str(value)
|
||||
if len(str_value) > 1000:
|
||||
str_value = str_value[:997] + "..."
|
||||
print(f" {COLORS['dim']}{key}: {str_value}{COLORS['reset']}")
|
||||
logger.info(f" [dim]{key}[/dim]: {str_value}")
|
||||
|
||||
for event in span.events:
|
||||
event_time = datetime.fromtimestamp(event.timestamp / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3]
|
||||
|
||||
severity = event.attributes.get("severity", "info")
|
||||
message = event.attributes.get("message", event.name)
|
||||
if isinstance(message, dict | list):
|
||||
if isinstance(message, dict) or isinstance(message, list):
|
||||
message = json.dumps(message, indent=2)
|
||||
|
||||
severity_colors = {
|
||||
"error": f"{COLORS['bold']}{COLORS['red']}",
|
||||
"warn": f"{COLORS['bold']}{COLORS['yellow']}",
|
||||
"info": COLORS["white"],
|
||||
"debug": COLORS["dim"],
|
||||
}
|
||||
msg_color = severity_colors.get(severity, COLORS["white"])
|
||||
|
||||
print(f" {event_time} {msg_color}[{severity.upper()}] {message}{COLORS['reset']}")
|
||||
|
||||
severity_color = {
|
||||
"error": "red",
|
||||
"warn": "yellow",
|
||||
"info": "white",
|
||||
"debug": "dim",
|
||||
}.get(severity, "white")
|
||||
logger.info(f" {event_time} [bold {severity_color}][{severity.upper()}][/bold {severity_color}] {message}")
|
||||
if event.attributes:
|
||||
for key, value in event.attributes.items():
|
||||
if key.startswith("__") or key in ["message", "severity"]:
|
||||
continue
|
||||
print(f" {COLORS['dim']}{key}: {value}{COLORS['reset']}")
|
||||
logger.info(f"/r[dim]{key}[/dim]: {value}")
|
||||
|
||||
def shutdown(self) -> None:
|
||||
"""Shutdown the processor."""
|
||||
|
|
|
|||
|
|
@ -16,6 +16,6 @@ async def get_provider_impl(config: ChromaVectorIOConfig, deps: dict[Api, Any]):
|
|||
ChromaVectorIOAdapter,
|
||||
)
|
||||
|
||||
impl = ChromaVectorIOAdapter(config, deps[Api.inference])
|
||||
impl = ChromaVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -6,12 +6,25 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChromaVectorIOConfig(BaseModel):
|
||||
db_path: str
|
||||
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, db_path: str = "${env.CHROMADB_PATH}", **kwargs: Any) -> dict[str, Any]:
|
||||
return {"db_path": db_path}
|
||||
def sample_run_config(
|
||||
cls, __distro_dir__: str, db_path: str = "${env.CHROMADB_PATH}", **kwargs: Any
|
||||
) -> dict[str, Any]:
|
||||
return {
|
||||
"db_path": db_path,
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="chroma_inline_registry.db",
|
||||
),
|
||||
}
|
||||
|
|
|
|||
|
|
@ -55,6 +55,11 @@ class FaissIndex(EmbeddingIndex):
|
|||
self.kvstore = kvstore
|
||||
self.bank_id = bank_id
|
||||
|
||||
# A list of chunk id's in the same order as they are in the index,
|
||||
# must be updated when chunks are added or removed
|
||||
self.chunk_id_lock = asyncio.Lock()
|
||||
self.chunk_ids: list[Any] = []
|
||||
|
||||
@classmethod
|
||||
async def create(cls, dimension: int, kvstore: KVStore | None = None, bank_id: str | None = None):
|
||||
instance = cls(dimension, kvstore, bank_id)
|
||||
|
|
@ -75,6 +80,7 @@ class FaissIndex(EmbeddingIndex):
|
|||
buffer = io.BytesIO(base64.b64decode(data["faiss_index"]))
|
||||
try:
|
||||
self.index = faiss.deserialize_index(np.load(buffer, allow_pickle=False))
|
||||
self.chunk_ids = [chunk.chunk_id for chunk in self.chunk_by_index.values()]
|
||||
except Exception as e:
|
||||
logger.debug(e, exc_info=True)
|
||||
raise ValueError(
|
||||
|
|
@ -114,11 +120,33 @@ class FaissIndex(EmbeddingIndex):
|
|||
for i, chunk in enumerate(chunks):
|
||||
self.chunk_by_index[indexlen + i] = chunk
|
||||
|
||||
self.index.add(np.array(embeddings).astype(np.float32))
|
||||
async with self.chunk_id_lock:
|
||||
self.index.add(np.array(embeddings).astype(np.float32))
|
||||
self.chunk_ids.extend([chunk.chunk_id for chunk in chunks])
|
||||
|
||||
# Save updated index
|
||||
await self._save_index()
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
if chunk_id not in self.chunk_ids:
|
||||
return
|
||||
|
||||
async with self.chunk_id_lock:
|
||||
index = self.chunk_ids.index(chunk_id)
|
||||
self.index.remove_ids(np.array([index]))
|
||||
|
||||
new_chunk_by_index = {}
|
||||
for idx, chunk in self.chunk_by_index.items():
|
||||
# Shift all chunks after the removed chunk to the left
|
||||
if idx > index:
|
||||
new_chunk_by_index[idx - 1] = chunk
|
||||
else:
|
||||
new_chunk_by_index[idx] = chunk
|
||||
self.chunk_by_index = new_chunk_by_index
|
||||
self.chunk_ids.pop(index)
|
||||
|
||||
await self._save_index()
|
||||
|
||||
async def query_vector(
|
||||
self,
|
||||
embedding: NDArray,
|
||||
|
|
@ -261,47 +289,8 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
|
|||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
"""Save vector store file data to kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(file_info))
|
||||
content_key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=content_key, value=json.dumps(file_contents))
|
||||
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
"""Load vector store file metadata from kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
stored_data = await self.kvstore.get(key)
|
||||
return json.loads(stored_data) if stored_data else {}
|
||||
|
||||
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
|
||||
"""Load vector store file contents from kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}"
|
||||
stored_data = await self.kvstore.get(key)
|
||||
return json.loads(stored_data) if stored_data else []
|
||||
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
"""Update vector store file metadata in kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(file_info))
|
||||
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
"""Delete vector store data from kvstore."""
|
||||
assert self.kvstore is not None
|
||||
|
||||
keys_to_delete = [
|
||||
f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}",
|
||||
f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}",
|
||||
]
|
||||
for key in keys_to_delete:
|
||||
try:
|
||||
await self.kvstore.delete(key)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete key {key}: {e}")
|
||||
continue
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
"""Delete a chunk from a faiss index"""
|
||||
faiss_index = self.cache[store_id].index
|
||||
for chunk_id in chunk_ids:
|
||||
await faiss_index.delete_chunk(chunk_id)
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import sqlite3
|
||||
|
|
@ -426,6 +425,35 @@ class SQLiteVecIndex(EmbeddingIndex):
|
|||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
"""Remove a chunk from the SQLite vector store."""
|
||||
|
||||
def _delete_chunk():
|
||||
connection = _create_sqlite_connection(self.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute("BEGIN TRANSACTION")
|
||||
|
||||
# Delete from metadata table
|
||||
cur.execute(f"DELETE FROM {self.metadata_table} WHERE id = ?", (chunk_id,))
|
||||
|
||||
# Delete from vector table
|
||||
cur.execute(f"DELETE FROM {self.vector_table} WHERE id = ?", (chunk_id,))
|
||||
|
||||
# Delete from FTS table
|
||||
cur.execute(f"DELETE FROM {self.fts_table} WHERE id = ?", (chunk_id,))
|
||||
|
||||
connection.commit()
|
||||
except Exception as e:
|
||||
connection.rollback()
|
||||
logger.error(f"Error deleting chunk {chunk_id}: {e}")
|
||||
raise
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_delete_chunk)
|
||||
|
||||
|
||||
class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
"""
|
||||
|
|
@ -506,140 +534,6 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
"""Save vector store file metadata to SQLite database."""
|
||||
|
||||
def _create_or_store():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
# Create a table to persist OpenAI vector store files.
|
||||
cur.execute("""
|
||||
CREATE TABLE IF NOT EXISTS openai_vector_store_files (
|
||||
store_id TEXT,
|
||||
file_id TEXT,
|
||||
metadata TEXT,
|
||||
PRIMARY KEY (store_id, file_id)
|
||||
);
|
||||
""")
|
||||
cur.execute("""
|
||||
CREATE TABLE IF NOT EXISTS openai_vector_store_files_contents (
|
||||
store_id TEXT,
|
||||
file_id TEXT,
|
||||
contents TEXT,
|
||||
PRIMARY KEY (store_id, file_id)
|
||||
);
|
||||
""")
|
||||
connection.commit()
|
||||
cur.execute(
|
||||
"INSERT OR REPLACE INTO openai_vector_store_files (store_id, file_id, metadata) VALUES (?, ?, ?)",
|
||||
(store_id, file_id, json.dumps(file_info)),
|
||||
)
|
||||
cur.execute(
|
||||
"INSERT OR REPLACE INTO openai_vector_store_files_contents (store_id, file_id, contents) VALUES (?, ?, ?)",
|
||||
(store_id, file_id, json.dumps(file_contents)),
|
||||
)
|
||||
connection.commit()
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving openai vector store file {store_id} {file_id}: {e}")
|
||||
raise
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
try:
|
||||
await asyncio.to_thread(_create_or_store)
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving openai vector store file {store_id} {file_id}: {e}")
|
||||
raise
|
||||
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
"""Load vector store file metadata from SQLite database."""
|
||||
|
||||
def _load():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute(
|
||||
"SELECT metadata FROM openai_vector_store_files WHERE store_id = ? AND file_id = ?",
|
||||
(store_id, file_id),
|
||||
)
|
||||
row = cur.fetchone()
|
||||
if row is None:
|
||||
return None
|
||||
(metadata,) = row
|
||||
return metadata
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
stored_data = await asyncio.to_thread(_load)
|
||||
return json.loads(stored_data) if stored_data else {}
|
||||
|
||||
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
|
||||
"""Load vector store file contents from SQLite database."""
|
||||
|
||||
def _load():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute(
|
||||
"SELECT contents FROM openai_vector_store_files_contents WHERE store_id = ? AND file_id = ?",
|
||||
(store_id, file_id),
|
||||
)
|
||||
row = cur.fetchone()
|
||||
if row is None:
|
||||
return None
|
||||
(contents,) = row
|
||||
return contents
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
stored_contents = await asyncio.to_thread(_load)
|
||||
return json.loads(stored_contents) if stored_contents else []
|
||||
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
"""Update vector store file metadata in SQLite database."""
|
||||
|
||||
def _update():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute(
|
||||
"UPDATE openai_vector_store_files SET metadata = ? WHERE store_id = ? AND file_id = ?",
|
||||
(json.dumps(file_info), store_id, file_id),
|
||||
)
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_update)
|
||||
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
"""Delete vector store file metadata from SQLite database."""
|
||||
|
||||
def _delete():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute(
|
||||
"DELETE FROM openai_vector_store_files WHERE store_id = ? AND file_id = ?", (store_id, file_id)
|
||||
)
|
||||
cur.execute(
|
||||
"DELETE FROM openai_vector_store_files_contents WHERE store_id = ? AND file_id = ?",
|
||||
(store_id, file_id),
|
||||
)
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_delete)
|
||||
|
||||
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
|
|
@ -655,3 +549,13 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
if not index:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
"""Delete a chunk from a sqlite_vec index."""
|
||||
index = await self._get_and_cache_vector_db_index(store_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {store_id} not found")
|
||||
|
||||
for chunk_id in chunk_ids:
|
||||
# Use the index's delete_chunk method
|
||||
await index.index.delete_chunk(chunk_id)
|
||||
|
|
|
|||
|
|
@ -37,16 +37,6 @@ def available_providers() -> list[ProviderSpec]:
|
|||
config_class="llama_stack.providers.inline.inference.meta_reference.MetaReferenceInferenceConfig",
|
||||
description="Meta's reference implementation of inference with support for various model formats and optimization techniques.",
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.inference,
|
||||
provider_type="inline::vllm",
|
||||
pip_packages=[
|
||||
"vllm",
|
||||
],
|
||||
module="llama_stack.providers.inline.inference.vllm",
|
||||
config_class="llama_stack.providers.inline.inference.vllm.VLLMConfig",
|
||||
description="vLLM inference provider for high-performance model serving with PagedAttention and continuous batching.",
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.inference,
|
||||
provider_type="inline::sentence-transformers",
|
||||
|
|
@ -234,17 +224,6 @@ def available_providers() -> list[ProviderSpec]:
|
|||
description="Groq inference provider for ultra-fast inference using Groq's LPU technology.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="fireworks-openai-compat",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.fireworks_openai_compat",
|
||||
config_class="llama_stack.providers.remote.inference.fireworks_openai_compat.config.FireworksCompatConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.fireworks_openai_compat.config.FireworksProviderDataValidator",
|
||||
description="Fireworks AI OpenAI-compatible provider for using Fireworks models with OpenAI API format.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
|
|
@ -256,50 +235,6 @@ def available_providers() -> list[ProviderSpec]:
|
|||
description="Llama OpenAI-compatible provider for using Llama models with OpenAI API format.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="together-openai-compat",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.together_openai_compat",
|
||||
config_class="llama_stack.providers.remote.inference.together_openai_compat.config.TogetherCompatConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.together_openai_compat.config.TogetherProviderDataValidator",
|
||||
description="Together AI OpenAI-compatible provider for using Together models with OpenAI API format.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="groq-openai-compat",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.groq_openai_compat",
|
||||
config_class="llama_stack.providers.remote.inference.groq_openai_compat.config.GroqCompatConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.groq_openai_compat.config.GroqProviderDataValidator",
|
||||
description="Groq OpenAI-compatible provider for using Groq models with OpenAI API format.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="sambanova-openai-compat",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.sambanova_openai_compat",
|
||||
config_class="llama_stack.providers.remote.inference.sambanova_openai_compat.config.SambaNovaCompatConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.sambanova_openai_compat.config.SambaNovaProviderDataValidator",
|
||||
description="SambaNova OpenAI-compatible provider for using SambaNova models with OpenAI API format.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="cerebras-openai-compat",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.cerebras_openai_compat",
|
||||
config_class="llama_stack.providers.remote.inference.cerebras_openai_compat.config.CerebrasCompatConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.cerebras_openai_compat.config.CerebrasProviderDataValidator",
|
||||
description="Cerebras OpenAI-compatible provider for using Cerebras models with OpenAI API format.",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
|
|
|
|||
|
|
@ -395,7 +395,7 @@ That means you'll get fast and efficient vector retrieval.
|
|||
To use PGVector in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Install the necessary dependencies.
|
||||
2. Configure your Llama Stack project to use Faiss.
|
||||
2. Configure your Llama Stack project to use pgvector. (e.g. remote::pgvector).
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
## Installation
|
||||
|
|
@ -410,6 +410,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de
|
|||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@ class AnthropicInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
MODEL_ENTRIES,
|
||||
litellm_provider_name="anthropic",
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="anthropic_api_key",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -26,7 +26,7 @@ class AnthropicConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.ANTHROPIC_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.ANTHROPIC_API_KEY:=}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -10,9 +10,9 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
)
|
||||
|
||||
LLM_MODEL_IDS = [
|
||||
"anthropic/claude-3-5-sonnet-latest",
|
||||
"anthropic/claude-3-7-sonnet-latest",
|
||||
"anthropic/claude-3-5-haiku-latest",
|
||||
"claude-3-5-sonnet-latest",
|
||||
"claude-3-7-sonnet-latest",
|
||||
"claude-3-5-haiku-latest",
|
||||
]
|
||||
|
||||
SAFETY_MODELS_ENTRIES = []
|
||||
|
|
@ -21,17 +21,17 @@ MODEL_ENTRIES = (
|
|||
[ProviderModelEntry(provider_model_id=m) for m in LLM_MODEL_IDS]
|
||||
+ [
|
||||
ProviderModelEntry(
|
||||
provider_model_id="anthropic/voyage-3",
|
||||
provider_model_id="voyage-3",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 1024, "context_length": 32000},
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="anthropic/voyage-3-lite",
|
||||
provider_model_id="voyage-3-lite",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 512, "context_length": 32000},
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="anthropic/voyage-code-3",
|
||||
provider_model_id="voyage-code-3",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 1024, "context_length": 32000},
|
||||
),
|
||||
|
|
|
|||
|
|
@ -63,18 +63,20 @@ class BedrockInferenceAdapter(
|
|||
def __init__(self, config: BedrockConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
||||
self._config = config
|
||||
|
||||
self._client = create_bedrock_client(config)
|
||||
self._client = None
|
||||
|
||||
@property
|
||||
def client(self) -> BaseClient:
|
||||
if self._client is None:
|
||||
self._client = create_bedrock_client(self._config)
|
||||
return self._client
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
self.client.close()
|
||||
if self._client is not None:
|
||||
self._client.close()
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
|
|
|
|||
|
|
@ -65,6 +65,7 @@ class CerebrasInferenceAdapter(
|
|||
)
|
||||
self.config = config
|
||||
|
||||
# TODO: make this use provider data, etc. like other providers
|
||||
self.client = AsyncCerebras(
|
||||
base_url=self.config.base_url,
|
||||
api_key=self.config.api_key.get_secret_value(),
|
||||
|
|
|
|||
|
|
@ -26,7 +26,7 @@ class CerebrasImplConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.CEREBRAS_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.CEREBRAS_API_KEY:=}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"base_url": DEFAULT_BASE_URL,
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -1,17 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import InferenceProvider
|
||||
|
||||
from .config import CerebrasCompatConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: CerebrasCompatConfig, _deps) -> InferenceProvider:
|
||||
# import dynamically so the import is used only when it is needed
|
||||
from .cerebras import CerebrasCompatInferenceAdapter
|
||||
|
||||
adapter = CerebrasCompatInferenceAdapter(config)
|
||||
return adapter
|
||||
|
|
@ -1,30 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.remote.inference.cerebras_openai_compat.config import CerebrasCompatConfig
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
|
||||
from ..cerebras.models import MODEL_ENTRIES
|
||||
|
||||
|
||||
class CerebrasCompatInferenceAdapter(LiteLLMOpenAIMixin):
|
||||
_config: CerebrasCompatConfig
|
||||
|
||||
def __init__(self, config: CerebrasCompatConfig):
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
model_entries=MODEL_ENTRIES,
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="cerebras_api_key",
|
||||
openai_compat_api_base=config.openai_compat_api_base,
|
||||
)
|
||||
self.config = config
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self):
|
||||
await super().shutdown()
|
||||
|
|
@ -1,38 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class CerebrasProviderDataValidator(BaseModel):
|
||||
cerebras_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Cerebras models",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CerebrasCompatConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The Cerebras API key",
|
||||
)
|
||||
|
||||
openai_compat_api_base: str = Field(
|
||||
default="https://api.cerebras.ai/v1",
|
||||
description="The URL for the Cerebras API server",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.CEREBRAS_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"openai_compat_api_base": "https://api.cerebras.ai/v1",
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
|
@ -25,8 +25,8 @@ class DatabricksImplConfig(BaseModel):
|
|||
@classmethod
|
||||
def sample_run_config(
|
||||
cls,
|
||||
url: str = "${env.DATABRICKS_URL}",
|
||||
api_token: str = "${env.DATABRICKS_API_TOKEN}",
|
||||
url: str = "${env.DATABRICKS_URL:=}",
|
||||
api_token: str = "${env.DATABRICKS_API_TOKEN:=}",
|
||||
**kwargs: Any,
|
||||
) -> dict[str, Any]:
|
||||
return {
|
||||
|
|
|
|||
|
|
@ -6,13 +6,14 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
from pydantic import Field, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class FireworksImplConfig(BaseModel):
|
||||
class FireworksImplConfig(RemoteInferenceProviderConfig):
|
||||
url: str = Field(
|
||||
default="https://api.fireworks.ai/inference/v1",
|
||||
description="The URL for the Fireworks server",
|
||||
|
|
@ -23,7 +24,7 @@ class FireworksImplConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.FIREWORKS_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.FIREWORKS_API_KEY:=}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.fireworks.ai/inference/v1",
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -70,7 +70,7 @@ logger = get_logger(name=__name__, category="inference")
|
|||
|
||||
class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
def __init__(self, config: FireworksImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES, config.allowed_models)
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
|
|
|
|||
|
|
@ -1,17 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import InferenceProvider
|
||||
|
||||
from .config import FireworksCompatConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: FireworksCompatConfig, _deps) -> InferenceProvider:
|
||||
# import dynamically so the import is used only when it is needed
|
||||
from .fireworks import FireworksCompatInferenceAdapter
|
||||
|
||||
adapter = FireworksCompatInferenceAdapter(config)
|
||||
return adapter
|
||||
|
|
@ -1,38 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class FireworksProviderDataValidator(BaseModel):
|
||||
fireworks_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Fireworks models",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class FireworksCompatConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The Fireworks API key",
|
||||
)
|
||||
|
||||
openai_compat_api_base: str = Field(
|
||||
default="https://api.fireworks.ai/inference/v1",
|
||||
description="The URL for the Fireworks API server",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.FIREWORKS_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"openai_compat_api_base": "https://api.fireworks.ai/inference/v1",
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
|
@ -1,30 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.remote.inference.fireworks_openai_compat.config import FireworksCompatConfig
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
|
||||
from ..fireworks.models import MODEL_ENTRIES
|
||||
|
||||
|
||||
class FireworksCompatInferenceAdapter(LiteLLMOpenAIMixin):
|
||||
_config: FireworksCompatConfig
|
||||
|
||||
def __init__(self, config: FireworksCompatConfig):
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
model_entries=MODEL_ENTRIES,
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="fireworks_api_key",
|
||||
openai_compat_api_base=config.openai_compat_api_base,
|
||||
)
|
||||
self.config = config
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self):
|
||||
await super().shutdown()
|
||||
|
|
@ -26,7 +26,7 @@ class GeminiConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.GEMINI_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.GEMINI_API_KEY:=}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@ class GeminiInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
MODEL_ENTRIES,
|
||||
litellm_provider_name="gemini",
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="gemini_api_key",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -10,11 +10,11 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
)
|
||||
|
||||
LLM_MODEL_IDS = [
|
||||
"gemini/gemini-1.5-flash",
|
||||
"gemini/gemini-1.5-pro",
|
||||
"gemini/gemini-2.0-flash",
|
||||
"gemini/gemini-2.5-flash",
|
||||
"gemini/gemini-2.5-pro",
|
||||
"gemini-1.5-flash",
|
||||
"gemini-1.5-pro",
|
||||
"gemini-2.0-flash",
|
||||
"gemini-2.5-flash",
|
||||
"gemini-2.5-pro",
|
||||
]
|
||||
|
||||
SAFETY_MODELS_ENTRIES = []
|
||||
|
|
@ -23,7 +23,7 @@ MODEL_ENTRIES = (
|
|||
[ProviderModelEntry(provider_model_id=m) for m in LLM_MODEL_IDS]
|
||||
+ [
|
||||
ProviderModelEntry(
|
||||
provider_model_id="gemini/text-embedding-004",
|
||||
provider_model_id="text-embedding-004",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 768, "context_length": 2048},
|
||||
),
|
||||
|
|
|
|||
|
|
@ -32,7 +32,7 @@ class GroqConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.GROQ_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.GROQ_API_KEY:=}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.groq.com",
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -34,6 +34,7 @@ class GroqInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
model_entries=MODEL_ENTRIES,
|
||||
litellm_provider_name="groq",
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="groq_api_key",
|
||||
)
|
||||
|
|
@ -96,7 +97,7 @@ class GroqInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
tool_choice = "required"
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id.replace("groq/", ""),
|
||||
model=model_obj.provider_resource_id,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
|
|
|
|||
|
|
@ -14,19 +14,19 @@ SAFETY_MODELS_ENTRIES = []
|
|||
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"groq/llama3-8b-8192",
|
||||
"llama3-8b-8192",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_entry(
|
||||
"groq/llama-3.1-8b-instant",
|
||||
"llama-3.1-8b-instant",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"groq/llama3-70b-8192",
|
||||
"llama3-70b-8192",
|
||||
CoreModelId.llama3_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"groq/llama-3.3-70b-versatile",
|
||||
"llama-3.3-70b-versatile",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
# Groq only contains a preview version for llama-3.2-3b
|
||||
|
|
@ -34,23 +34,15 @@ MODEL_ENTRIES = [
|
|||
# to pass the test fixture
|
||||
# TODO(aidand): Replace this with a stable model once Groq supports it
|
||||
build_hf_repo_model_entry(
|
||||
"groq/llama-3.2-3b-preview",
|
||||
"llama-3.2-3b-preview",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"groq/llama-4-scout-17b-16e-instruct",
|
||||
"meta-llama/llama-4-scout-17b-16e-instruct",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"groq/meta-llama/llama-4-scout-17b-16e-instruct",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"groq/llama-4-maverick-17b-128e-instruct",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"groq/meta-llama/llama-4-maverick-17b-128e-instruct",
|
||||
"meta-llama/llama-4-maverick-17b-128e-instruct",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
),
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
|
|
|
|||
|
|
@ -1,17 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import InferenceProvider
|
||||
|
||||
from .config import GroqCompatConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: GroqCompatConfig, _deps) -> InferenceProvider:
|
||||
# import dynamically so the import is used only when it is needed
|
||||
from .groq import GroqCompatInferenceAdapter
|
||||
|
||||
adapter = GroqCompatInferenceAdapter(config)
|
||||
return adapter
|
||||
|
|
@ -1,38 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class GroqProviderDataValidator(BaseModel):
|
||||
groq_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Groq models",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class GroqCompatConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The Groq API key",
|
||||
)
|
||||
|
||||
openai_compat_api_base: str = Field(
|
||||
default="https://api.groq.com/openai/v1",
|
||||
description="The URL for the Groq API server",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.GROQ_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"openai_compat_api_base": "https://api.groq.com/openai/v1",
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
|
@ -1,30 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.remote.inference.groq_openai_compat.config import GroqCompatConfig
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
|
||||
from ..groq.models import MODEL_ENTRIES
|
||||
|
||||
|
||||
class GroqCompatInferenceAdapter(LiteLLMOpenAIMixin):
|
||||
_config: GroqCompatConfig
|
||||
|
||||
def __init__(self, config: GroqCompatConfig):
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
model_entries=MODEL_ENTRIES,
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="groq_api_key",
|
||||
openai_compat_api_base=config.openai_compat_api_base,
|
||||
)
|
||||
self.config = config
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self):
|
||||
await super().shutdown()
|
||||
|
|
@ -5,55 +5,53 @@
|
|||
# the root directory of this source tree.
|
||||
import logging
|
||||
|
||||
from llama_api_client import AsyncLlamaAPIClient, NotFoundError
|
||||
|
||||
from llama_stack.providers.remote.inference.llama_openai_compat.config import LlamaCompatConfig
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LlamaCompatInferenceAdapter(LiteLLMOpenAIMixin):
|
||||
class LlamaCompatInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
||||
"""
|
||||
Llama API Inference Adapter for Llama Stack.
|
||||
|
||||
Note: The inheritance order is important here. OpenAIMixin must come before
|
||||
LiteLLMOpenAIMixin to ensure that OpenAIMixin.check_model_availability()
|
||||
is used instead of ModelRegistryHelper.check_model_availability().
|
||||
|
||||
- OpenAIMixin.check_model_availability() queries the Llama API to check if a model exists
|
||||
- ModelRegistryHelper.check_model_availability() (inherited by LiteLLMOpenAIMixin) just returns False and shows a warning
|
||||
"""
|
||||
|
||||
_config: LlamaCompatConfig
|
||||
|
||||
def __init__(self, config: LlamaCompatConfig):
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
model_entries=MODEL_ENTRIES,
|
||||
litellm_provider_name="meta_llama",
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="llama_api_key",
|
||||
openai_compat_api_base=config.openai_compat_api_base,
|
||||
)
|
||||
self.config = config
|
||||
|
||||
async def check_model_availability(self, model: str) -> bool:
|
||||
# Delegate the client data handling get_api_key method to LiteLLMOpenAIMixin
|
||||
get_api_key = LiteLLMOpenAIMixin.get_api_key
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
"""
|
||||
Check if a specific model is available from Llama API.
|
||||
Get the base URL for OpenAI mixin.
|
||||
|
||||
:param model: The model identifier to check.
|
||||
:return: True if the model is available dynamically, False otherwise.
|
||||
:return: The Llama API base URL
|
||||
"""
|
||||
try:
|
||||
llama_api_client = self._get_llama_api_client()
|
||||
retrieved_model = await llama_api_client.models.retrieve(model)
|
||||
logger.info(f"Model {retrieved_model.id} is available from Llama API")
|
||||
return True
|
||||
|
||||
except NotFoundError:
|
||||
logger.error(f"Model {model} is not available from Llama API")
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to check model availability from Llama API: {e}")
|
||||
return False
|
||||
return self.config.openai_compat_api_base
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self):
|
||||
await super().shutdown()
|
||||
|
||||
def _get_llama_api_client(self) -> AsyncLlamaAPIClient:
|
||||
return AsyncLlamaAPIClient(api_key=self.get_api_key(), base_url=self.config.openai_compat_api_base)
|
||||
|
|
|
|||
|
|
@ -7,9 +7,8 @@
|
|||
import logging
|
||||
import warnings
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from openai import APIConnectionError, AsyncOpenAI, BadRequestError, NotFoundError
|
||||
from openai import APIConnectionError, BadRequestError
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
|
@ -28,12 +27,6 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
|
|
@ -47,8 +40,8 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_openai_chat_completion_choice,
|
||||
convert_openai_chat_completion_stream,
|
||||
prepare_openai_completion_params,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
|
||||
|
||||
from . import NVIDIAConfig
|
||||
|
|
@ -64,7 +57,20 @@ from .utils import _is_nvidia_hosted
|
|||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
||||
class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
||||
"""
|
||||
NVIDIA Inference Adapter for Llama Stack.
|
||||
|
||||
Note: The inheritance order is important here. OpenAIMixin must come before
|
||||
ModelRegistryHelper to ensure that OpenAIMixin.check_model_availability()
|
||||
is used instead of ModelRegistryHelper.check_model_availability(). It also
|
||||
must come before Inference to ensure that OpenAIMixin methods are available
|
||||
in the Inference interface.
|
||||
|
||||
- OpenAIMixin.check_model_availability() queries the NVIDIA API to check if a model exists
|
||||
- ModelRegistryHelper.check_model_availability() just returns False and shows a warning
|
||||
"""
|
||||
|
||||
def __init__(self, config: NVIDIAConfig) -> None:
|
||||
# TODO(mf): filter by available models
|
||||
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
||||
|
|
@ -88,45 +94,21 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
|
||||
self._config = config
|
||||
|
||||
async def check_model_availability(self, model: str) -> bool:
|
||||
def get_api_key(self) -> str:
|
||||
"""
|
||||
Check if a specific model is available.
|
||||
Get the API key for OpenAI mixin.
|
||||
|
||||
:param model: The model identifier to check.
|
||||
:return: True if the model is available dynamically, False otherwise.
|
||||
:return: The NVIDIA API key
|
||||
"""
|
||||
try:
|
||||
await self._client.models.retrieve(model)
|
||||
return True
|
||||
except NotFoundError:
|
||||
logger.error(f"Model {model} is not available")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to check model availability: {e}")
|
||||
return False
|
||||
return self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"
|
||||
|
||||
@property
|
||||
def _client(self) -> AsyncOpenAI:
|
||||
def get_base_url(self) -> str:
|
||||
"""
|
||||
Returns an OpenAI client for the configured NVIDIA API endpoint.
|
||||
Get the base URL for OpenAI mixin.
|
||||
|
||||
:return: An OpenAI client
|
||||
:return: The NVIDIA API base URL
|
||||
"""
|
||||
|
||||
base_url = f"{self._config.url}/v1" if self._config.append_api_version else self._config.url
|
||||
|
||||
return AsyncOpenAI(
|
||||
base_url=base_url,
|
||||
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
|
||||
timeout=self._config.timeout,
|
||||
)
|
||||
|
||||
async def _get_provider_model_id(self, model_id: str) -> str:
|
||||
if not self.model_store:
|
||||
raise RuntimeError("Model store is not set")
|
||||
model = await self.model_store.get_model(model_id)
|
||||
if model is None:
|
||||
raise ValueError(f"Model {model_id} is unknown")
|
||||
return model.provider_model_id
|
||||
return f"{self._config.url}/v1" if self._config.append_api_version else self._config.url
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
|
|
@ -160,7 +142,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
)
|
||||
|
||||
try:
|
||||
response = await self._client.completions.create(**request)
|
||||
response = await self.client.completions.create(**request)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
||||
|
|
@ -213,7 +195,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
extra_body["input_type"] = task_type_options[task_type]
|
||||
|
||||
try:
|
||||
response = await self._client.embeddings.create(
|
||||
response = await self.client.embeddings.create(
|
||||
model=provider_model_id,
|
||||
input=input,
|
||||
extra_body=extra_body,
|
||||
|
|
@ -228,16 +210,6 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
#
|
||||
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
@ -274,7 +246,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
)
|
||||
|
||||
try:
|
||||
response = await self._client.chat.completions.create(**request)
|
||||
response = await self.client.chat.completions.create(**request)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
||||
|
|
@ -283,112 +255,3 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
else:
|
||||
# we pass n=1 to get only one completion
|
||||
return convert_openai_chat_completion_choice(response.choices[0])
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
provider_model_id = await self._get_provider_model_id(model)
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
model=provider_model_id,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
|
||||
try:
|
||||
return await self._client.completions.create(**params)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
provider_model_id = await self._get_provider_model_id(model)
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
model=provider_model_id,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
|
||||
try:
|
||||
return await self._client.chat.completions.create(**params)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
|
|
|||
|
|
@ -6,13 +6,17 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
DEFAULT_OLLAMA_URL = "http://localhost:11434"
|
||||
|
||||
|
||||
class OllamaImplConfig(BaseModel):
|
||||
url: str = DEFAULT_OLLAMA_URL
|
||||
refresh_models: bool = Field(
|
||||
default=False,
|
||||
description="Whether to refresh models periodically",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, url: str = "${env.OLLAMA_URL:=http://localhost:11434}", **kwargs) -> dict[str, Any]:
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
import asyncio
|
||||
import base64
|
||||
import uuid
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
|
|
@ -91,23 +92,92 @@ class OllamaInferenceAdapter(
|
|||
InferenceProvider,
|
||||
ModelsProtocolPrivate,
|
||||
):
|
||||
# automatically set by the resolver when instantiating the provider
|
||||
__provider_id__: str
|
||||
|
||||
def __init__(self, config: OllamaImplConfig) -> None:
|
||||
self.register_helper = ModelRegistryHelper(MODEL_ENTRIES)
|
||||
self.url = config.url
|
||||
self.config = config
|
||||
self._clients: dict[asyncio.AbstractEventLoop, AsyncClient] = {}
|
||||
self._openai_client = None
|
||||
|
||||
@property
|
||||
def client(self) -> AsyncClient:
|
||||
return AsyncClient(host=self.url)
|
||||
# ollama client attaches itself to the current event loop (sadly?)
|
||||
loop = asyncio.get_running_loop()
|
||||
if loop not in self._clients:
|
||||
self._clients[loop] = AsyncClient(host=self.config.url)
|
||||
return self._clients[loop]
|
||||
|
||||
@property
|
||||
def openai_client(self) -> AsyncOpenAI:
|
||||
return AsyncOpenAI(base_url=f"{self.url}/v1", api_key="ollama")
|
||||
if self._openai_client is None:
|
||||
self._openai_client = AsyncOpenAI(base_url=f"{self.config.url}/v1", api_key="ollama")
|
||||
return self._openai_client
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.debug(f"checking connectivity to Ollama at `{self.url}`...")
|
||||
logger.info(f"checking connectivity to Ollama at `{self.config.url}`...")
|
||||
health_response = await self.health()
|
||||
if health_response["status"] == HealthStatus.ERROR:
|
||||
raise RuntimeError("Ollama Server is not running, start it using `ollama serve` in a separate terminal")
|
||||
logger.warning(
|
||||
"Ollama Server is not running, make sure to start it using `ollama serve` in a separate terminal"
|
||||
)
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
return self.config.refresh_models
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
provider_id = self.__provider_id__
|
||||
response = await self.client.list()
|
||||
|
||||
# always add the two embedding models which can be pulled on demand
|
||||
models = [
|
||||
Model(
|
||||
identifier="all-minilm:l6-v2",
|
||||
provider_resource_id="all-minilm:l6-v2",
|
||||
provider_id=provider_id,
|
||||
metadata={
|
||||
"embedding_dimension": 384,
|
||||
"context_length": 512,
|
||||
},
|
||||
model_type=ModelType.embedding,
|
||||
),
|
||||
# add all-minilm alias
|
||||
Model(
|
||||
identifier="all-minilm",
|
||||
provider_resource_id="all-minilm:l6-v2",
|
||||
provider_id=provider_id,
|
||||
metadata={
|
||||
"embedding_dimension": 384,
|
||||
"context_length": 512,
|
||||
},
|
||||
model_type=ModelType.embedding,
|
||||
),
|
||||
Model(
|
||||
identifier="nomic-embed-text",
|
||||
provider_resource_id="nomic-embed-text",
|
||||
provider_id=provider_id,
|
||||
metadata={
|
||||
"embedding_dimension": 768,
|
||||
"context_length": 8192,
|
||||
},
|
||||
model_type=ModelType.embedding,
|
||||
),
|
||||
]
|
||||
for m in response.models:
|
||||
# kill embedding models since we don't know dimensions for them
|
||||
if "bert" in m.details.family:
|
||||
continue
|
||||
models.append(
|
||||
Model(
|
||||
identifier=m.model,
|
||||
provider_resource_id=m.model,
|
||||
provider_id=provider_id,
|
||||
metadata={},
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
)
|
||||
return models
|
||||
|
||||
async def health(self) -> HealthResponse:
|
||||
"""
|
||||
|
|
@ -124,7 +194,7 @@ class OllamaInferenceAdapter(
|
|||
return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}")
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
self._clients.clear()
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
|
@ -350,12 +420,7 @@ class OllamaInferenceAdapter(
|
|||
except ValueError:
|
||||
pass # Ignore statically unknown model, will check live listing
|
||||
|
||||
if model.provider_resource_id is None:
|
||||
raise ValueError("Model provider_resource_id cannot be None")
|
||||
|
||||
if model.model_type == ModelType.embedding:
|
||||
logger.info(f"Pulling embedding model `{model.provider_resource_id}` if necessary...")
|
||||
# TODO: you should pull here only if the model is not found in a list
|
||||
response = await self.client.list()
|
||||
if model.provider_resource_id not in [m.model for m in response.models]:
|
||||
await self.client.pull(model.provider_resource_id)
|
||||
|
|
@ -365,9 +430,9 @@ class OllamaInferenceAdapter(
|
|||
# - models not currently running are run by the ollama server as needed
|
||||
response = await self.client.list()
|
||||
available_models = [m.model for m in response.models]
|
||||
provider_resource_id = self.register_helper.get_provider_model_id(model.provider_resource_id)
|
||||
if provider_resource_id is None:
|
||||
provider_resource_id = model.provider_resource_id
|
||||
|
||||
provider_resource_id = model.provider_resource_id
|
||||
assert provider_resource_id is not None # mypy
|
||||
if provider_resource_id not in available_models:
|
||||
available_models_latest = [m.model.split(":latest")[0] for m in response.models]
|
||||
if provider_resource_id in available_models_latest:
|
||||
|
|
@ -375,7 +440,9 @@ class OllamaInferenceAdapter(
|
|||
f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'"
|
||||
)
|
||||
return model
|
||||
raise UnsupportedModelError(model.provider_resource_id, available_models)
|
||||
raise UnsupportedModelError(provider_resource_id, available_models)
|
||||
|
||||
# mutating this should be considered an anti-pattern
|
||||
model.provider_resource_id = provider_resource_id
|
||||
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -24,9 +24,19 @@ class OpenAIConfig(BaseModel):
|
|||
default=None,
|
||||
description="API key for OpenAI models",
|
||||
)
|
||||
base_url: str = Field(
|
||||
default="https://api.openai.com/v1",
|
||||
description="Base URL for OpenAI API",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.OPENAI_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
def sample_run_config(
|
||||
cls,
|
||||
api_key: str = "${env.OPENAI_API_KEY:=}",
|
||||
base_url: str = "${env.OPENAI_BASE_URL:=https://api.openai.com/v1}",
|
||||
**kwargs,
|
||||
) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": api_key,
|
||||
"base_url": base_url,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -12,11 +12,6 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
)
|
||||
|
||||
LLM_MODEL_IDS = [
|
||||
# the models w/ "openai/" prefix are the litellm specific model names.
|
||||
# they should be deprecated in favor of the canonical openai model names.
|
||||
"openai/gpt-4o",
|
||||
"openai/gpt-4o-mini",
|
||||
"openai/chatgpt-4o-latest",
|
||||
"gpt-3.5-turbo-0125",
|
||||
"gpt-3.5-turbo",
|
||||
"gpt-3.5-turbo-instruct",
|
||||
|
|
@ -43,8 +38,6 @@ class EmbeddingModelInfo:
|
|||
|
||||
|
||||
EMBEDDING_MODEL_IDS: dict[str, EmbeddingModelInfo] = {
|
||||
"openai/text-embedding-3-small": EmbeddingModelInfo(1536, 8192),
|
||||
"openai/text-embedding-3-large": EmbeddingModelInfo(3072, 8192),
|
||||
"text-embedding-3-small": EmbeddingModelInfo(1536, 8192),
|
||||
"text-embedding-3-large": EmbeddingModelInfo(3072, 8192),
|
||||
}
|
||||
|
|
|
|||
|
|
@ -5,23 +5,9 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from openai import AsyncOpenAI, NotFoundError
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from .config import OpenAIConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
|
|
@ -30,7 +16,7 @@ logger = logging.getLogger(__name__)
|
|||
|
||||
|
||||
#
|
||||
# This OpenAI adapter implements Inference methods using two clients -
|
||||
# This OpenAI adapter implements Inference methods using two mixins -
|
||||
#
|
||||
# | Inference Method | Implementation Source |
|
||||
# |----------------------------|--------------------------|
|
||||
|
|
@ -39,15 +25,27 @@ logger = logging.getLogger(__name__)
|
|||
# | embedding | LiteLLMOpenAIMixin |
|
||||
# | batch_completion | LiteLLMOpenAIMixin |
|
||||
# | batch_chat_completion | LiteLLMOpenAIMixin |
|
||||
# | openai_completion | AsyncOpenAI |
|
||||
# | openai_chat_completion | AsyncOpenAI |
|
||||
# | openai_embeddings | AsyncOpenAI |
|
||||
# | openai_completion | OpenAIMixin |
|
||||
# | openai_chat_completion | OpenAIMixin |
|
||||
# | openai_embeddings | OpenAIMixin |
|
||||
#
|
||||
class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
||||
class OpenAIInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
||||
"""
|
||||
OpenAI Inference Adapter for Llama Stack.
|
||||
|
||||
Note: The inheritance order is important here. OpenAIMixin must come before
|
||||
LiteLLMOpenAIMixin to ensure that OpenAIMixin.check_model_availability()
|
||||
is used instead of ModelRegistryHelper.check_model_availability().
|
||||
|
||||
- OpenAIMixin.check_model_availability() queries the OpenAI API to check if a model exists
|
||||
- ModelRegistryHelper.check_model_availability() (inherited by LiteLLMOpenAIMixin) just returns False and shows a warning
|
||||
"""
|
||||
|
||||
def __init__(self, config: OpenAIConfig) -> None:
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
MODEL_ENTRIES,
|
||||
litellm_provider_name="openai",
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="openai_api_key",
|
||||
)
|
||||
|
|
@ -60,191 +58,19 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
# litellm specific model names, an abstraction leak.
|
||||
self.is_openai_compat = True
|
||||
|
||||
async def check_model_availability(self, model: str) -> bool:
|
||||
# Delegate the client data handling get_api_key method to LiteLLMOpenAIMixin
|
||||
get_api_key = LiteLLMOpenAIMixin.get_api_key
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
"""
|
||||
Check if a specific model is available from OpenAI.
|
||||
Get the OpenAI API base URL.
|
||||
|
||||
:param model: The model identifier to check.
|
||||
:return: True if the model is available dynamically, False otherwise.
|
||||
Returns the OpenAI API base URL from the configuration.
|
||||
"""
|
||||
try:
|
||||
openai_client = self._get_openai_client()
|
||||
retrieved_model = await openai_client.models.retrieve(model)
|
||||
logger.info(f"Model {retrieved_model.id} is available from OpenAI")
|
||||
return True
|
||||
|
||||
except NotFoundError:
|
||||
logger.error(f"Model {model} is not available from OpenAI")
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to check model availability from OpenAI: {e}")
|
||||
return False
|
||||
return self.config.base_url
|
||||
|
||||
async def initialize(self) -> None:
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
await super().shutdown()
|
||||
|
||||
def _get_openai_client(self) -> AsyncOpenAI:
|
||||
return AsyncOpenAI(
|
||||
api_key=self.get_api_key(),
|
||||
)
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
if guided_choice is not None:
|
||||
logging.warning("guided_choice is not supported by the OpenAI API. Ignoring.")
|
||||
if prompt_logprobs is not None:
|
||||
logging.warning("prompt_logprobs is not supported by the OpenAI API. Ignoring.")
|
||||
|
||||
model_id = (await self.model_store.get_model(model)).provider_resource_id
|
||||
if model_id.startswith("openai/"):
|
||||
model_id = model_id[len("openai/") :]
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_id,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
suffix=suffix,
|
||||
)
|
||||
return await self._get_openai_client().completions.create(**params)
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
model_id = (await self.model_store.get_model(model)).provider_resource_id
|
||||
if model_id.startswith("openai/"):
|
||||
model_id = model_id[len("openai/") :]
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_id,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
return await self._get_openai_client().chat.completions.create(**params)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
model_id = (await self.model_store.get_model(model)).provider_resource_id
|
||||
if model_id.startswith("openai/"):
|
||||
model_id = model_id[len("openai/") :]
|
||||
|
||||
# Prepare parameters for OpenAI embeddings API
|
||||
params = {
|
||||
"model": model_id,
|
||||
"input": input,
|
||||
}
|
||||
|
||||
if encoding_format is not None:
|
||||
params["encoding_format"] = encoding_format
|
||||
if dimensions is not None:
|
||||
params["dimensions"] = dimensions
|
||||
if user is not None:
|
||||
params["user"] = user
|
||||
|
||||
# Call OpenAI embeddings API
|
||||
response = await self._get_openai_client().embeddings.create(**params)
|
||||
|
||||
data = []
|
||||
for i, embedding_data in enumerate(response.data):
|
||||
data.append(
|
||||
OpenAIEmbeddingData(
|
||||
embedding=embedding_data.embedding,
|
||||
index=i,
|
||||
)
|
||||
)
|
||||
|
||||
usage = OpenAIEmbeddingUsage(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
)
|
||||
|
||||
return OpenAIEmbeddingsResponse(
|
||||
data=data,
|
||||
model=response.model,
|
||||
usage=usage,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -30,7 +30,7 @@ class SambaNovaImplConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY:=}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.sambanova.ai/v1",
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -9,49 +9,20 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
build_hf_repo_model_entry,
|
||||
)
|
||||
|
||||
SAFETY_MODELS_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Meta-Llama-Guard-3-8B",
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
),
|
||||
]
|
||||
SAFETY_MODELS_ENTRIES = []
|
||||
|
||||
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Meta-Llama-3.1-8B-Instruct",
|
||||
"Meta-Llama-3.1-8B-Instruct",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Meta-Llama-3.1-405B-Instruct",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Meta-Llama-3.2-1B-Instruct",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Meta-Llama-3.2-3B-Instruct",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Meta-Llama-3.3-70B-Instruct",
|
||||
"Meta-Llama-3.3-70B-Instruct",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Llama-3.2-11B-Vision-Instruct",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Llama-3.2-90B-Vision-Instruct",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Llama-4-Scout-17B-16E-Instruct",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Llama-4-Maverick-17B-128E-Instruct",
|
||||
"Llama-4-Maverick-17B-128E-Instruct",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
),
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
|
|
|
|||
|
|
@ -182,6 +182,7 @@ class SambaNovaInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
model_entries=MODEL_ENTRIES,
|
||||
litellm_provider_name="sambanova",
|
||||
api_key_from_config=self.config.api_key.get_secret_value() if self.config.api_key else None,
|
||||
provider_data_api_key_field="sambanova_api_key",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -1,17 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import InferenceProvider
|
||||
|
||||
from .config import SambaNovaCompatConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: SambaNovaCompatConfig, _deps) -> InferenceProvider:
|
||||
# import dynamically so the import is used only when it is needed
|
||||
from .sambanova import SambaNovaCompatInferenceAdapter
|
||||
|
||||
adapter = SambaNovaCompatInferenceAdapter(config)
|
||||
return adapter
|
||||
|
|
@ -1,38 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class SambaNovaProviderDataValidator(BaseModel):
|
||||
sambanova_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for SambaNova models",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class SambaNovaCompatConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The SambaNova API key",
|
||||
)
|
||||
|
||||
openai_compat_api_base: str = Field(
|
||||
default="https://api.sambanova.ai/v1",
|
||||
description="The URL for the SambaNova API server",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"openai_compat_api_base": "https://api.sambanova.ai/v1",
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
|
@ -1,30 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.remote.inference.sambanova_openai_compat.config import SambaNovaCompatConfig
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
|
||||
from ..sambanova.models import MODEL_ENTRIES
|
||||
|
||||
|
||||
class SambaNovaCompatInferenceAdapter(LiteLLMOpenAIMixin):
|
||||
_config: SambaNovaCompatConfig
|
||||
|
||||
def __init__(self, config: SambaNovaCompatConfig):
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
model_entries=MODEL_ENTRIES,
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="sambanova_api_key",
|
||||
openai_compat_api_base=config.openai_compat_api_base,
|
||||
)
|
||||
self.config = config
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self):
|
||||
await super().shutdown()
|
||||
|
|
@ -19,7 +19,7 @@ class TGIImplConfig(BaseModel):
|
|||
@classmethod
|
||||
def sample_run_config(
|
||||
cls,
|
||||
url: str = "${env.TGI_URL}",
|
||||
url: str = "${env.TGI_URL:=}",
|
||||
**kwargs,
|
||||
):
|
||||
return {
|
||||
|
|
|
|||
|
|
@ -305,6 +305,8 @@ class _HfAdapter(
|
|||
|
||||
class TGIAdapter(_HfAdapter):
|
||||
async def initialize(self, config: TGIImplConfig) -> None:
|
||||
if not config.url:
|
||||
raise ValueError("You must provide a URL in run.yaml (or via the TGI_URL environment variable) to use TGI.")
|
||||
log.info(f"Initializing TGI client with url={config.url}")
|
||||
self.client = AsyncInferenceClient(
|
||||
model=config.url,
|
||||
|
|
|
|||
|
|
@ -6,13 +6,14 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
from pydantic import Field, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TogetherImplConfig(BaseModel):
|
||||
class TogetherImplConfig(RemoteInferenceProviderConfig):
|
||||
url: str = Field(
|
||||
default="https://api.together.xyz/v1",
|
||||
description="The URL for the Together AI server",
|
||||
|
|
@ -26,5 +27,5 @@ class TogetherImplConfig(BaseModel):
|
|||
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.together.xyz/v1",
|
||||
"api_key": "${env.TOGETHER_API_KEY}",
|
||||
"api_key": "${env.TOGETHER_API_KEY:=}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -69,15 +69,9 @@ MODEL_ENTRIES = [
|
|||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
additional_aliases=[
|
||||
"together/meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
||||
],
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
additional_aliases=[
|
||||
"together/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
|
||||
],
|
||||
),
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
|
|
|
|||
|
|
@ -66,7 +66,7 @@ logger = get_logger(name=__name__, category="inference")
|
|||
|
||||
class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
def __init__(self, config: TogetherImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES, config.allowed_models)
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
|
|
|
|||
|
|
@ -1,17 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import InferenceProvider
|
||||
|
||||
from .config import TogetherCompatConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: TogetherCompatConfig, _deps) -> InferenceProvider:
|
||||
# import dynamically so the import is used only when it is needed
|
||||
from .together import TogetherCompatInferenceAdapter
|
||||
|
||||
adapter = TogetherCompatInferenceAdapter(config)
|
||||
return adapter
|
||||
|
|
@ -1,38 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class TogetherProviderDataValidator(BaseModel):
|
||||
together_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Together models",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TogetherCompatConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The Together API key",
|
||||
)
|
||||
|
||||
openai_compat_api_base: str = Field(
|
||||
default="https://api.together.xyz/v1",
|
||||
description="The URL for the Together API server",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.TOGETHER_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"openai_compat_api_base": "https://api.together.xyz/v1",
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
|
@ -1,30 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.remote.inference.together_openai_compat.config import TogetherCompatConfig
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
|
||||
from ..together.models import MODEL_ENTRIES
|
||||
|
||||
|
||||
class TogetherCompatInferenceAdapter(LiteLLMOpenAIMixin):
|
||||
_config: TogetherCompatConfig
|
||||
|
||||
def __init__(self, config: TogetherCompatConfig):
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
model_entries=MODEL_ENTRIES,
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="together_api_key",
|
||||
openai_compat_api_base=config.openai_compat_api_base,
|
||||
)
|
||||
self.config = config
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self):
|
||||
await super().shutdown()
|
||||
|
|
@ -29,6 +29,10 @@ class VLLMInferenceAdapterConfig(BaseModel):
|
|||
default=True,
|
||||
description="Whether to verify TLS certificates. Can be a boolean or a path to a CA certificate file.",
|
||||
)
|
||||
refresh_models: bool = Field(
|
||||
default=False,
|
||||
description="Whether to refresh models periodically",
|
||||
)
|
||||
|
||||
@field_validator("tls_verify")
|
||||
@classmethod
|
||||
|
|
@ -46,7 +50,7 @@ class VLLMInferenceAdapterConfig(BaseModel):
|
|||
@classmethod
|
||||
def sample_run_config(
|
||||
cls,
|
||||
url: str = "${env.VLLM_URL}",
|
||||
url: str = "${env.VLLM_URL:=}",
|
||||
**kwargs,
|
||||
):
|
||||
return {
|
||||
|
|
|
|||
|
|
@ -4,7 +4,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
|
|
@ -38,6 +37,7 @@ from llama_stack.apis.inference import (
|
|||
JsonSchemaResponseFormat,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ModelStore,
|
||||
OpenAIChatCompletion,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingData,
|
||||
|
|
@ -54,6 +54,7 @@ from llama_stack.apis.inference import (
|
|||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import BuiltinTool, StopReason, ToolCall
|
||||
from llama_stack.models.llama.sku_list import all_registered_models
|
||||
from llama_stack.providers.datatypes import (
|
||||
|
|
@ -84,7 +85,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .config import VLLMInferenceAdapterConfig
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
log = get_logger(name=__name__, category="inference")
|
||||
|
||||
|
||||
def build_hf_repo_model_entries():
|
||||
|
|
@ -288,13 +289,40 @@ async def _process_vllm_chat_completion_stream_response(
|
|||
|
||||
|
||||
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||
# automatically set by the resolver when instantiating the provider
|
||||
__provider_id__: str
|
||||
model_store: ModelStore | None = None
|
||||
|
||||
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
|
||||
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
|
||||
self.config = config
|
||||
self.client = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
if not self.config.url:
|
||||
raise ValueError(
|
||||
"You must provide a URL in run.yaml (or via the VLLM_URL environment variable) to use vLLM."
|
||||
)
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
return self.config.refresh_models
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
self._lazy_initialize_client()
|
||||
assert self.client is not None # mypy
|
||||
models = []
|
||||
async for m in self.client.models.list():
|
||||
model_type = ModelType.llm # unclear how to determine embedding vs. llm models
|
||||
models.append(
|
||||
Model(
|
||||
identifier=m.id,
|
||||
provider_resource_id=m.id,
|
||||
provider_id=self.__provider_id__,
|
||||
metadata={},
|
||||
model_type=model_type,
|
||||
)
|
||||
)
|
||||
return models
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
|
|
|||
|
|
@ -30,7 +30,7 @@ class SambaNovaSafetyConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY:=}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.sambanova.ai/v1",
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -12,6 +12,6 @@ from .config import ChromaVectorIOConfig
|
|||
async def get_adapter_impl(config: ChromaVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .chroma import ChromaVectorIOAdapter
|
||||
|
||||
impl = ChromaVectorIOAdapter(config, deps[Api.inference])
|
||||
impl = ChromaVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -12,25 +12,19 @@ from urllib.parse import urlparse
|
|||
import chromadb
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
SearchRankingOptions,
|
||||
VectorIO,
|
||||
VectorStoreChunkingStrategy,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreFileContentsResponse,
|
||||
VectorStoreFileObject,
|
||||
VectorStoreFileStatus,
|
||||
VectorStoreListFilesResponse,
|
||||
VectorStoreListResponse,
|
||||
VectorStoreObject,
|
||||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
|
|
@ -42,6 +36,13 @@ log = logging.getLogger(__name__)
|
|||
|
||||
ChromaClientType = chromadb.api.AsyncClientAPI | chromadb.api.ClientAPI
|
||||
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_dbs:chroma:{VERSION}::"
|
||||
VECTOR_INDEX_PREFIX = f"vector_index:chroma:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:chroma:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:chroma:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:chroma:{VERSION}::"
|
||||
|
||||
|
||||
# this is a helper to allow us to use async and non-async chroma clients interchangeably
|
||||
async def maybe_await(result):
|
||||
|
|
@ -51,16 +52,20 @@ async def maybe_await(result):
|
|||
|
||||
|
||||
class ChromaIndex(EmbeddingIndex):
|
||||
def __init__(self, client: ChromaClientType, collection):
|
||||
def __init__(self, client: ChromaClientType, collection, kvstore: KVStore | None = None):
|
||||
self.client = client
|
||||
self.collection = collection
|
||||
self.kvstore = kvstore
|
||||
|
||||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
||||
ids = [f"{c.metadata['document_id']}:chunk-{i}" for i, c in enumerate(chunks)]
|
||||
ids = [f"{c.metadata.get('document_id', '')}:{c.chunk_id}" for c in chunks]
|
||||
await maybe_await(
|
||||
self.collection.add(
|
||||
documents=[chunk.model_dump_json() for chunk in chunks],
|
||||
|
|
@ -110,6 +115,9 @@ class ChromaIndex(EmbeddingIndex):
|
|||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Keyword search is not supported in Chroma")
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
raise NotImplementedError("delete_chunk is not supported in Chroma")
|
||||
|
||||
async def query_hybrid(
|
||||
self,
|
||||
embedding: NDArray,
|
||||
|
|
@ -122,24 +130,26 @@ class ChromaIndex(EmbeddingIndex):
|
|||
raise NotImplementedError("Hybrid search is not supported in Chroma")
|
||||
|
||||
|
||||
class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
self,
|
||||
config: RemoteChromaVectorIOConfig | InlineChromaVectorIOConfig,
|
||||
inference_api: Api.inference,
|
||||
files_api: Files | None,
|
||||
) -> None:
|
||||
log.info(f"Initializing ChromaVectorIOAdapter with url: {config}")
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
|
||||
self.client = None
|
||||
self.cache = {}
|
||||
self.kvstore: KVStore | None = None
|
||||
self.vector_db_store = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
if isinstance(self.config, RemoteChromaVectorIOConfig):
|
||||
if not self.config.url:
|
||||
raise ValueError("URL is a required parameter for the remote Chroma provider's config")
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
self.vector_db_store = self.kvstore
|
||||
|
||||
if isinstance(self.config, RemoteChromaVectorIOConfig):
|
||||
log.info(f"Connecting to Chroma server at: {self.config.url}")
|
||||
url = self.config.url.rstrip("/")
|
||||
parsed = urlparse(url)
|
||||
|
|
@ -151,6 +161,7 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
else:
|
||||
log.info(f"Connecting to Chroma local db at: {self.config.db_path}")
|
||||
self.client = chromadb.PersistentClient(path=self.config.db_path)
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
|
@ -170,6 +181,10 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
)
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
if vector_db_id not in self.cache:
|
||||
log.warning(f"Vector DB {vector_db_id} not found")
|
||||
return
|
||||
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
|
|
@ -180,6 +195,8 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
ttl_seconds: int | None = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if index is None:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
|
||||
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
|
|
@ -191,6 +208,9 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
|
||||
if index is None:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
|
||||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex:
|
||||
|
|
@ -207,106 +227,5 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> VectorStoreListResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int | None = 10,
|
||||
ranking_options: SearchRankingOptions | None = None,
|
||||
rewrite_query: bool | None = False,
|
||||
search_mode: str | None = "vector",
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_list_files_in_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
filter: VectorStoreFileStatus | None = None,
|
||||
) -> VectorStoreListFilesResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_retrieve_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_retrieve_vector_store_file_contents(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileContentsResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_update_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_delete_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
|
|
|||
|
|
@ -6,12 +6,23 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChromaVectorIOConfig(BaseModel):
|
||||
url: str | None
|
||||
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]:
|
||||
return {"url": url}
|
||||
def sample_run_config(cls, __distro_dir__: str, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"url": url,
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="chroma_remote_registry.db",
|
||||
),
|
||||
}
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
|
|
@ -248,6 +247,16 @@ class MilvusIndex(EmbeddingIndex):
|
|||
) -> QueryChunksResponse:
|
||||
raise NotImplementedError("Hybrid search is not supported in Milvus")
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
"""Remove a chunk from the Milvus collection."""
|
||||
try:
|
||||
await asyncio.to_thread(
|
||||
self.client.delete, collection_name=self.collection_name, filter=f'chunk_id == "{chunk_id}"'
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting chunk {chunk_id} from Milvus collection {self.collection_name}: {e}")
|
||||
raise
|
||||
|
||||
|
||||
class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
|
|
@ -371,185 +380,12 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
"""Save vector store file metadata to Milvus database."""
|
||||
if store_id not in self.openai_vector_stores:
|
||||
store_info = await self._load_openai_vector_stores(store_id)
|
||||
if not store_info:
|
||||
logger.error(f"OpenAI vector store {store_id} not found")
|
||||
raise ValueError(f"No vector store found with id {store_id}")
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
"""Delete a chunk from a milvus vector store."""
|
||||
index = await self._get_and_cache_vector_db_index(store_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {store_id} not found")
|
||||
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files"):
|
||||
file_schema = MilvusClient.create_schema(
|
||||
auto_id=False,
|
||||
enable_dynamic_field=True,
|
||||
description="Metadata for OpenAI vector store files",
|
||||
)
|
||||
file_schema.add_field(
|
||||
field_name="store_file_id", datatype=DataType.VARCHAR, is_primary=True, max_length=512
|
||||
)
|
||||
file_schema.add_field(field_name="store_id", datatype=DataType.VARCHAR, max_length=512)
|
||||
file_schema.add_field(field_name="file_id", datatype=DataType.VARCHAR, max_length=512)
|
||||
file_schema.add_field(field_name="file_info", datatype=DataType.VARCHAR, max_length=65535)
|
||||
|
||||
await asyncio.to_thread(
|
||||
self.client.create_collection,
|
||||
collection_name="openai_vector_store_files",
|
||||
schema=file_schema,
|
||||
)
|
||||
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files_contents"):
|
||||
content_schema = MilvusClient.create_schema(
|
||||
auto_id=False,
|
||||
enable_dynamic_field=True,
|
||||
description="Contents for OpenAI vector store files",
|
||||
)
|
||||
content_schema.add_field(
|
||||
field_name="chunk_id", datatype=DataType.VARCHAR, is_primary=True, max_length=1024
|
||||
)
|
||||
content_schema.add_field(field_name="store_file_id", datatype=DataType.VARCHAR, max_length=1024)
|
||||
content_schema.add_field(field_name="store_id", datatype=DataType.VARCHAR, max_length=512)
|
||||
content_schema.add_field(field_name="file_id", datatype=DataType.VARCHAR, max_length=512)
|
||||
content_schema.add_field(field_name="content", datatype=DataType.VARCHAR, max_length=65535)
|
||||
|
||||
await asyncio.to_thread(
|
||||
self.client.create_collection,
|
||||
collection_name="openai_vector_store_files_contents",
|
||||
schema=content_schema,
|
||||
)
|
||||
|
||||
file_data = [
|
||||
{
|
||||
"store_file_id": f"{store_id}_{file_id}",
|
||||
"store_id": store_id,
|
||||
"file_id": file_id,
|
||||
"file_info": json.dumps(file_info),
|
||||
}
|
||||
]
|
||||
await asyncio.to_thread(
|
||||
self.client.upsert,
|
||||
collection_name="openai_vector_store_files",
|
||||
data=file_data,
|
||||
)
|
||||
|
||||
# Save file contents
|
||||
contents_data = [
|
||||
{
|
||||
"chunk_id": content.get("chunk_metadata").get("chunk_id"),
|
||||
"store_file_id": f"{store_id}_{file_id}",
|
||||
"store_id": store_id,
|
||||
"file_id": file_id,
|
||||
"content": json.dumps(content),
|
||||
}
|
||||
for content in file_contents
|
||||
]
|
||||
await asyncio.to_thread(
|
||||
self.client.upsert,
|
||||
collection_name="openai_vector_store_files_contents",
|
||||
data=contents_data,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving openai vector store file {file_id} for store {store_id}: {e}")
|
||||
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
"""Load vector store file metadata from Milvus database."""
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files"):
|
||||
return {}
|
||||
|
||||
query_filter = f"store_file_id == '{store_id}_{file_id}'"
|
||||
results = await asyncio.to_thread(
|
||||
self.client.query,
|
||||
collection_name="openai_vector_store_files",
|
||||
filter=query_filter,
|
||||
output_fields=["file_info"],
|
||||
)
|
||||
|
||||
if results:
|
||||
try:
|
||||
return json.loads(results[0]["file_info"])
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Failed to decode file_info for store {store_id}, file {file_id}: {e}")
|
||||
return {}
|
||||
return {}
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading openai vector store file {file_id} for store {store_id}: {e}")
|
||||
return {}
|
||||
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
"""Update vector store file metadata in Milvus database."""
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files"):
|
||||
return
|
||||
|
||||
file_data = [
|
||||
{
|
||||
"store_file_id": f"{store_id}_{file_id}",
|
||||
"store_id": store_id,
|
||||
"file_id": file_id,
|
||||
"file_info": json.dumps(file_info),
|
||||
}
|
||||
]
|
||||
await asyncio.to_thread(
|
||||
self.client.upsert,
|
||||
collection_name="openai_vector_store_files",
|
||||
data=file_data,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error updating openai vector store file {file_id} for store {store_id}: {e}")
|
||||
raise
|
||||
|
||||
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
|
||||
"""Load vector store file contents from Milvus database."""
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files_contents"):
|
||||
return []
|
||||
|
||||
query_filter = (
|
||||
f"store_id == '{store_id}' AND file_id == '{file_id}' AND store_file_id == '{store_id}_{file_id}'"
|
||||
)
|
||||
results = await asyncio.to_thread(
|
||||
self.client.query,
|
||||
collection_name="openai_vector_store_files_contents",
|
||||
filter=query_filter,
|
||||
output_fields=["chunk_id", "store_id", "file_id", "content"],
|
||||
)
|
||||
|
||||
contents = []
|
||||
for result in results:
|
||||
try:
|
||||
content = json.loads(result["content"])
|
||||
contents.append(content)
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Failed to decode content for store {store_id}, file {file_id}: {e}")
|
||||
return contents
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading openai vector store file contents for {file_id} in store {store_id}: {e}")
|
||||
return []
|
||||
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
"""Delete vector store file metadata from Milvus database."""
|
||||
try:
|
||||
if not await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files"):
|
||||
return
|
||||
|
||||
query_filter = f"store_file_id in ['{store_id}_{file_id}']"
|
||||
await asyncio.to_thread(
|
||||
self.client.delete,
|
||||
collection_name="openai_vector_store_files",
|
||||
filter=query_filter,
|
||||
)
|
||||
if await asyncio.to_thread(self.client.has_collection, "openai_vector_store_files_contents"):
|
||||
await asyncio.to_thread(
|
||||
self.client.delete,
|
||||
collection_name="openai_vector_store_files_contents",
|
||||
filter=query_filter,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting openai vector store file {file_id} for store {store_id}: {e}")
|
||||
raise
|
||||
for chunk_id in chunk_ids:
|
||||
# Use the index's delete_chunk method
|
||||
await index.index.delete_chunk(chunk_id)
|
||||
|
|
|
|||
|
|
@ -12,6 +12,6 @@ from .config import PGVectorVectorIOConfig
|
|||
async def get_adapter_impl(config: PGVectorVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .pgvector import PGVectorVectorIOAdapter
|
||||
|
||||
impl = PGVectorVectorIOAdapter(config, deps[Api.inference])
|
||||
impl = PGVectorVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files, None))
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -99,7 +99,7 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
for i, chunk in enumerate(chunks):
|
||||
values.append(
|
||||
(
|
||||
f"{chunk.metadata['document_id']}:chunk-{i}",
|
||||
f"{chunk.chunk_id}",
|
||||
Json(chunk.model_dump()),
|
||||
embeddings[i].tolist(),
|
||||
)
|
||||
|
|
@ -159,6 +159,11 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
"""Remove a chunk from the PostgreSQL table."""
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(f"DELETE FROM {self.table_name} WHERE id = %s", (chunk_id,))
|
||||
|
||||
|
||||
class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
|
|
@ -266,124 +271,12 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
|
|||
self.cache[vector_db_id] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
# OpenAI Vector Stores File operations are not supported in PGVector
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
"""Save vector store file metadata to Postgres database."""
|
||||
if self.conn is None:
|
||||
raise RuntimeError("PostgreSQL connection is not initialized")
|
||||
try:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS openai_vector_store_files (
|
||||
store_id TEXT,
|
||||
file_id TEXT,
|
||||
metadata JSONB,
|
||||
PRIMARY KEY (store_id, file_id)
|
||||
)
|
||||
"""
|
||||
)
|
||||
cur.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS openai_vector_store_files_contents (
|
||||
store_id TEXT,
|
||||
file_id TEXT,
|
||||
contents JSONB,
|
||||
PRIMARY KEY (store_id, file_id)
|
||||
)
|
||||
"""
|
||||
)
|
||||
# Insert file metadata
|
||||
files_query = sql.SQL(
|
||||
"""
|
||||
INSERT INTO openai_vector_store_files (store_id, file_id, metadata)
|
||||
VALUES %s
|
||||
ON CONFLICT (store_id, file_id) DO UPDATE SET metadata = EXCLUDED.metadata
|
||||
"""
|
||||
)
|
||||
files_values = [(store_id, file_id, Json(file_info))]
|
||||
execute_values(cur, files_query, files_values, template="(%s, %s, %s)")
|
||||
# Insert file contents
|
||||
contents_query = sql.SQL(
|
||||
"""
|
||||
INSERT INTO openai_vector_store_files_contents (store_id, file_id, contents)
|
||||
VALUES %s
|
||||
ON CONFLICT (store_id, file_id) DO UPDATE SET contents = EXCLUDED.contents
|
||||
"""
|
||||
)
|
||||
contents_values = [(store_id, file_id, Json(file_contents))]
|
||||
execute_values(cur, contents_query, contents_values, template="(%s, %s, %s)")
|
||||
except Exception as e:
|
||||
log.error(f"Error saving openai vector store file {file_id} for store {store_id}: {e}")
|
||||
raise
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
"""Delete a chunk from a PostgreSQL vector store."""
|
||||
index = await self._get_and_cache_vector_db_index(store_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {store_id} not found")
|
||||
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
"""Load vector store file metadata from Postgres database."""
|
||||
if self.conn is None:
|
||||
raise RuntimeError("PostgreSQL connection is not initialized")
|
||||
try:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(
|
||||
"SELECT metadata FROM openai_vector_store_files WHERE store_id = %s AND file_id = %s",
|
||||
(store_id, file_id),
|
||||
)
|
||||
row = cur.fetchone()
|
||||
return row[0] if row and row[0] is not None else {}
|
||||
except Exception as e:
|
||||
log.error(f"Error loading openai vector store file {file_id} for store {store_id}: {e}")
|
||||
return {}
|
||||
|
||||
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
|
||||
"""Load vector store file contents from Postgres database."""
|
||||
if self.conn is None:
|
||||
raise RuntimeError("PostgreSQL connection is not initialized")
|
||||
try:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(
|
||||
"SELECT contents FROM openai_vector_store_files_contents WHERE store_id = %s AND file_id = %s",
|
||||
(store_id, file_id),
|
||||
)
|
||||
row = cur.fetchone()
|
||||
return row[0] if row and row[0] is not None else []
|
||||
except Exception as e:
|
||||
log.error(f"Error loading openai vector store file contents for {file_id} in store {store_id}: {e}")
|
||||
return []
|
||||
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
"""Update vector store file metadata in Postgres database."""
|
||||
if self.conn is None:
|
||||
raise RuntimeError("PostgreSQL connection is not initialized")
|
||||
try:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
query = sql.SQL(
|
||||
"""
|
||||
INSERT INTO openai_vector_store_files (store_id, file_id, metadata)
|
||||
VALUES %s
|
||||
ON CONFLICT (store_id, file_id) DO UPDATE SET metadata = EXCLUDED.metadata
|
||||
"""
|
||||
)
|
||||
values = [(store_id, file_id, Json(file_info))]
|
||||
execute_values(cur, query, values, template="(%s, %s, %s)")
|
||||
except Exception as e:
|
||||
log.error(f"Error updating openai vector store file {file_id} for store {store_id}: {e}")
|
||||
raise
|
||||
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
"""Delete vector store file metadata from Postgres database."""
|
||||
if self.conn is None:
|
||||
raise RuntimeError("PostgreSQL connection is not initialized")
|
||||
try:
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(
|
||||
"DELETE FROM openai_vector_store_files WHERE store_id = %s AND file_id = %s",
|
||||
(store_id, file_id),
|
||||
)
|
||||
cur.execute(
|
||||
"DELETE FROM openai_vector_store_files_contents WHERE store_id = %s AND file_id = %s",
|
||||
(store_id, file_id),
|
||||
)
|
||||
except Exception as e:
|
||||
log.error(f"Error deleting openai vector store file {file_id} for store {store_id}: {e}")
|
||||
raise
|
||||
for chunk_id in chunk_ids:
|
||||
# Use the index's delete_chunk method
|
||||
await index.index.delete_chunk(chunk_id)
|
||||
|
|
|
|||
|
|
@ -82,6 +82,9 @@ class QdrantIndex(EmbeddingIndex):
|
|||
|
||||
await self.client.upsert(collection_name=self.collection_name, points=points)
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
raise NotImplementedError("delete_chunk is not supported in qdrant")
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
results = (
|
||||
await self.client.query_points(
|
||||
|
|
@ -307,3 +310,6 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
|
||||
|
|
|
|||
|
|
@ -66,6 +66,9 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
# TODO: make this async friendly
|
||||
collection.data.insert_many(data_objects)
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
raise NotImplementedError("delete_chunk is not supported in Chroma")
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
|
||||
|
|
@ -264,3 +267,6 @@ class WeaviateVectorIOAdapter(
|
|||
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Weaviate")
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Weaviate")
|
||||
|
|
|
|||
|
|
@ -88,7 +88,7 @@ class SentenceTransformerEmbeddingMixin:
|
|||
usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
|
||||
return OpenAIEmbeddingsResponse(
|
||||
data=data,
|
||||
model=model_obj.provider_resource_id,
|
||||
model=model,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -68,11 +68,23 @@ class LiteLLMOpenAIMixin(
|
|||
def __init__(
|
||||
self,
|
||||
model_entries,
|
||||
litellm_provider_name: str,
|
||||
api_key_from_config: str | None,
|
||||
provider_data_api_key_field: str,
|
||||
openai_compat_api_base: str | None = None,
|
||||
):
|
||||
"""
|
||||
Initialize the LiteLLMOpenAIMixin.
|
||||
|
||||
:param model_entries: The model entries to register.
|
||||
:param api_key_from_config: The API key to use from the config.
|
||||
:param provider_data_api_key_field: The field in the provider data that contains the API key.
|
||||
:param litellm_provider_name: The name of the provider, used for model lookups.
|
||||
:param openai_compat_api_base: The base URL for OpenAI compatibility, or None if not using OpenAI compatibility.
|
||||
"""
|
||||
ModelRegistryHelper.__init__(self, model_entries)
|
||||
|
||||
self.litellm_provider_name = litellm_provider_name
|
||||
self.api_key_from_config = api_key_from_config
|
||||
self.provider_data_api_key_field = provider_data_api_key_field
|
||||
self.api_base = openai_compat_api_base
|
||||
|
|
@ -91,7 +103,11 @@ class LiteLLMOpenAIMixin(
|
|||
def get_litellm_model_name(self, model_id: str) -> str:
|
||||
# users may be using openai/ prefix in their model names. the openai/models.py did this by default.
|
||||
# model_id.startswith("openai/") is for backwards compatibility.
|
||||
return "openai/" + model_id if self.is_openai_compat and not model_id.startswith("openai/") else model_id
|
||||
return (
|
||||
f"{self.litellm_provider_name}/{model_id}"
|
||||
if self.is_openai_compat and not model_id.startswith(self.litellm_provider_name)
|
||||
else model_id
|
||||
)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
|
|
@ -421,3 +437,17 @@ class LiteLLMOpenAIMixin(
|
|||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch chat completion is not supported for OpenAI Compat")
|
||||
|
||||
async def check_model_availability(self, model: str) -> bool:
|
||||
"""
|
||||
Check if a specific model is available via LiteLLM for the current
|
||||
provider (self.litellm_provider_name).
|
||||
|
||||
:param model: The model identifier to check.
|
||||
:return: True if the model is available dynamically, False otherwise.
|
||||
"""
|
||||
if self.litellm_provider_name not in litellm.models_by_provider:
|
||||
logger.error(f"Provider {self.litellm_provider_name} is not registered in litellm.")
|
||||
return False
|
||||
|
||||
return model in litellm.models_by_provider[self.litellm_provider_name]
|
||||
|
|
|
|||
|
|
@ -10,12 +10,22 @@ from pydantic import BaseModel, Field
|
|||
|
||||
from llama_stack.apis.common.errors import UnsupportedModelError
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.sku_list import all_registered_models
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference import (
|
||||
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="core")
|
||||
|
||||
|
||||
class RemoteInferenceProviderConfig(BaseModel):
|
||||
allowed_models: list[str] | None = Field(
|
||||
default=None,
|
||||
description="List of models that should be registered with the model registry. If None, all models are allowed.",
|
||||
)
|
||||
|
||||
|
||||
# TODO: this class is more confusing than useful right now. We need to make it
|
||||
# more closer to the Model class.
|
||||
|
|
@ -40,7 +50,8 @@ def build_hf_repo_model_entry(
|
|||
additional_aliases: list[str] | None = None,
|
||||
) -> ProviderModelEntry:
|
||||
aliases = [
|
||||
get_huggingface_repo(model_descriptor),
|
||||
# NOTE: avoid HF aliases because they _cannot_ be unique across providers
|
||||
# get_huggingface_repo(model_descriptor),
|
||||
]
|
||||
if additional_aliases:
|
||||
aliases.extend(additional_aliases)
|
||||
|
|
@ -62,7 +73,12 @@ def build_model_entry(provider_model_id: str, model_descriptor: str) -> Provider
|
|||
|
||||
|
||||
class ModelRegistryHelper(ModelsProtocolPrivate):
|
||||
def __init__(self, model_entries: list[ProviderModelEntry]):
|
||||
__provider_id__: str
|
||||
|
||||
def __init__(self, model_entries: list[ProviderModelEntry], allowed_models: list[str] | None = None):
|
||||
self.model_entries = model_entries
|
||||
self.allowed_models = allowed_models
|
||||
|
||||
self.alias_to_provider_id_map = {}
|
||||
self.provider_id_to_llama_model_map = {}
|
||||
for entry in model_entries:
|
||||
|
|
@ -76,6 +92,27 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
|||
self.alias_to_provider_id_map[entry.llama_model] = entry.provider_model_id
|
||||
self.provider_id_to_llama_model_map[entry.provider_model_id] = entry.llama_model
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
models = []
|
||||
for entry in self.model_entries:
|
||||
ids = [entry.provider_model_id] + entry.aliases
|
||||
for id in ids:
|
||||
if self.allowed_models and id not in self.allowed_models:
|
||||
continue
|
||||
models.append(
|
||||
Model(
|
||||
identifier=id,
|
||||
provider_resource_id=entry.provider_model_id,
|
||||
model_type=ModelType.llm,
|
||||
metadata=entry.metadata,
|
||||
provider_id=self.__provider_id__,
|
||||
)
|
||||
)
|
||||
return models
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
return False
|
||||
|
||||
def get_provider_model_id(self, identifier: str) -> str | None:
|
||||
return self.alias_to_provider_id_map.get(identifier, None)
|
||||
|
||||
|
|
@ -98,6 +135,9 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
|||
:param model: The model identifier to check.
|
||||
:return: True if the model is available dynamically, False otherwise.
|
||||
"""
|
||||
logger.info(
|
||||
f"check_model_availability is not implemented for {self.__class__.__name__}. Returning False by default."
|
||||
)
|
||||
return False
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
|
|
@ -148,8 +188,8 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
|||
return model
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
# TODO: should we block unregistering base supported provider model IDs?
|
||||
if model_id not in self.alias_to_provider_id_map:
|
||||
raise ValueError(f"Model id '{model_id}' is not registered.")
|
||||
|
||||
del self.alias_to_provider_id_map[model_id]
|
||||
# model_id is the identifier, not the provider_resource_id
|
||||
# unfortunately, this ID can be of the form provider_id/model_id which
|
||||
# we never registered. TODO: fix this by significantly rewriting
|
||||
# registration and registry helper
|
||||
pass
|
||||
|
|
|
|||
272
llama_stack/providers/utils/inference/openai_mixin.py
Normal file
272
llama_stack/providers/utils/inference/openai_mixin.py
Normal file
|
|
@ -0,0 +1,272 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
import openai
|
||||
from openai import NOT_GIVEN, AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
Model,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
||||
|
||||
logger = get_logger(name=__name__, category="core")
|
||||
|
||||
|
||||
class OpenAIMixin(ABC):
|
||||
"""
|
||||
Mixin class that provides OpenAI-specific functionality for inference providers.
|
||||
This class handles direct OpenAI API calls using the AsyncOpenAI client.
|
||||
|
||||
This is an abstract base class that requires child classes to implement:
|
||||
- get_api_key(): Method to retrieve the API key
|
||||
- get_base_url(): Method to retrieve the OpenAI-compatible API base URL
|
||||
|
||||
Expected Dependencies:
|
||||
- self.model_store: Injected by the Llama Stack distribution system at runtime.
|
||||
This provides model registry functionality for looking up registered models.
|
||||
The model_store is set in routing_tables/common.py during provider initialization.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def get_api_key(self) -> str:
|
||||
"""
|
||||
Get the API key.
|
||||
|
||||
This method must be implemented by child classes to provide the API key
|
||||
for authenticating with the OpenAI API or compatible endpoints.
|
||||
|
||||
:return: The API key as a string
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_base_url(self) -> str:
|
||||
"""
|
||||
Get the OpenAI-compatible API base URL.
|
||||
|
||||
This method must be implemented by child classes to provide the base URL
|
||||
for the OpenAI API or compatible endpoints (e.g., "https://api.openai.com/v1").
|
||||
|
||||
:return: The base URL as a string
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def client(self) -> AsyncOpenAI:
|
||||
"""
|
||||
Get an AsyncOpenAI client instance.
|
||||
|
||||
Uses the abstract methods get_api_key() and get_base_url() which must be
|
||||
implemented by child classes.
|
||||
"""
|
||||
return AsyncOpenAI(
|
||||
api_key=self.get_api_key(),
|
||||
base_url=self.get_base_url(),
|
||||
)
|
||||
|
||||
async def _get_provider_model_id(self, model: str) -> str:
|
||||
"""
|
||||
Get the provider-specific model ID from the model store.
|
||||
|
||||
This is a utility method that looks up the registered model and returns
|
||||
the provider_resource_id that should be used for actual API calls.
|
||||
|
||||
:param model: The registered model name/identifier
|
||||
:return: The provider-specific model ID (e.g., "gpt-4")
|
||||
"""
|
||||
# Look up the registered model to get the provider-specific model ID
|
||||
# self.model_store is injected by the distribution system at runtime
|
||||
model_obj: Model = await self.model_store.get_model(model) # type: ignore[attr-defined]
|
||||
# provider_resource_id is str | None, but we expect it to be str for OpenAI calls
|
||||
if model_obj.provider_resource_id is None:
|
||||
raise ValueError(f"Model {model} has no provider_resource_id")
|
||||
return model_obj.provider_resource_id
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
"""
|
||||
Direct OpenAI completion API call.
|
||||
"""
|
||||
if guided_choice is not None:
|
||||
logger.warning("guided_choice is not supported by the OpenAI API. Ignoring.")
|
||||
if prompt_logprobs is not None:
|
||||
logger.warning("prompt_logprobs is not supported by the OpenAI API. Ignoring.")
|
||||
|
||||
# TODO: fix openai_completion to return type compatible with OpenAI's API response
|
||||
return await self.client.completions.create( # type: ignore[no-any-return]
|
||||
**await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(model),
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
suffix=suffix,
|
||||
)
|
||||
)
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
"""
|
||||
Direct OpenAI chat completion API call.
|
||||
"""
|
||||
# Type ignore because return types are compatible
|
||||
return await self.client.chat.completions.create( # type: ignore[no-any-return]
|
||||
**await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(model),
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
"""
|
||||
Direct OpenAI embeddings API call.
|
||||
"""
|
||||
# Call OpenAI embeddings API with properly typed parameters
|
||||
response = await self.client.embeddings.create(
|
||||
model=await self._get_provider_model_id(model),
|
||||
input=input,
|
||||
encoding_format=encoding_format if encoding_format is not None else NOT_GIVEN,
|
||||
dimensions=dimensions if dimensions is not None else NOT_GIVEN,
|
||||
user=user if user is not None else NOT_GIVEN,
|
||||
)
|
||||
|
||||
data = []
|
||||
for i, embedding_data in enumerate(response.data):
|
||||
data.append(
|
||||
OpenAIEmbeddingData(
|
||||
embedding=embedding_data.embedding,
|
||||
index=i,
|
||||
)
|
||||
)
|
||||
|
||||
usage = OpenAIEmbeddingUsage(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
)
|
||||
|
||||
return OpenAIEmbeddingsResponse(
|
||||
data=data,
|
||||
model=response.model,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
async def check_model_availability(self, model: str) -> bool:
|
||||
"""
|
||||
Check if a specific model is available from OpenAI.
|
||||
|
||||
:param model: The model identifier to check.
|
||||
:return: True if the model is available dynamically, False otherwise.
|
||||
"""
|
||||
try:
|
||||
# Direct model lookup - returns model or raises NotFoundError
|
||||
await self.client.models.retrieve(model)
|
||||
return True
|
||||
except openai.NotFoundError:
|
||||
# Model doesn't exist - this is expected for unavailable models
|
||||
pass
|
||||
except Exception as e:
|
||||
# All other errors (auth, rate limit, network, etc.)
|
||||
logger.warning(f"Failed to check model availability for {model}: {e}")
|
||||
|
||||
return False
|
||||
|
|
@ -66,7 +66,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
|
||||
"""Save vector store metadata to persistent storage."""
|
||||
assert self.kvstore is not None
|
||||
assert self.kvstore
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(store_info))
|
||||
# update in-memory cache
|
||||
|
|
@ -74,7 +74,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
|
||||
"""Load all vector store metadata from persistent storage."""
|
||||
assert self.kvstore is not None
|
||||
assert self.kvstore
|
||||
start_key = OPENAI_VECTOR_STORES_PREFIX
|
||||
end_key = f"{OPENAI_VECTOR_STORES_PREFIX}\xff"
|
||||
stored_data = await self.kvstore.values_in_range(start_key, end_key)
|
||||
|
|
@ -87,7 +87,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
|
||||
"""Update vector store metadata in persistent storage."""
|
||||
assert self.kvstore is not None
|
||||
assert self.kvstore
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(store_info))
|
||||
# update in-memory cache
|
||||
|
|
@ -95,37 +95,66 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
|
||||
"""Delete vector store metadata from persistent storage."""
|
||||
assert self.kvstore is not None
|
||||
assert self.kvstore
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.delete(key)
|
||||
# remove from in-memory cache
|
||||
self.openai_vector_stores.pop(store_id, None)
|
||||
|
||||
@abstractmethod
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
"""Save vector store file metadata to persistent storage."""
|
||||
pass
|
||||
assert self.kvstore
|
||||
meta_key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=meta_key, value=json.dumps(file_info))
|
||||
contents_prefix = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}:"
|
||||
for idx, chunk in enumerate(file_contents):
|
||||
await self.kvstore.set(key=f"{contents_prefix}{idx}", value=json.dumps(chunk))
|
||||
|
||||
@abstractmethod
|
||||
async def _load_openai_vector_store_file(self, store_id: str, file_id: str) -> dict[str, Any]:
|
||||
"""Load vector store file metadata from persistent storage."""
|
||||
pass
|
||||
assert self.kvstore
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
stored_data = await self.kvstore.get(key)
|
||||
return json.loads(stored_data) if stored_data else {}
|
||||
|
||||
@abstractmethod
|
||||
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
|
||||
"""Load vector store file contents from persistent storage."""
|
||||
pass
|
||||
assert self.kvstore
|
||||
prefix = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}:"
|
||||
end_key = f"{prefix}\xff"
|
||||
raw_items = await self.kvstore.values_in_range(prefix, end_key)
|
||||
return [json.loads(item) for item in raw_items]
|
||||
|
||||
@abstractmethod
|
||||
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
|
||||
"""Update vector store file metadata in persistent storage."""
|
||||
pass
|
||||
assert self.kvstore
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(file_info))
|
||||
|
||||
@abstractmethod
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
"""Delete vector store file metadata from persistent storage."""
|
||||
assert self.kvstore
|
||||
|
||||
meta_key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.delete(meta_key)
|
||||
|
||||
contents_prefix = f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}:"
|
||||
end_key = f"{contents_prefix}\xff"
|
||||
# load all stored chunk values (values_in_range is implemented by all backends)
|
||||
raw_items = await self.kvstore.values_in_range(contents_prefix, end_key)
|
||||
# delete each chunk by its index suffix
|
||||
for idx in range(len(raw_items)):
|
||||
await self.kvstore.delete(f"{contents_prefix}{idx}")
|
||||
|
||||
async def initialize_openai_vector_stores(self) -> None:
|
||||
"""Load existing OpenAI vector stores into the in-memory cache."""
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
@abstractmethod
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
"""Delete a chunk from a vector store."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
|
|
@ -138,10 +167,6 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
"""Unregister a vector database (provider-specific implementation)."""
|
||||
pass
|
||||
|
||||
async def initialize_openai_vector_stores(self) -> None:
|
||||
"""Load existing OpenAI vector stores into the in-memory cache."""
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
@abstractmethod
|
||||
async def insert_chunks(
|
||||
self,
|
||||
|
|
@ -161,7 +186,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str,
|
||||
name: str | None = None,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
|
|
@ -743,17 +768,15 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise ValueError(f"Vector store {vector_store_id} not found")
|
||||
|
||||
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
|
||||
chunks = [Chunk.model_validate(c) for c in dict_chunks]
|
||||
await self.delete_chunks(vector_store_id, [str(c.chunk_id) for c in chunks if c.chunk_id])
|
||||
|
||||
store_info = self.openai_vector_stores[vector_store_id].copy()
|
||||
|
||||
file = await self.openai_retrieve_vector_store_file(vector_store_id, file_id)
|
||||
await self._delete_openai_vector_store_file_from_storage(vector_store_id, file_id)
|
||||
|
||||
# TODO: We need to actually delete the embeddings from the underlying vector store...
|
||||
# Also uncomment the corresponding integration test marked as xfail
|
||||
#
|
||||
# test_openai_vector_store_delete_file_removes_from_vector_store in
|
||||
# tests/integration/vector_io/test_openai_vector_stores.py
|
||||
|
||||
# Update in-memory cache
|
||||
store_info["file_ids"].remove(file_id)
|
||||
store_info["file_counts"][file.status] -= 1
|
||||
|
|
|
|||
|
|
@ -231,6 +231,10 @@ class EmbeddingIndex(ABC):
|
|||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
async def delete_chunk(self, chunk_id: str):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
|||
|
|
@ -83,6 +83,7 @@ class SQLiteTraceStore(TraceStore):
|
|||
)
|
||||
SELECT DISTINCT trace_id, root_span_id, start_time, end_time
|
||||
FROM filtered_traces
|
||||
WHERE root_span_id IS NOT NULL
|
||||
LIMIT {limit} OFFSET {offset}
|
||||
"""
|
||||
|
||||
|
|
@ -166,7 +167,11 @@ class SQLiteTraceStore(TraceStore):
|
|||
return spans_by_id
|
||||
|
||||
async def get_trace(self, trace_id: str) -> Trace:
|
||||
query = "SELECT * FROM traces WHERE trace_id = ?"
|
||||
query = """
|
||||
SELECT *
|
||||
FROM traces t
|
||||
WHERE t.trace_id = ?
|
||||
"""
|
||||
async with aiosqlite.connect(self.conn_string) as conn:
|
||||
conn.row_factory = aiosqlite.Row
|
||||
async with conn.execute(query, (trace_id,)) as cursor:
|
||||
|
|
|
|||
|
|
@ -4,13 +4,16 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator
|
||||
from contextlib import asynccontextmanager
|
||||
from enum import Enum
|
||||
from typing import Any, cast
|
||||
|
||||
import httpx
|
||||
from mcp import ClientSession
|
||||
from mcp import ClientSession, McpError
|
||||
from mcp import types as mcp_types
|
||||
from mcp.client.sse import sse_client
|
||||
from mcp.client.streamable_http import streamablehttp_client
|
||||
|
||||
from llama_stack.apis.common.content_types import ImageContentItem, InterleavedContentItem, TextContentItem
|
||||
from llama_stack.apis.tools import (
|
||||
|
|
@ -21,31 +24,61 @@ from llama_stack.apis.tools import (
|
|||
)
|
||||
from llama_stack.distribution.datatypes import AuthenticationRequiredError
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.tools.ttl_dict import TTLDict
|
||||
|
||||
logger = get_logger(__name__, category="tools")
|
||||
|
||||
protocol_cache = TTLDict(ttl_seconds=3600)
|
||||
|
||||
|
||||
class MCPProtol(Enum):
|
||||
UNKNOWN = 0
|
||||
STREAMABLE_HTTP = 1
|
||||
SSE = 2
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def sse_client_wrapper(endpoint: str, headers: dict[str, str]):
|
||||
try:
|
||||
async with sse_client(endpoint, headers=headers) as streams:
|
||||
async with ClientSession(*streams) as session:
|
||||
await session.initialize()
|
||||
yield session
|
||||
except* httpx.HTTPStatusError as eg:
|
||||
for exc in eg.exceptions:
|
||||
# mypy does not currently narrow the type of `eg.exceptions` based on the `except*` filter,
|
||||
# so we explicitly cast each item to httpx.HTTPStatusError. This is safe because
|
||||
# `except* httpx.HTTPStatusError` guarantees all exceptions in `eg.exceptions` are of that type.
|
||||
err = cast(httpx.HTTPStatusError, exc)
|
||||
if err.response.status_code == 401:
|
||||
raise AuthenticationRequiredError(exc) from exc
|
||||
raise
|
||||
async def client_wrapper(endpoint: str, headers: dict[str, str]) -> AsyncGenerator[ClientSession, Any]:
|
||||
# we use a ttl'd dict to cache the happy path protocol for each endpoint
|
||||
# but, we always fall back to trying the other protocol if we cannot initialize the session
|
||||
connection_strategies = [MCPProtol.STREAMABLE_HTTP, MCPProtol.SSE]
|
||||
mcp_protocol = protocol_cache.get(endpoint, default=MCPProtol.UNKNOWN)
|
||||
if mcp_protocol == MCPProtol.SSE:
|
||||
connection_strategies = [MCPProtol.SSE, MCPProtol.STREAMABLE_HTTP]
|
||||
|
||||
for i, strategy in enumerate(connection_strategies):
|
||||
try:
|
||||
client = streamablehttp_client
|
||||
if strategy == MCPProtol.SSE:
|
||||
client = sse_client
|
||||
async with client(endpoint, headers=headers) as client_streams:
|
||||
async with ClientSession(read_stream=client_streams[0], write_stream=client_streams[1]) as session:
|
||||
await session.initialize()
|
||||
protocol_cache[endpoint] = strategy
|
||||
yield session
|
||||
return
|
||||
except* httpx.HTTPStatusError as eg:
|
||||
for exc in eg.exceptions:
|
||||
# mypy does not currently narrow the type of `eg.exceptions` based on the `except*` filter,
|
||||
# so we explicitly cast each item to httpx.HTTPStatusError. This is safe because
|
||||
# `except* httpx.HTTPStatusError` guarantees all exceptions in `eg.exceptions` are of that type.
|
||||
err = cast(httpx.HTTPStatusError, exc)
|
||||
if err.response.status_code == 401:
|
||||
raise AuthenticationRequiredError(exc) from exc
|
||||
if i == len(connection_strategies) - 1:
|
||||
raise
|
||||
except* McpError:
|
||||
if i < len(connection_strategies) - 1:
|
||||
logger.warning(
|
||||
f"failed to connect via {strategy.name}, falling back to {connection_strategies[i + 1].name}"
|
||||
)
|
||||
else:
|
||||
raise
|
||||
|
||||
|
||||
async def list_mcp_tools(endpoint: str, headers: dict[str, str]) -> ListToolDefsResponse:
|
||||
tools = []
|
||||
async with sse_client_wrapper(endpoint, headers) as session:
|
||||
async with client_wrapper(endpoint, headers) as session:
|
||||
tools_result = await session.list_tools()
|
||||
for tool in tools_result.tools:
|
||||
parameters = []
|
||||
|
|
@ -73,7 +106,7 @@ async def list_mcp_tools(endpoint: str, headers: dict[str, str]) -> ListToolDefs
|
|||
async def invoke_mcp_tool(
|
||||
endpoint: str, headers: dict[str, str], tool_name: str, kwargs: dict[str, Any]
|
||||
) -> ToolInvocationResult:
|
||||
async with sse_client_wrapper(endpoint, headers) as session:
|
||||
async with client_wrapper(endpoint, headers) as session:
|
||||
result = await session.call_tool(tool_name, kwargs)
|
||||
|
||||
content: list[InterleavedContentItem] = []
|
||||
|
|
|
|||
70
llama_stack/providers/utils/tools/ttl_dict.py
Normal file
70
llama_stack/providers/utils/tools/ttl_dict.py
Normal file
|
|
@ -0,0 +1,70 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import time
|
||||
from threading import RLock
|
||||
from typing import Any
|
||||
|
||||
|
||||
class TTLDict(dict):
|
||||
"""
|
||||
A dictionary with a ttl for each item
|
||||
"""
|
||||
|
||||
def __init__(self, ttl_seconds: float, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.ttl_seconds = ttl_seconds
|
||||
self._expires: dict[Any, Any] = {} # expires holds when an item will expire
|
||||
self._lock = RLock()
|
||||
|
||||
if args or kwargs:
|
||||
for k, v in self.items():
|
||||
self.__setitem__(k, v)
|
||||
|
||||
def __delitem__(self, key):
|
||||
with self._lock:
|
||||
del self._expires[key]
|
||||
super().__delitem__(key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
with self._lock:
|
||||
self._expires[key] = time.monotonic() + self.ttl_seconds
|
||||
super().__setitem__(key, value)
|
||||
|
||||
def _is_expired(self, key):
|
||||
if key not in self._expires:
|
||||
return False
|
||||
return time.monotonic() > self._expires[key]
|
||||
|
||||
def __getitem__(self, key):
|
||||
with self._lock:
|
||||
if self._is_expired(key):
|
||||
del self._expires[key]
|
||||
super().__delitem__(key)
|
||||
raise KeyError(f"{key} has expired and was removed")
|
||||
|
||||
return super().__getitem__(key)
|
||||
|
||||
def get(self, key, default=None):
|
||||
try:
|
||||
return self[key]
|
||||
except KeyError:
|
||||
return default
|
||||
|
||||
def __contains__(self, key):
|
||||
try:
|
||||
_ = self[key]
|
||||
return True
|
||||
except KeyError:
|
||||
return False
|
||||
|
||||
def __repr__(self):
|
||||
with self._lock:
|
||||
for key in self.keys():
|
||||
if self._is_expired(key):
|
||||
del self._expires[key]
|
||||
super().__delitem__(key)
|
||||
return f"TTLDict({self.ttl_seconds}, {super().__repr__()})"
|
||||
Loading…
Add table
Add a link
Reference in a new issue