mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-27 06:28:50 +00:00
Merge branch 'main' into allow-dynamic-models-ollama
This commit is contained in:
commit
b6a334604c
113 changed files with 3795 additions and 3100 deletions
|
@ -87,6 +87,20 @@ class RAGQueryGenerator(Enum):
|
|||
custom = "custom"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RAGSearchMode(Enum):
|
||||
"""
|
||||
Search modes for RAG query retrieval:
|
||||
- VECTOR: Uses vector similarity search for semantic matching
|
||||
- KEYWORD: Uses keyword-based search for exact matching
|
||||
- HYBRID: Combines both vector and keyword search for better results
|
||||
"""
|
||||
|
||||
VECTOR = "vector"
|
||||
KEYWORD = "keyword"
|
||||
HYBRID = "hybrid"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DefaultRAGQueryGeneratorConfig(BaseModel):
|
||||
type: Literal["default"] = "default"
|
||||
|
@ -128,7 +142,7 @@ class RAGQueryConfig(BaseModel):
|
|||
max_tokens_in_context: int = 4096
|
||||
max_chunks: int = 5
|
||||
chunk_template: str = "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n"
|
||||
mode: str | None = None
|
||||
mode: RAGSearchMode | None = RAGSearchMode.VECTOR
|
||||
ranker: Ranker | None = Field(default=None) # Only used for hybrid mode
|
||||
|
||||
@field_validator("chunk_template")
|
||||
|
|
|
@ -93,7 +93,7 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
|
|||
)
|
||||
sys.exit(1)
|
||||
elif args.providers:
|
||||
providers = dict()
|
||||
providers_list: dict[str, str | list[str]] = dict()
|
||||
for api_provider in args.providers.split(","):
|
||||
if "=" not in api_provider:
|
||||
cprint(
|
||||
|
@ -112,7 +112,15 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
|
|||
)
|
||||
sys.exit(1)
|
||||
if provider in providers_for_api:
|
||||
providers.setdefault(api, []).append(provider)
|
||||
if api not in providers_list:
|
||||
providers_list[api] = []
|
||||
# Use type guarding to ensure we have a list
|
||||
provider_value = providers_list[api]
|
||||
if isinstance(provider_value, list):
|
||||
provider_value.append(provider)
|
||||
else:
|
||||
# Convert string to list and append
|
||||
providers_list[api] = [provider_value, provider]
|
||||
else:
|
||||
cprint(
|
||||
f"{provider} is not a valid provider for the {api} API.",
|
||||
|
@ -121,7 +129,7 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
|
|||
)
|
||||
sys.exit(1)
|
||||
distribution_spec = DistributionSpec(
|
||||
providers=providers,
|
||||
providers=providers_list,
|
||||
description=",".join(args.providers),
|
||||
)
|
||||
if not args.image_type:
|
||||
|
@ -182,7 +190,7 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
|
|||
|
||||
cprint("Tip: use <TAB> to see options for the providers.\n", color="green", file=sys.stderr)
|
||||
|
||||
providers = dict()
|
||||
providers: dict[str, str | list[str]] = dict()
|
||||
for api, providers_for_api in get_provider_registry().items():
|
||||
available_providers = [x for x in providers_for_api.keys() if x not in ("remote", "remote::sample")]
|
||||
if not available_providers:
|
||||
|
@ -371,10 +379,16 @@ def _run_stack_build_command_from_build_config(
|
|||
if not image_name:
|
||||
raise ValueError("Please specify an image name when building a venv image")
|
||||
|
||||
# At this point, image_name should be guaranteed to be a string
|
||||
if image_name is None:
|
||||
raise ValueError("image_name should not be None after validation")
|
||||
|
||||
if template_name:
|
||||
build_dir = DISTRIBS_BASE_DIR / template_name
|
||||
build_file_path = build_dir / f"{template_name}-build.yaml"
|
||||
else:
|
||||
if image_name is None:
|
||||
raise ValueError("image_name cannot be None")
|
||||
build_dir = DISTRIBS_BASE_DIR / image_name
|
||||
build_file_path = build_dir / f"{image_name}-build.yaml"
|
||||
|
||||
|
@ -395,7 +409,7 @@ def _run_stack_build_command_from_build_config(
|
|||
build_file_path,
|
||||
image_name,
|
||||
template_or_config=template_name or config_path or str(build_file_path),
|
||||
run_config=run_config_file,
|
||||
run_config=run_config_file.as_posix() if run_config_file else None,
|
||||
)
|
||||
if return_code != 0:
|
||||
raise RuntimeError(f"Failed to build image {image_name}")
|
||||
|
|
|
@ -83,46 +83,57 @@ class StackRun(Subcommand):
|
|||
return ImageType.CONDA.value, args.image_name
|
||||
return args.image_type, args.image_name
|
||||
|
||||
def _resolve_config_and_template(self, args: argparse.Namespace) -> tuple[Path | None, str | None]:
|
||||
"""Resolve config file path and template name from args.config"""
|
||||
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR
|
||||
|
||||
if not args.config:
|
||||
return None, None
|
||||
|
||||
config_file = Path(args.config)
|
||||
has_yaml_suffix = args.config.endswith(".yaml")
|
||||
template_name = None
|
||||
|
||||
if not config_file.exists() and not has_yaml_suffix:
|
||||
# check if this is a template
|
||||
config_file = Path(REPO_ROOT) / "llama_stack" / "templates" / args.config / "run.yaml"
|
||||
if config_file.exists():
|
||||
template_name = args.config
|
||||
|
||||
if not config_file.exists() and not has_yaml_suffix:
|
||||
# check if it's a build config saved to ~/.llama dir
|
||||
config_file = Path(DISTRIBS_BASE_DIR / f"llamastack-{args.config}" / f"{args.config}-run.yaml")
|
||||
|
||||
if not config_file.exists():
|
||||
self.parser.error(
|
||||
f"File {str(config_file)} does not exist.\n\nPlease run `llama stack build` to generate (and optionally edit) a run.yaml file"
|
||||
)
|
||||
|
||||
if not config_file.is_file():
|
||||
self.parser.error(
|
||||
f"Config file must be a valid file path, '{config_file}' is not a file: type={type(config_file)}"
|
||||
)
|
||||
|
||||
return config_file, template_name
|
||||
|
||||
def _run_stack_run_cmd(self, args: argparse.Namespace) -> None:
|
||||
import yaml
|
||||
|
||||
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
|
||||
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR
|
||||
from llama_stack.distribution.utils.exec import formulate_run_args, run_command
|
||||
|
||||
if args.enable_ui:
|
||||
self._start_ui_development_server(args.port)
|
||||
image_type, image_name = self._get_image_type_and_name(args)
|
||||
|
||||
# Resolve config file and template name first
|
||||
config_file, template_name = self._resolve_config_and_template(args)
|
||||
|
||||
# Check if config is required based on image type
|
||||
if (image_type in [ImageType.CONDA.value, ImageType.VENV.value]) and not args.config:
|
||||
if (image_type in [ImageType.CONDA.value, ImageType.VENV.value]) and not config_file:
|
||||
self.parser.error("Config file is required for venv and conda environments")
|
||||
|
||||
if args.config:
|
||||
config_file = Path(args.config)
|
||||
has_yaml_suffix = args.config.endswith(".yaml")
|
||||
template_name = None
|
||||
|
||||
if not config_file.exists() and not has_yaml_suffix:
|
||||
# check if this is a template
|
||||
config_file = Path(REPO_ROOT) / "llama_stack" / "templates" / args.config / "run.yaml"
|
||||
if config_file.exists():
|
||||
template_name = args.config
|
||||
|
||||
if not config_file.exists() and not has_yaml_suffix:
|
||||
# check if it's a build config saved to ~/.llama dir
|
||||
config_file = Path(DISTRIBS_BASE_DIR / f"llamastack-{args.config}" / f"{args.config}-run.yaml")
|
||||
|
||||
if not config_file.exists():
|
||||
self.parser.error(
|
||||
f"File {str(config_file)} does not exist.\n\nPlease run `llama stack build` to generate (and optionally edit) a run.yaml file"
|
||||
)
|
||||
|
||||
if not config_file.is_file():
|
||||
self.parser.error(
|
||||
f"Config file must be a valid file path, '{config_file}' is not a file: type={type(config_file)}"
|
||||
)
|
||||
|
||||
if config_file:
|
||||
logger.info(f"Using run configuration: {config_file}")
|
||||
|
||||
try:
|
||||
|
@ -138,8 +149,6 @@ class StackRun(Subcommand):
|
|||
self.parser.error(f"failed to parse config file '{config_file}':\n {e}")
|
||||
else:
|
||||
config = None
|
||||
config_file = None
|
||||
template_name = None
|
||||
|
||||
# If neither image type nor image name is provided, assume the server should be run directly
|
||||
# using the current environment packages.
|
||||
|
@ -172,10 +181,7 @@ class StackRun(Subcommand):
|
|||
run_args.extend([str(args.port)])
|
||||
|
||||
if config_file:
|
||||
if template_name:
|
||||
run_args.extend(["--template", str(template_name)])
|
||||
else:
|
||||
run_args.extend(["--config", str(config_file)])
|
||||
run_args.extend(["--config", str(config_file)])
|
||||
|
||||
if args.env:
|
||||
for env_var in args.env:
|
||||
|
|
|
@ -81,7 +81,7 @@ def is_action_allowed(
|
|||
if not len(policy):
|
||||
policy = default_policy()
|
||||
|
||||
qualified_resource_id = resource.type + "::" + resource.identifier
|
||||
qualified_resource_id = f"{resource.type}::{resource.identifier}"
|
||||
for rule in policy:
|
||||
if rule.forbid and matches_scope(rule.forbid, action, qualified_resource_id, user.principal):
|
||||
if rule.when:
|
||||
|
|
|
@ -96,7 +96,7 @@ FROM $container_base
|
|||
WORKDIR /app
|
||||
|
||||
# We install the Python 3.12 dev headers and build tools so that any
|
||||
# C‑extension wheels (e.g. polyleven, faiss‑cpu) can compile successfully.
|
||||
# C-extension wheels (e.g. polyleven, faiss-cpu) can compile successfully.
|
||||
|
||||
RUN dnf -y update && dnf install -y iputils git net-tools wget \
|
||||
vim-minimal python3.12 python3.12-pip python3.12-wheel \
|
||||
|
@ -169,7 +169,7 @@ if [ -n "$run_config" ]; then
|
|||
echo "Copying external providers directory: $external_providers_dir"
|
||||
cp -r "$external_providers_dir" "$BUILD_CONTEXT_DIR/providers.d"
|
||||
add_to_container << EOF
|
||||
COPY --chmod=g+w providers.d /.llama/providers.d
|
||||
COPY providers.d /.llama/providers.d
|
||||
EOF
|
||||
fi
|
||||
|
||||
|
|
|
@ -445,7 +445,7 @@ def main(args: argparse.Namespace | None = None):
|
|||
logger.info(log_line)
|
||||
|
||||
logger.info("Run configuration:")
|
||||
safe_config = redact_sensitive_fields(config.model_dump())
|
||||
safe_config = redact_sensitive_fields(config.model_dump(mode="json"))
|
||||
logger.info(yaml.dump(safe_config, indent=2))
|
||||
|
||||
app = FastAPI(
|
||||
|
|
|
@ -98,6 +98,7 @@ async def register_resources(run_config: StackRunConfig, impls: dict[Api, Any]):
|
|||
|
||||
method = getattr(impls[api], register_method)
|
||||
for obj in objects:
|
||||
logger.debug(f"registering {rsrc.capitalize()} {obj} for provider {obj.provider_id}")
|
||||
# Do not register models on disabled providers
|
||||
if hasattr(obj, "provider_id") and obj.provider_id is not None and obj.provider_id == "__disabled__":
|
||||
logger.debug(f"Skipping {rsrc.capitalize()} registration for disabled provider.")
|
||||
|
@ -112,6 +113,11 @@ async def register_resources(run_config: StackRunConfig, impls: dict[Api, Any]):
|
|||
):
|
||||
logger.debug(f"Skipping {rsrc.capitalize()} registration for disabled model.")
|
||||
continue
|
||||
|
||||
if hasattr(obj, "shield_id") and obj.shield_id is not None and obj.shield_id == "__disabled__":
|
||||
logger.debug(f"Skipping {rsrc.capitalize()} registration for disabled shield.")
|
||||
continue
|
||||
|
||||
# we want to maintain the type information in arguments to method.
|
||||
# instead of method(**obj.model_dump()), which may convert a typed attr to a dict,
|
||||
# we use model_dump() to find all the attrs and then getattr to get the still typed value.
|
||||
|
|
|
@ -6,12 +6,9 @@
|
|||
|
||||
from collections.abc import AsyncGenerator
|
||||
from contextvars import ContextVar
|
||||
from typing import TypeVar
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def preserve_contexts_async_generator(
|
||||
def preserve_contexts_async_generator[T](
|
||||
gen: AsyncGenerator[T, None], context_vars: list[ContextVar]
|
||||
) -> AsyncGenerator[T, None]:
|
||||
"""
|
||||
|
|
|
@ -123,7 +123,8 @@ class TorchtunePostTrainingImpl:
|
|||
training_config: TrainingConfig,
|
||||
hyperparam_search_config: dict[str, Any],
|
||||
logger_config: dict[str, Any],
|
||||
) -> PostTrainingJob: ...
|
||||
) -> PostTrainingJob:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def get_training_jobs(self) -> ListPostTrainingJobsResponse:
|
||||
return ListPostTrainingJobsResponse(
|
||||
|
|
|
@ -146,10 +146,9 @@ class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
|||
pass
|
||||
|
||||
async def register_shield(self, shield: Shield) -> None:
|
||||
if shield.provider_resource_id not in LLAMA_GUARD_MODEL_IDS:
|
||||
raise ValueError(
|
||||
f"Unsupported Llama Guard type: {shield.provider_resource_id}. Allowed types: {LLAMA_GUARD_MODEL_IDS}"
|
||||
)
|
||||
# Allow any model to be registered as a shield
|
||||
# The model will be validated during runtime when making inference calls
|
||||
pass
|
||||
|
||||
async def run_shield(
|
||||
self,
|
||||
|
@ -167,11 +166,25 @@ class LlamaGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
|||
if len(messages) > 0 and messages[0].role != Role.user.value:
|
||||
messages[0] = UserMessage(content=messages[0].content)
|
||||
|
||||
model = LLAMA_GUARD_MODEL_IDS[shield.provider_resource_id]
|
||||
# Use the inference API's model resolution instead of hardcoded mappings
|
||||
# This allows the shield to work with any registered model
|
||||
model_id = shield.provider_resource_id
|
||||
|
||||
# Determine safety categories based on the model type
|
||||
# For known Llama Guard models, use specific categories
|
||||
if model_id in LLAMA_GUARD_MODEL_IDS:
|
||||
# Use the mapped model for categories but the original model_id for inference
|
||||
mapped_model = LLAMA_GUARD_MODEL_IDS[model_id]
|
||||
safety_categories = MODEL_TO_SAFETY_CATEGORIES_MAP.get(mapped_model, DEFAULT_LG_V3_SAFETY_CATEGORIES)
|
||||
else:
|
||||
# For unknown models, use default Llama Guard 3 8B categories
|
||||
safety_categories = DEFAULT_LG_V3_SAFETY_CATEGORIES + [CAT_CODE_INTERPRETER_ABUSE]
|
||||
|
||||
impl = LlamaGuardShield(
|
||||
model=model,
|
||||
model=model_id,
|
||||
inference_api=self.inference_api,
|
||||
excluded_categories=self.config.excluded_categories,
|
||||
safety_categories=safety_categories,
|
||||
)
|
||||
|
||||
return await impl.run(messages)
|
||||
|
@ -183,20 +196,21 @@ class LlamaGuardShield:
|
|||
model: str,
|
||||
inference_api: Inference,
|
||||
excluded_categories: list[str] | None = None,
|
||||
safety_categories: list[str] | None = None,
|
||||
):
|
||||
if excluded_categories is None:
|
||||
excluded_categories = []
|
||||
if safety_categories is None:
|
||||
safety_categories = []
|
||||
|
||||
assert len(excluded_categories) == 0 or all(
|
||||
x in SAFETY_CATEGORIES_TO_CODE_MAP.values() for x in excluded_categories
|
||||
), "Invalid categories in excluded categories. Expected format is ['S1', 'S2', ..]"
|
||||
|
||||
if model not in MODEL_TO_SAFETY_CATEGORIES_MAP:
|
||||
raise ValueError(f"Unsupported model: {model}")
|
||||
|
||||
self.model = model
|
||||
self.inference_api = inference_api
|
||||
self.excluded_categories = excluded_categories
|
||||
self.safety_categories = safety_categories
|
||||
|
||||
def check_unsafe_response(self, response: str) -> str | None:
|
||||
match = re.match(r"^unsafe\n(.*)$", response)
|
||||
|
@ -214,7 +228,7 @@ class LlamaGuardShield:
|
|||
|
||||
final_categories = []
|
||||
|
||||
all_categories = MODEL_TO_SAFETY_CATEGORIES_MAP[self.model]
|
||||
all_categories = self.safety_categories
|
||||
for cat in all_categories:
|
||||
cat_code = SAFETY_CATEGORIES_TO_CODE_MAP[cat]
|
||||
if cat_code in excluded_categories:
|
||||
|
|
|
@ -267,6 +267,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
|
|||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(store_info))
|
||||
self.openai_vector_stores[store_id] = store_info
|
||||
|
||||
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
|
||||
"""Load all vector store metadata from kvstore."""
|
||||
|
@ -286,17 +287,20 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
|
|||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(store_info))
|
||||
self.openai_vector_stores[store_id] = store_info
|
||||
|
||||
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
|
||||
"""Delete vector store metadata from kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.delete(key)
|
||||
if store_id in self.openai_vector_stores:
|
||||
del self.openai_vector_stores[store_id]
|
||||
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
"""Save vector store file metadata to kvstore."""
|
||||
"""Save vector store file data to kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(file_info))
|
||||
|
@ -324,7 +328,16 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
|
|||
await self.kvstore.set(key=key, value=json.dumps(file_info))
|
||||
|
||||
async def _delete_openai_vector_store_file_from_storage(self, store_id: str, file_id: str) -> None:
|
||||
"""Delete vector store file metadata from kvstore."""
|
||||
"""Delete vector store data from kvstore."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}"
|
||||
await self.kvstore.delete(key)
|
||||
|
||||
keys_to_delete = [
|
||||
f"{OPENAI_VECTOR_STORES_FILES_PREFIX}{store_id}:{file_id}",
|
||||
f"{OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX}{store_id}:{file_id}",
|
||||
]
|
||||
for key in keys_to_delete:
|
||||
try:
|
||||
await self.kvstore.delete(key)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete key {key}: {e}")
|
||||
continue
|
||||
|
|
|
@ -18,7 +18,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
@json_schema_type
|
||||
class MilvusVectorIOConfig(BaseModel):
|
||||
db_path: str
|
||||
kvstore: KVStoreConfig
|
||||
kvstore: KVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)")
|
||||
consistency_level: str = Field(description="The consistency level of the Milvus server", default="Strong")
|
||||
|
||||
@classmethod
|
||||
|
|
|
@ -6,14 +6,24 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
|
||||
|
||||
class SQLiteVectorIOConfig(BaseModel):
|
||||
db_path: str
|
||||
db_path: str = Field(description="Path to the SQLite database file")
|
||||
kvstore: KVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
|
||||
return {
|
||||
"db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + "sqlite_vec.db",
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="sqlite_vec_registry.db",
|
||||
),
|
||||
}
|
||||
|
|
|
@ -24,6 +24,8 @@ from llama_stack.apis.vector_io import (
|
|||
VectorIO,
|
||||
)
|
||||
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
RERANKER_TYPE_RRF,
|
||||
|
@ -40,6 +42,13 @@ KEYWORD_SEARCH = "keyword"
|
|||
HYBRID_SEARCH = "hybrid"
|
||||
SEARCH_MODES = {VECTOR_SEARCH, KEYWORD_SEARCH, HYBRID_SEARCH}
|
||||
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_dbs:sqlite_vec:{VERSION}::"
|
||||
VECTOR_INDEX_PREFIX = f"vector_index:sqlite_vec:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:sqlite_vec:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:sqlite_vec:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:sqlite_vec:{VERSION}::"
|
||||
|
||||
|
||||
def serialize_vector(vector: list[float]) -> bytes:
|
||||
"""Serialize a list of floats into a compact binary representation."""
|
||||
|
@ -117,13 +126,14 @@ class SQLiteVecIndex(EmbeddingIndex):
|
|||
- An FTS5 table (fts_chunks_{bank_id}) for full-text keyword search.
|
||||
"""
|
||||
|
||||
def __init__(self, dimension: int, db_path: str, bank_id: str):
|
||||
def __init__(self, dimension: int, db_path: str, bank_id: str, kvstore: KVStore | None = None):
|
||||
self.dimension = dimension
|
||||
self.db_path = db_path
|
||||
self.bank_id = bank_id
|
||||
self.metadata_table = f"chunks_{bank_id}".replace("-", "_")
|
||||
self.vector_table = f"vec_chunks_{bank_id}".replace("-", "_")
|
||||
self.fts_table = f"fts_chunks_{bank_id}".replace("-", "_")
|
||||
self.kvstore = kvstore
|
||||
|
||||
@classmethod
|
||||
async def create(cls, dimension: int, db_path: str, bank_id: str):
|
||||
|
@ -425,27 +435,116 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
self.files_api = files_api
|
||||
self.cache: dict[str, VectorDBWithIndex] = {}
|
||||
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
|
||||
self.kvstore: KVStore | None = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
def _setup_connection():
|
||||
# Open a connection to the SQLite database (the file is specified in the config).
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
|
||||
start_key = VECTOR_DBS_PREFIX
|
||||
end_key = f"{VECTOR_DBS_PREFIX}\xff"
|
||||
stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key)
|
||||
for db_json in stored_vector_dbs:
|
||||
vector_db = VectorDB.model_validate_json(db_json)
|
||||
index = await SQLiteVecIndex.create(
|
||||
vector_db.embedding_dimension,
|
||||
self.config.db_path,
|
||||
vector_db.identifier,
|
||||
)
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
|
||||
# load any existing OpenAI vector stores
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
# nothing to do since we don't maintain a persistent connection
|
||||
pass
|
||||
|
||||
async def list_vector_dbs(self) -> list[VectorDB]:
|
||||
return [v.vector_db for v in self.cache.values()]
|
||||
|
||||
async def register_vector_db(self, vector_db: VectorDB) -> None:
|
||||
index = await SQLiteVecIndex.create(
|
||||
vector_db.embedding_dimension,
|
||||
self.config.db_path,
|
||||
vector_db.identifier,
|
||||
)
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
if self.vector_db_store is None:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
vector_db = self.vector_db_store.get_vector_db(vector_db_id)
|
||||
if not vector_db:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
index = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=SQLiteVecIndex(
|
||||
dimension=vector_db.embedding_dimension,
|
||||
db_path=self.config.db_path,
|
||||
bank_id=vector_db.identifier,
|
||||
kvstore=self.kvstore,
|
||||
),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
if vector_db_id not in self.cache:
|
||||
logger.warning(f"Vector DB {vector_db_id} not found")
|
||||
return
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
# OpenAI Vector Store Mixin abstract method implementations
|
||||
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
|
||||
"""Save vector store metadata to SQLite database."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(store_info))
|
||||
self.openai_vector_stores[store_id] = store_info
|
||||
|
||||
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
|
||||
"""Load all vector store metadata from SQLite database."""
|
||||
assert self.kvstore is not None
|
||||
start_key = OPENAI_VECTOR_STORES_PREFIX
|
||||
end_key = f"{OPENAI_VECTOR_STORES_PREFIX}\xff"
|
||||
stored_openai_stores = await self.kvstore.values_in_range(start_key, end_key)
|
||||
stores = {}
|
||||
for store_data in stored_openai_stores:
|
||||
store_info = json.loads(store_data)
|
||||
stores[store_info["id"]] = store_info
|
||||
return stores
|
||||
|
||||
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
|
||||
"""Update vector store metadata in SQLite database."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.set(key=key, value=json.dumps(store_info))
|
||||
self.openai_vector_stores[store_id] = store_info
|
||||
|
||||
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
|
||||
"""Delete vector store metadata from SQLite database."""
|
||||
assert self.kvstore is not None
|
||||
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
|
||||
await self.kvstore.delete(key)
|
||||
if store_id in self.openai_vector_stores:
|
||||
del self.openai_vector_stores[store_id]
|
||||
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
"""Save vector store file metadata to SQLite database."""
|
||||
|
||||
def _create_or_store():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
# Create a table to persist vector DB registrations.
|
||||
cur.execute("""
|
||||
CREATE TABLE IF NOT EXISTS vector_dbs (
|
||||
id TEXT PRIMARY KEY,
|
||||
metadata TEXT
|
||||
);
|
||||
""")
|
||||
# Create a table to persist OpenAI vector stores.
|
||||
cur.execute("""
|
||||
CREATE TABLE IF NOT EXISTS openai_vector_stores (
|
||||
id TEXT PRIMARY KEY,
|
||||
metadata TEXT
|
||||
);
|
||||
""")
|
||||
# Create a table to persist OpenAI vector store files.
|
||||
cur.execute("""
|
||||
CREATE TABLE IF NOT EXISTS openai_vector_store_files (
|
||||
|
@ -464,168 +563,6 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
);
|
||||
""")
|
||||
connection.commit()
|
||||
# Load any existing vector DB registrations.
|
||||
cur.execute("SELECT metadata FROM vector_dbs")
|
||||
vector_db_rows = cur.fetchall()
|
||||
return vector_db_rows
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
vector_db_rows = await asyncio.to_thread(_setup_connection)
|
||||
|
||||
# Load existing vector DBs
|
||||
for row in vector_db_rows:
|
||||
vector_db_data = row[0]
|
||||
vector_db = VectorDB.model_validate_json(vector_db_data)
|
||||
index = await SQLiteVecIndex.create(
|
||||
vector_db.embedding_dimension,
|
||||
self.config.db_path,
|
||||
vector_db.identifier,
|
||||
)
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
|
||||
# Load existing OpenAI vector stores using the mixin method
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
# nothing to do since we don't maintain a persistent connection
|
||||
pass
|
||||
|
||||
async def register_vector_db(self, vector_db: VectorDB) -> None:
|
||||
def _register_db():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute(
|
||||
"INSERT OR REPLACE INTO vector_dbs (id, metadata) VALUES (?, ?)",
|
||||
(vector_db.identifier, vector_db.model_dump_json()),
|
||||
)
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_register_db)
|
||||
index = await SQLiteVecIndex.create(
|
||||
vector_db.embedding_dimension,
|
||||
self.config.db_path,
|
||||
vector_db.identifier,
|
||||
)
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
|
||||
async def list_vector_dbs(self) -> list[VectorDB]:
|
||||
return [v.vector_db for v in self.cache.values()]
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
if vector_db_id not in self.cache:
|
||||
logger.warning(f"Vector DB {vector_db_id} not found")
|
||||
return
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
def _delete_vector_db_from_registry():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute("DELETE FROM vector_dbs WHERE id = ?", (vector_db_id,))
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_delete_vector_db_from_registry)
|
||||
|
||||
# OpenAI Vector Store Mixin abstract method implementations
|
||||
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
|
||||
"""Save vector store metadata to SQLite database."""
|
||||
|
||||
def _store():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute(
|
||||
"INSERT OR REPLACE INTO openai_vector_stores (id, metadata) VALUES (?, ?)",
|
||||
(store_id, json.dumps(store_info)),
|
||||
)
|
||||
connection.commit()
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving openai vector store {store_id}: {e}")
|
||||
raise
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
try:
|
||||
await asyncio.to_thread(_store)
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving openai vector store {store_id}: {e}")
|
||||
raise
|
||||
|
||||
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
|
||||
"""Load all vector store metadata from SQLite database."""
|
||||
|
||||
def _load():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute("SELECT metadata FROM openai_vector_stores")
|
||||
rows = cur.fetchall()
|
||||
return rows
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
rows = await asyncio.to_thread(_load)
|
||||
stores = {}
|
||||
for row in rows:
|
||||
store_data = row[0]
|
||||
store_info = json.loads(store_data)
|
||||
stores[store_info["id"]] = store_info
|
||||
return stores
|
||||
|
||||
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
|
||||
"""Update vector store metadata in SQLite database."""
|
||||
|
||||
def _update():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute(
|
||||
"UPDATE openai_vector_stores SET metadata = ? WHERE id = ?",
|
||||
(json.dumps(store_info), store_id),
|
||||
)
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_update)
|
||||
|
||||
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
|
||||
"""Delete vector store metadata from SQLite database."""
|
||||
|
||||
def _delete():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute("DELETE FROM openai_vector_stores WHERE id = ?", (store_id,))
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_delete)
|
||||
|
||||
async def _save_openai_vector_store_file(
|
||||
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
|
||||
) -> None:
|
||||
"""Save vector store file metadata to SQLite database."""
|
||||
|
||||
def _store():
|
||||
connection = _create_sqlite_connection(self.config.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute(
|
||||
"INSERT OR REPLACE INTO openai_vector_store_files (store_id, file_id, metadata) VALUES (?, ?, ?)",
|
||||
(store_id, file_id, json.dumps(file_info)),
|
||||
|
@ -643,7 +580,7 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
connection.close()
|
||||
|
||||
try:
|
||||
await asyncio.to_thread(_store)
|
||||
await asyncio.to_thread(_create_or_store)
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving openai vector store file {store_id} {file_id}: {e}")
|
||||
raise
|
||||
|
@ -722,6 +659,10 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
cur.execute(
|
||||
"DELETE FROM openai_vector_store_files WHERE store_id = ? AND file_id = ?", (store_id, file_id)
|
||||
)
|
||||
cur.execute(
|
||||
"DELETE FROM openai_vector_store_files_contents WHERE store_id = ? AND file_id = ?",
|
||||
(store_id, file_id),
|
||||
)
|
||||
connection.commit()
|
||||
finally:
|
||||
cur.close()
|
||||
|
@ -730,15 +671,17 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
await asyncio.to_thread(_delete)
|
||||
|
||||
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
|
||||
if vector_db_id not in self.cache:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found. Found: {list(self.cache.keys())}")
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
# The VectorDBWithIndex helper is expected to compute embeddings via the inference_api
|
||||
# and then call our index's add_chunks.
|
||||
await self.cache[vector_db_id].insert_chunks(chunks)
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
async def query_chunks(
|
||||
self, vector_db_id: str, query: Any, params: dict[str, Any] | None = None
|
||||
) -> QueryChunksResponse:
|
||||
if vector_db_id not in self.cache:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
return await self.cache[vector_db_id].query_chunks(query, params)
|
||||
return await index.query_chunks(query, params)
|
||||
|
|
|
@ -15,21 +15,26 @@ LLM_MODEL_IDS = [
|
|||
"anthropic/claude-3-5-haiku-latest",
|
||||
]
|
||||
|
||||
SAFETY_MODELS_ENTRIES = []
|
||||
|
||||
MODEL_ENTRIES = [ProviderModelEntry(provider_model_id=m) for m in LLM_MODEL_IDS] + [
|
||||
ProviderModelEntry(
|
||||
provider_model_id="anthropic/voyage-3",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 1024, "context_length": 32000},
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="anthropic/voyage-3-lite",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 512, "context_length": 32000},
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="anthropic/voyage-code-3",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 1024, "context_length": 32000},
|
||||
),
|
||||
]
|
||||
MODEL_ENTRIES = (
|
||||
[ProviderModelEntry(provider_model_id=m) for m in LLM_MODEL_IDS]
|
||||
+ [
|
||||
ProviderModelEntry(
|
||||
provider_model_id="anthropic/voyage-3",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 1024, "context_length": 32000},
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="anthropic/voyage-3-lite",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 512, "context_length": 32000},
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="anthropic/voyage-code-3",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 1024, "context_length": 32000},
|
||||
),
|
||||
]
|
||||
+ SAFETY_MODELS_ENTRIES
|
||||
)
|
||||
|
|
|
@ -9,6 +9,10 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
build_hf_repo_model_entry,
|
||||
)
|
||||
|
||||
SAFETY_MODELS_ENTRIES = []
|
||||
|
||||
|
||||
# https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"meta.llama3-1-8b-instruct-v1:0",
|
||||
|
@ -22,4 +26,4 @@ MODEL_ENTRIES = [
|
|||
"meta.llama3-1-405b-instruct-v1:0",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
]
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
|
|
|
@ -9,6 +9,9 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
build_hf_repo_model_entry,
|
||||
)
|
||||
|
||||
SAFETY_MODELS_ENTRIES = []
|
||||
|
||||
# https://inference-docs.cerebras.ai/models
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"llama3.1-8b",
|
||||
|
@ -18,4 +21,8 @@ MODEL_ENTRIES = [
|
|||
"llama-3.3-70b",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
]
|
||||
build_hf_repo_model_entry(
|
||||
"llama-4-scout-17b-16e-instruct",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
),
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
|
|
|
@ -47,7 +47,10 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .config import DatabricksImplConfig
|
||||
|
||||
model_entries = [
|
||||
SAFETY_MODELS_ENTRIES = []
|
||||
|
||||
# https://docs.databricks.com/aws/en/machine-learning/model-serving/foundation-model-overview
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"databricks-meta-llama-3-1-70b-instruct",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
|
@ -56,7 +59,7 @@ model_entries = [
|
|||
"databricks-meta-llama-3-1-405b-instruct",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
]
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
|
||||
|
||||
class DatabricksInferenceAdapter(
|
||||
|
@ -66,7 +69,7 @@ class DatabricksInferenceAdapter(
|
|||
OpenAICompletionToLlamaStackMixin,
|
||||
):
|
||||
def __init__(self, config: DatabricksImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, model_entries=model_entries)
|
||||
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
|
|
|
@ -11,6 +11,17 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
build_hf_repo_model_entry,
|
||||
)
|
||||
|
||||
SAFETY_MODELS_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"accounts/fireworks/models/llama-guard-3-8b",
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"accounts/fireworks/models/llama-guard-3-11b-vision",
|
||||
CoreModelId.llama_guard_3_11b_vision.value,
|
||||
),
|
||||
]
|
||||
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"accounts/fireworks/models/llama-v3p1-8b-instruct",
|
||||
|
@ -40,14 +51,6 @@ MODEL_ENTRIES = [
|
|||
"accounts/fireworks/models/llama-v3p3-70b-instruct",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"accounts/fireworks/models/llama-guard-3-8b",
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"accounts/fireworks/models/llama-guard-3-11b-vision",
|
||||
CoreModelId.llama_guard_3_11b_vision.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"accounts/fireworks/models/llama4-scout-instruct-basic",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
|
@ -64,4 +67,4 @@ MODEL_ENTRIES = [
|
|||
"context_length": 8192,
|
||||
},
|
||||
),
|
||||
]
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
|
|
|
@ -17,11 +17,16 @@ LLM_MODEL_IDS = [
|
|||
"gemini/gemini-2.5-pro",
|
||||
]
|
||||
|
||||
SAFETY_MODELS_ENTRIES = []
|
||||
|
||||
MODEL_ENTRIES = [ProviderModelEntry(provider_model_id=m) for m in LLM_MODEL_IDS] + [
|
||||
ProviderModelEntry(
|
||||
provider_model_id="gemini/text-embedding-004",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 768, "context_length": 2048},
|
||||
),
|
||||
]
|
||||
MODEL_ENTRIES = (
|
||||
[ProviderModelEntry(provider_model_id=m) for m in LLM_MODEL_IDS]
|
||||
+ [
|
||||
ProviderModelEntry(
|
||||
provider_model_id="gemini/text-embedding-004",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={"embedding_dimension": 768, "context_length": 2048},
|
||||
),
|
||||
]
|
||||
+ SAFETY_MODELS_ENTRIES
|
||||
)
|
||||
|
|
|
@ -38,24 +38,18 @@ class GroqInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
provider_data_api_key_field="groq_api_key",
|
||||
)
|
||||
self.config = config
|
||||
self._openai_client = None
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self):
|
||||
await super().shutdown()
|
||||
if self._openai_client:
|
||||
await self._openai_client.close()
|
||||
self._openai_client = None
|
||||
|
||||
def _get_openai_client(self) -> AsyncOpenAI:
|
||||
if not self._openai_client:
|
||||
self._openai_client = AsyncOpenAI(
|
||||
base_url=f"{self.config.url}/openai/v1",
|
||||
api_key=self.config.api_key,
|
||||
)
|
||||
return self._openai_client
|
||||
return AsyncOpenAI(
|
||||
base_url=f"{self.config.url}/openai/v1",
|
||||
api_key=self.get_api_key(),
|
||||
)
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
|
|
|
@ -10,6 +10,8 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
build_model_entry,
|
||||
)
|
||||
|
||||
SAFETY_MODELS_ENTRIES = []
|
||||
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"groq/llama3-8b-8192",
|
||||
|
@ -51,4 +53,4 @@ MODEL_ENTRIES = [
|
|||
"groq/meta-llama/llama-4-maverick-17b-128e-instruct",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
),
|
||||
]
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
|
|
|
@ -11,6 +11,9 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
build_hf_repo_model_entry,
|
||||
)
|
||||
|
||||
SAFETY_MODELS_ENTRIES = []
|
||||
|
||||
# https://docs.nvidia.com/nim/large-language-models/latest/supported-llm-agnostic-architectures.html
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"meta/llama3-8b-instruct",
|
||||
|
@ -99,4 +102,4 @@ MODEL_ENTRIES = [
|
|||
),
|
||||
# TODO(mf): how do we handle Nemotron models?
|
||||
# "Llama3.1-Nemotron-51B-Instruct" -> "meta/llama-3.1-nemotron-51b-instruct",
|
||||
]
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
|
|
|
@ -48,16 +48,20 @@ EMBEDDING_MODEL_IDS: dict[str, EmbeddingModelInfo] = {
|
|||
"text-embedding-3-small": EmbeddingModelInfo(1536, 8192),
|
||||
"text-embedding-3-large": EmbeddingModelInfo(3072, 8192),
|
||||
}
|
||||
SAFETY_MODELS_ENTRIES = []
|
||||
|
||||
|
||||
MODEL_ENTRIES = [ProviderModelEntry(provider_model_id=m) for m in LLM_MODEL_IDS] + [
|
||||
ProviderModelEntry(
|
||||
provider_model_id=model_id,
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": model_info.embedding_dimension,
|
||||
"context_length": model_info.context_length,
|
||||
},
|
||||
)
|
||||
for model_id, model_info in EMBEDDING_MODEL_IDS.items()
|
||||
]
|
||||
MODEL_ENTRIES = (
|
||||
[ProviderModelEntry(provider_model_id=m) for m in LLM_MODEL_IDS]
|
||||
+ [
|
||||
ProviderModelEntry(
|
||||
provider_model_id=model_id,
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": model_info.embedding_dimension,
|
||||
"context_length": model_info.context_length,
|
||||
},
|
||||
)
|
||||
for model_id, model_info in EMBEDDING_MODEL_IDS.items()
|
||||
]
|
||||
+ SAFETY_MODELS_ENTRIES
|
||||
)
|
||||
|
|
|
@ -59,9 +59,6 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
# if we do not set this, users will be exposed to the
|
||||
# litellm specific model names, an abstraction leak.
|
||||
self.is_openai_compat = True
|
||||
self._openai_client = AsyncOpenAI(
|
||||
api_key=self.config.api_key,
|
||||
)
|
||||
|
||||
async def initialize(self) -> None:
|
||||
await super().initialize()
|
||||
|
@ -69,6 +66,11 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
async def shutdown(self) -> None:
|
||||
await super().shutdown()
|
||||
|
||||
def _get_openai_client(self) -> AsyncOpenAI:
|
||||
return AsyncOpenAI(
|
||||
api_key=self.get_api_key(),
|
||||
)
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -120,7 +122,7 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
user=user,
|
||||
suffix=suffix,
|
||||
)
|
||||
return await self._openai_client.completions.create(**params)
|
||||
return await self._get_openai_client().completions.create(**params)
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
|
@ -176,7 +178,7 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
return await self._openai_client.chat.completions.create(**params)
|
||||
return await self._get_openai_client().chat.completions.create(**params)
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
|
@ -204,7 +206,7 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
params["user"] = user
|
||||
|
||||
# Call OpenAI embeddings API
|
||||
response = await self._openai_client.embeddings.create(**params)
|
||||
response = await self._get_openai_client().embeddings.create(**params)
|
||||
|
||||
data = []
|
||||
for i, embedding_data in enumerate(response.data):
|
||||
|
|
|
@ -11,7 +11,7 @@ from llama_stack.apis.inference import * # noqa: F403
|
|||
from llama_stack.apis.inference import OpenAIEmbeddingsResponse
|
||||
|
||||
# from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper, build_hf_repo_model_entry
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
|
@ -25,6 +25,8 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .config import RunpodImplConfig
|
||||
|
||||
# https://docs.runpod.io/serverless/vllm/overview#compatible-models
|
||||
# https://github.com/runpod-workers/worker-vllm/blob/main/README.md#compatible-model-architectures
|
||||
RUNPOD_SUPPORTED_MODELS = {
|
||||
"Llama3.1-8B": "meta-llama/Llama-3.1-8B",
|
||||
"Llama3.1-70B": "meta-llama/Llama-3.1-70B",
|
||||
|
@ -40,6 +42,14 @@ RUNPOD_SUPPORTED_MODELS = {
|
|||
"Llama3.2-3B": "meta-llama/Llama-3.2-3B",
|
||||
}
|
||||
|
||||
SAFETY_MODELS_ENTRIES = []
|
||||
|
||||
# Create MODEL_ENTRIES from RUNPOD_SUPPORTED_MODELS for compatibility with starter template
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(provider_model_id, model_descriptor)
|
||||
for provider_model_id, model_descriptor in RUNPOD_SUPPORTED_MODELS.items()
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
|
||||
|
||||
class RunpodInferenceAdapter(
|
||||
ModelRegistryHelper,
|
||||
|
|
|
@ -9,6 +9,14 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
build_hf_repo_model_entry,
|
||||
)
|
||||
|
||||
SAFETY_MODELS_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Meta-Llama-Guard-3-8B",
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Meta-Llama-3.1-8B-Instruct",
|
||||
|
@ -46,8 +54,4 @@ MODEL_ENTRIES = [
|
|||
"sambanova/Llama-4-Maverick-17B-128E-Instruct",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"sambanova/Meta-Llama-Guard-3-8B",
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
),
|
||||
]
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
import json
|
||||
from collections.abc import Iterable
|
||||
|
||||
import requests
|
||||
from openai.types.chat import (
|
||||
ChatCompletionAssistantMessageParam as OpenAIChatCompletionAssistantMessage,
|
||||
)
|
||||
|
@ -56,6 +57,7 @@ from llama_stack.apis.inference import (
|
|||
ToolResponseMessage,
|
||||
UserMessage,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import BuiltinTool
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
|
@ -176,10 +178,11 @@ class SambaNovaInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
|
||||
def __init__(self, config: SambaNovaImplConfig):
|
||||
self.config = config
|
||||
self.environment_available_models = []
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
model_entries=MODEL_ENTRIES,
|
||||
api_key_from_config=self.config.api_key,
|
||||
api_key_from_config=self.config.api_key.get_secret_value() if self.config.api_key else None,
|
||||
provider_data_api_key_field="sambanova_api_key",
|
||||
)
|
||||
|
||||
|
@ -246,6 +249,22 @@ class SambaNovaInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
**get_sampling_options(request.sampling_params),
|
||||
}
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
model_id = self.get_provider_model_id(model.provider_resource_id)
|
||||
|
||||
list_models_url = self.config.url + "/models"
|
||||
if len(self.environment_available_models) == 0:
|
||||
try:
|
||||
response = requests.get(list_models_url)
|
||||
response.raise_for_status()
|
||||
except requests.exceptions.RequestException as e:
|
||||
raise RuntimeError(f"Request to {list_models_url} failed") from e
|
||||
self.environment_available_models = [model.get("id") for model in response.json().get("data", {})]
|
||||
|
||||
if model_id.split("sambanova/")[-1] not in self.environment_available_models:
|
||||
logger.warning(f"Model {model_id} not available in {list_models_url}")
|
||||
return model
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
|
||||
|
|
|
@ -11,6 +11,16 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
build_hf_repo_model_entry,
|
||||
)
|
||||
|
||||
SAFETY_MODELS_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-Guard-3-8B",
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-Guard-3-11B-Vision-Turbo",
|
||||
CoreModelId.llama_guard_3_11b_vision.value,
|
||||
),
|
||||
]
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
||||
|
@ -40,14 +50,6 @@ MODEL_ENTRIES = [
|
|||
"meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-Guard-3-8B",
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-Guard-3-11B-Vision-Turbo",
|
||||
CoreModelId.llama_guard_3_11b_vision.value,
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="togethercomputer/m2-bert-80M-8k-retrieval",
|
||||
model_type=ModelType.embedding,
|
||||
|
@ -78,4 +80,4 @@ MODEL_ENTRIES = [
|
|||
"together/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
|
||||
],
|
||||
),
|
||||
]
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
|
|
|
@ -68,19 +68,12 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
def __init__(self, config: TogetherImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
||||
self.config = config
|
||||
self._client = None
|
||||
self._openai_client = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
if self._client:
|
||||
# Together client has no close method, so just set to None
|
||||
self._client = None
|
||||
if self._openai_client:
|
||||
await self._openai_client.close()
|
||||
self._openai_client = None
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
|
@ -108,29 +101,25 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
return await self._nonstream_completion(request)
|
||||
|
||||
def _get_client(self) -> AsyncTogether:
|
||||
if not self._client:
|
||||
together_api_key = None
|
||||
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
|
||||
if config_api_key:
|
||||
together_api_key = config_api_key
|
||||
else:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.together_api_key:
|
||||
raise ValueError(
|
||||
'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}'
|
||||
)
|
||||
together_api_key = provider_data.together_api_key
|
||||
self._client = AsyncTogether(api_key=together_api_key)
|
||||
return self._client
|
||||
together_api_key = None
|
||||
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
|
||||
if config_api_key:
|
||||
together_api_key = config_api_key
|
||||
else:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.together_api_key:
|
||||
raise ValueError(
|
||||
'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}'
|
||||
)
|
||||
together_api_key = provider_data.together_api_key
|
||||
return AsyncTogether(api_key=together_api_key)
|
||||
|
||||
def _get_openai_client(self) -> AsyncOpenAI:
|
||||
if not self._openai_client:
|
||||
together_client = self._get_client().client
|
||||
self._openai_client = AsyncOpenAI(
|
||||
base_url=together_client.base_url,
|
||||
api_key=together_client.api_key,
|
||||
)
|
||||
return self._openai_client
|
||||
together_client = self._get_client().client
|
||||
return AsyncOpenAI(
|
||||
base_url=together_client.base_url,
|
||||
api_key=together_client.api_key,
|
||||
)
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
|
|
|
@ -33,6 +33,7 @@ CANNED_RESPONSE_TEXT = "I can't answer that. Can I help with something else?"
|
|||
class SambaNovaSafetyAdapter(Safety, ShieldsProtocolPrivate, NeedsRequestProviderData):
|
||||
def __init__(self, config: SambaNovaSafetyConfig) -> None:
|
||||
self.config = config
|
||||
self.environment_available_models = []
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
@ -54,18 +55,18 @@ class SambaNovaSafetyAdapter(Safety, ShieldsProtocolPrivate, NeedsRequestProvide
|
|||
|
||||
async def register_shield(self, shield: Shield) -> None:
|
||||
list_models_url = self.config.url + "/models"
|
||||
try:
|
||||
response = requests.get(list_models_url)
|
||||
response.raise_for_status()
|
||||
except requests.exceptions.RequestException as e:
|
||||
raise RuntimeError(f"Request to {list_models_url} failed") from e
|
||||
available_models = [model.get("id") for model in response.json().get("data", {})]
|
||||
if len(self.environment_available_models) == 0:
|
||||
try:
|
||||
response = requests.get(list_models_url)
|
||||
response.raise_for_status()
|
||||
except requests.exceptions.RequestException as e:
|
||||
raise RuntimeError(f"Request to {list_models_url} failed") from e
|
||||
self.environment_available_models = [model.get("id") for model in response.json().get("data", {})]
|
||||
if (
|
||||
len(available_models) == 0
|
||||
or "guard" not in shield.provider_resource_id.lower()
|
||||
or shield.provider_resource_id.split("sambanova/")[-1] not in available_models
|
||||
"guard" not in shield.provider_resource_id.lower()
|
||||
or shield.provider_resource_id.split("sambanova/")[-1] not in self.environment_available_models
|
||||
):
|
||||
raise ValueError(f"Shield {shield.provider_resource_id} not found in SambaNova")
|
||||
logger.warning(f"Shield {shield.provider_resource_id} not available in {list_models_url}")
|
||||
|
||||
async def run_shield(
|
||||
self, shield_id: str, messages: list[Message], params: dict[str, Any] | None = None
|
||||
|
|
|
@ -61,6 +61,11 @@ class MilvusIndex(EmbeddingIndex):
|
|||
self.consistency_level = consistency_level
|
||||
self.kvstore = kvstore
|
||||
|
||||
async def initialize(self):
|
||||
# MilvusIndex does not require explicit initialization
|
||||
# TODO: could move collection creation into initialization but it is not really necessary
|
||||
pass
|
||||
|
||||
async def delete(self):
|
||||
if await asyncio.to_thread(self.client.has_collection, self.collection_name):
|
||||
await asyncio.to_thread(self.client.drop_collection, collection_name=self.collection_name)
|
||||
|
@ -199,6 +204,9 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
if self.vector_db_store is None:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
if not vector_db:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
|
|
@ -44,6 +44,7 @@ def build_hf_repo_model_entry(
|
|||
]
|
||||
if additional_aliases:
|
||||
aliases.extend(additional_aliases)
|
||||
aliases = [alias for alias in aliases if alias is not None]
|
||||
return ProviderModelEntry(
|
||||
provider_model_id=provider_model_id,
|
||||
aliases=aliases,
|
||||
|
@ -82,35 +83,35 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
|||
def get_llama_model(self, provider_model_id: str) -> str | None:
|
||||
return self.provider_id_to_llama_model_map.get(provider_model_id, None)
|
||||
|
||||
async def query_available_models(self) -> list[str]:
|
||||
async def check_model_availability(self, model: str) -> bool:
|
||||
"""
|
||||
Return a list of available models.
|
||||
Check if a specific model is available from the provider (non-static check).
|
||||
|
||||
This is for subclassing purposes, so providers can lookup a list of
|
||||
of currently available models.
|
||||
This is for subclassing purposes, so providers can check if a specific
|
||||
model is currently available for use through dynamic means (e.g., API calls).
|
||||
|
||||
This is combined with the statically configured model entries in
|
||||
`self.alias_to_provider_id_map` to determine which models are
|
||||
available for registration.
|
||||
This method should NOT check statically configured model entries in
|
||||
`self.alias_to_provider_id_map` - that is handled separately in register_model.
|
||||
|
||||
Default implementation returns no models.
|
||||
Default implementation returns False (no dynamic models available).
|
||||
|
||||
:return: A list of model identifiers (provider_model_ids).
|
||||
:param model: The model identifier to check.
|
||||
:return: True if the model is available dynamically, False otherwise.
|
||||
"""
|
||||
return []
|
||||
return False
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
# Check if model is supported in static configuration
|
||||
supported_model_id = self.get_provider_model_id(model.provider_resource_id)
|
||||
|
||||
# If not found in static config, check if it's available from provider
|
||||
# If not found in static config, check if it's available dynamically from provider
|
||||
if not supported_model_id:
|
||||
available_models = await self.query_available_models()
|
||||
if model.provider_resource_id in available_models:
|
||||
if await self.check_model_availability(model.provider_resource_id):
|
||||
supported_model_id = model.provider_resource_id
|
||||
else:
|
||||
# Combine static and dynamic models for error message
|
||||
all_supported_models = list(self.alias_to_provider_id_map.keys()) + available_models
|
||||
# note: we cannot provide a complete list of supported models without
|
||||
# getting a complete list from the provider, so we return "..."
|
||||
all_supported_models = [*self.alias_to_provider_id_map.keys(), "..."]
|
||||
raise UnsupportedModelError(model.provider_resource_id, all_supported_models)
|
||||
|
||||
provider_resource_id = self.get_provider_model_id(model.model_id)
|
||||
|
@ -118,7 +119,7 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
|||
# embedding models are always registered by their provider model id and does not need to be mapped to a llama model
|
||||
provider_resource_id = model.provider_resource_id
|
||||
if provider_resource_id:
|
||||
if provider_resource_id != supported_model_id: # be idemopotent, only reject differences
|
||||
if provider_resource_id != supported_model_id: # be idempotent, only reject differences
|
||||
raise ValueError(
|
||||
f"Model id '{model.model_id}' is already registered. Please use a different id or unregister it first."
|
||||
)
|
||||
|
|
|
@ -39,22 +39,10 @@ SQL_OPTIMIZED_POLICY = [
|
|||
|
||||
|
||||
class SqlRecord(ProtectedResource):
|
||||
"""Simple ProtectedResource implementation for SQL records."""
|
||||
|
||||
def __init__(self, record_id: str, table_name: str, access_attributes: dict[str, list[str]] | None = None):
|
||||
def __init__(self, record_id: str, table_name: str, owner: User):
|
||||
self.type = f"sql_record::{table_name}"
|
||||
self.identifier = record_id
|
||||
|
||||
if access_attributes:
|
||||
self.owner = User(
|
||||
principal="system",
|
||||
attributes=access_attributes,
|
||||
)
|
||||
else:
|
||||
self.owner = User(
|
||||
principal="system_public",
|
||||
attributes=None,
|
||||
)
|
||||
self.owner = owner
|
||||
|
||||
|
||||
class AuthorizedSqlStore:
|
||||
|
@ -101,22 +89,27 @@ class AuthorizedSqlStore:
|
|||
|
||||
async def create_table(self, table: str, schema: Mapping[str, ColumnType | ColumnDefinition]) -> None:
|
||||
"""Create a table with built-in access control support."""
|
||||
await self.sql_store.add_column_if_not_exists(table, "access_attributes", ColumnType.JSON)
|
||||
|
||||
enhanced_schema = dict(schema)
|
||||
if "access_attributes" not in enhanced_schema:
|
||||
enhanced_schema["access_attributes"] = ColumnType.JSON
|
||||
if "owner_principal" not in enhanced_schema:
|
||||
enhanced_schema["owner_principal"] = ColumnType.STRING
|
||||
|
||||
await self.sql_store.create_table(table, enhanced_schema)
|
||||
await self.sql_store.add_column_if_not_exists(table, "access_attributes", ColumnType.JSON)
|
||||
await self.sql_store.add_column_if_not_exists(table, "owner_principal", ColumnType.STRING)
|
||||
|
||||
async def insert(self, table: str, data: Mapping[str, Any]) -> None:
|
||||
"""Insert a row with automatic access control attribute capture."""
|
||||
enhanced_data = dict(data)
|
||||
|
||||
current_user = get_authenticated_user()
|
||||
if current_user and current_user.attributes:
|
||||
if current_user:
|
||||
enhanced_data["owner_principal"] = current_user.principal
|
||||
enhanced_data["access_attributes"] = current_user.attributes
|
||||
else:
|
||||
enhanced_data["owner_principal"] = None
|
||||
enhanced_data["access_attributes"] = None
|
||||
|
||||
await self.sql_store.insert(table, enhanced_data)
|
||||
|
@ -146,9 +139,12 @@ class AuthorizedSqlStore:
|
|||
|
||||
for row in rows.data:
|
||||
stored_access_attrs = row.get("access_attributes")
|
||||
stored_owner_principal = row.get("owner_principal") or ""
|
||||
|
||||
record_id = row.get("id", "unknown")
|
||||
sql_record = SqlRecord(str(record_id), table, stored_access_attrs)
|
||||
sql_record = SqlRecord(
|
||||
str(record_id), table, User(principal=stored_owner_principal, attributes=stored_access_attrs)
|
||||
)
|
||||
|
||||
if is_action_allowed(policy, Action.READ, sql_record, current_user):
|
||||
filtered_rows.append(row)
|
||||
|
@ -186,8 +182,10 @@ class AuthorizedSqlStore:
|
|||
Only applies SQL filtering for the default policy to ensure correctness.
|
||||
For custom policies, uses conservative filtering to avoid blocking legitimate access.
|
||||
"""
|
||||
current_user = get_authenticated_user()
|
||||
|
||||
if not policy or policy == SQL_OPTIMIZED_POLICY:
|
||||
return self._build_default_policy_where_clause()
|
||||
return self._build_default_policy_where_clause(current_user)
|
||||
else:
|
||||
return self._build_conservative_where_clause()
|
||||
|
||||
|
@ -227,29 +225,27 @@ class AuthorizedSqlStore:
|
|||
|
||||
def _get_public_access_conditions(self) -> list[str]:
|
||||
"""Get the SQL conditions for public access."""
|
||||
# Public records are records that have no owner_principal or access_attributes
|
||||
conditions = ["owner_principal = ''"]
|
||||
if self.database_type == SqlStoreType.postgres:
|
||||
# Postgres stores JSON null as 'null'
|
||||
return ["access_attributes::text = 'null'"]
|
||||
conditions.append("access_attributes::text = 'null'")
|
||||
elif self.database_type == SqlStoreType.sqlite:
|
||||
return ["access_attributes = 'null'"]
|
||||
conditions.append("access_attributes = 'null'")
|
||||
else:
|
||||
raise ValueError(f"Unsupported database type: {self.database_type}")
|
||||
return conditions
|
||||
|
||||
def _build_default_policy_where_clause(self) -> str:
|
||||
def _build_default_policy_where_clause(self, current_user: User | None) -> str:
|
||||
"""Build SQL WHERE clause for the default policy.
|
||||
|
||||
Default policy: permit all actions when user in owners [roles, teams, projects, namespaces]
|
||||
This means user must match ALL attribute categories that exist in the resource.
|
||||
"""
|
||||
current_user = get_authenticated_user()
|
||||
|
||||
base_conditions = self._get_public_access_conditions()
|
||||
if not current_user or not current_user.attributes:
|
||||
# Only allow public records
|
||||
return f"({' OR '.join(base_conditions)})"
|
||||
else:
|
||||
user_attr_conditions = []
|
||||
user_attr_conditions = []
|
||||
|
||||
if current_user and current_user.attributes:
|
||||
for attr_key, user_values in current_user.attributes.items():
|
||||
if user_values:
|
||||
value_conditions = []
|
||||
|
@ -269,7 +265,7 @@ class AuthorizedSqlStore:
|
|||
all_requirements_met = f"({' AND '.join(user_attr_conditions)})"
|
||||
base_conditions.append(all_requirements_met)
|
||||
|
||||
return f"({' OR '.join(base_conditions)})"
|
||||
return f"({' OR '.join(base_conditions)})"
|
||||
|
||||
def _build_conservative_where_clause(self) -> str:
|
||||
"""Conservative SQL filtering for custom policies.
|
||||
|
|
|
@ -244,35 +244,41 @@ class SqlAlchemySqlStoreImpl(SqlStore):
|
|||
engine = create_async_engine(self.config.engine_str)
|
||||
|
||||
try:
|
||||
inspector = inspect(engine)
|
||||
|
||||
table_names = inspector.get_table_names()
|
||||
if table not in table_names:
|
||||
return
|
||||
|
||||
existing_columns = inspector.get_columns(table)
|
||||
column_names = [col["name"] for col in existing_columns]
|
||||
|
||||
if column_name in column_names:
|
||||
return
|
||||
|
||||
sqlalchemy_type = TYPE_MAPPING.get(column_type)
|
||||
if not sqlalchemy_type:
|
||||
raise ValueError(f"Unsupported column type '{column_type}' for column '{column_name}'.")
|
||||
|
||||
# Create the ALTER TABLE statement
|
||||
# Note: We need to get the dialect-specific type name
|
||||
dialect = engine.dialect
|
||||
type_impl = sqlalchemy_type()
|
||||
compiled_type = type_impl.compile(dialect=dialect)
|
||||
|
||||
nullable_clause = "" if nullable else " NOT NULL"
|
||||
add_column_sql = text(f"ALTER TABLE {table} ADD COLUMN {column_name} {compiled_type}{nullable_clause}")
|
||||
|
||||
async with engine.begin() as conn:
|
||||
|
||||
def check_column_exists(sync_conn):
|
||||
inspector = inspect(sync_conn)
|
||||
|
||||
table_names = inspector.get_table_names()
|
||||
if table not in table_names:
|
||||
return False, False # table doesn't exist, column doesn't exist
|
||||
|
||||
existing_columns = inspector.get_columns(table)
|
||||
column_names = [col["name"] for col in existing_columns]
|
||||
|
||||
return True, column_name in column_names # table exists, column exists or not
|
||||
|
||||
table_exists, column_exists = await conn.run_sync(check_column_exists)
|
||||
if not table_exists or column_exists:
|
||||
return
|
||||
|
||||
sqlalchemy_type = TYPE_MAPPING.get(column_type)
|
||||
if not sqlalchemy_type:
|
||||
raise ValueError(f"Unsupported column type '{column_type}' for column '{column_name}'.")
|
||||
|
||||
# Create the ALTER TABLE statement
|
||||
# Note: We need to get the dialect-specific type name
|
||||
dialect = engine.dialect
|
||||
type_impl = sqlalchemy_type()
|
||||
compiled_type = type_impl.compile(dialect=dialect)
|
||||
|
||||
nullable_clause = "" if nullable else " NOT NULL"
|
||||
add_column_sql = text(f"ALTER TABLE {table} ADD COLUMN {column_name} {compiled_type}{nullable_clause}")
|
||||
|
||||
await conn.execute(add_column_sql)
|
||||
|
||||
except Exception:
|
||||
except Exception as e:
|
||||
# If any error occurs during migration, log it but don't fail
|
||||
# The table creation will handle adding the column
|
||||
logger.error(f"Error adding column {column_name} to table {table}: {e}")
|
||||
pass
|
||||
|
|
|
@ -9,14 +9,12 @@ import inspect
|
|||
import json
|
||||
from collections.abc import AsyncGenerator, Callable
|
||||
from functools import wraps
|
||||
from typing import Any, TypeVar
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.models.llama.datatypes import Primitive
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def serialize_value(value: Any) -> Primitive:
|
||||
return str(_prepare_for_json(value))
|
||||
|
@ -44,7 +42,7 @@ def _prepare_for_json(value: Any) -> str:
|
|||
return str(value)
|
||||
|
||||
|
||||
def trace_protocol(cls: type[T]) -> type[T]:
|
||||
def trace_protocol[T](cls: type[T]) -> type[T]:
|
||||
"""
|
||||
A class decorator that automatically traces all methods in a protocol/base class
|
||||
and its inheriting classes.
|
||||
|
|
|
@ -39,6 +39,9 @@ providers:
|
|||
provider_type: inline::sqlite-vec
|
||||
config:
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sqlite_vec.db
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sqlite_vec_registry.db
|
||||
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
|
|
|
@ -144,6 +144,9 @@ providers:
|
|||
provider_type: inline::sqlite-vec
|
||||
config:
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec.db
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec_registry.db
|
||||
- provider_id: ${env.ENABLE_MILVUS:=__disabled__}
|
||||
provider_type: inline::milvus
|
||||
config:
|
||||
|
@ -256,11 +259,46 @@ inference_store:
|
|||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/inference_store.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_CEREBRAS:=__disabled__}/llama3.1-8b
|
||||
provider_id: ${env.ENABLE_CEREBRAS:=__disabled__}
|
||||
provider_model_id: llama3.1-8b
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_CEREBRAS:=__disabled__}/meta-llama/Llama-3.1-8B-Instruct
|
||||
provider_id: ${env.ENABLE_CEREBRAS:=__disabled__}
|
||||
provider_model_id: llama3.1-8b
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_CEREBRAS:=__disabled__}/llama-3.3-70b
|
||||
provider_id: ${env.ENABLE_CEREBRAS:=__disabled__}
|
||||
provider_model_id: llama-3.3-70b
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_CEREBRAS:=__disabled__}/meta-llama/Llama-3.3-70B-Instruct
|
||||
provider_id: ${env.ENABLE_CEREBRAS:=__disabled__}
|
||||
provider_model_id: llama-3.3-70b
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_CEREBRAS:=__disabled__}/llama-4-scout-17b-16e-instruct
|
||||
provider_id: ${env.ENABLE_CEREBRAS:=__disabled__}
|
||||
provider_model_id: llama-4-scout-17b-16e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_CEREBRAS:=__disabled__}/meta-llama/Llama-4-Scout-17B-16E-Instruct
|
||||
provider_id: ${env.ENABLE_CEREBRAS:=__disabled__}
|
||||
provider_model_id: llama-4-scout-17b-16e-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_OLLAMA:=__disabled__}/${env.OLLAMA_INFERENCE_MODEL:=__disabled__}
|
||||
provider_id: ${env.ENABLE_OLLAMA:=__disabled__}
|
||||
provider_model_id: ${env.OLLAMA_INFERENCE_MODEL:=__disabled__}
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_OLLAMA:=__disabled__}/${env.SAFETY_MODEL:=__disabled__}
|
||||
provider_id: ${env.ENABLE_OLLAMA:=__disabled__}
|
||||
provider_model_id: ${env.SAFETY_MODEL:=__disabled__}
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: ${env.OLLAMA_EMBEDDING_DIMENSION:=384}
|
||||
model_id: ${env.ENABLE_OLLAMA:=__disabled__}/${env.OLLAMA_EMBEDDING_MODEL:=__disabled__}
|
||||
|
@ -342,26 +380,6 @@ models:
|
|||
provider_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
provider_model_id: accounts/fireworks/models/llama-v3p3-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_FIREWORKS:=__disabled__}/accounts/fireworks/models/llama-guard-3-8b
|
||||
provider_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
provider_model_id: accounts/fireworks/models/llama-guard-3-8b
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_FIREWORKS:=__disabled__}/meta-llama/Llama-Guard-3-8B
|
||||
provider_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
provider_model_id: accounts/fireworks/models/llama-guard-3-8b
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_FIREWORKS:=__disabled__}/accounts/fireworks/models/llama-guard-3-11b-vision
|
||||
provider_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
provider_model_id: accounts/fireworks/models/llama-guard-3-11b-vision
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_FIREWORKS:=__disabled__}/meta-llama/Llama-Guard-3-11B-Vision
|
||||
provider_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
provider_model_id: accounts/fireworks/models/llama-guard-3-11b-vision
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_FIREWORKS:=__disabled__}/accounts/fireworks/models/llama4-scout-instruct-basic
|
||||
provider_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
|
@ -389,6 +407,26 @@ models:
|
|||
provider_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
provider_model_id: nomic-ai/nomic-embed-text-v1.5
|
||||
model_type: embedding
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_FIREWORKS:=__disabled__}/accounts/fireworks/models/llama-guard-3-8b
|
||||
provider_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
provider_model_id: accounts/fireworks/models/llama-guard-3-8b
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_FIREWORKS:=__disabled__}/meta-llama/Llama-Guard-3-8B
|
||||
provider_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
provider_model_id: accounts/fireworks/models/llama-guard-3-8b
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_FIREWORKS:=__disabled__}/accounts/fireworks/models/llama-guard-3-11b-vision
|
||||
provider_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
provider_model_id: accounts/fireworks/models/llama-guard-3-11b-vision
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_FIREWORKS:=__disabled__}/meta-llama/Llama-Guard-3-11B-Vision
|
||||
provider_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
provider_model_id: accounts/fireworks/models/llama-guard-3-11b-vision
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_TOGETHER:=__disabled__}/meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo
|
||||
provider_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
|
@ -459,26 +497,6 @@ models:
|
|||
provider_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
provider_model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_TOGETHER:=__disabled__}/meta-llama/Meta-Llama-Guard-3-8B
|
||||
provider_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
provider_model_id: meta-llama/Meta-Llama-Guard-3-8B
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_TOGETHER:=__disabled__}/meta-llama/Llama-Guard-3-8B
|
||||
provider_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
provider_model_id: meta-llama/Meta-Llama-Guard-3-8B
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_TOGETHER:=__disabled__}/meta-llama/Llama-Guard-3-11B-Vision-Turbo
|
||||
provider_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_TOGETHER:=__disabled__}/meta-llama/Llama-Guard-3-11B-Vision
|
||||
provider_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 768
|
||||
context_length: 8192
|
||||
|
@ -523,6 +541,264 @@ models:
|
|||
provider_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
provider_model_id: meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_TOGETHER:=__disabled__}/meta-llama/Llama-Guard-3-8B
|
||||
provider_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
provider_model_id: meta-llama/Llama-Guard-3-8B
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_TOGETHER:=__disabled__}/meta-llama/Llama-Guard-3-8B
|
||||
provider_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
provider_model_id: meta-llama/Llama-Guard-3-8B
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_TOGETHER:=__disabled__}/meta-llama/Llama-Guard-3-11B-Vision-Turbo
|
||||
provider_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_TOGETHER:=__disabled__}/meta-llama/Llama-Guard-3-11B-Vision
|
||||
provider_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_BEDROCK:=__disabled__}/meta.llama3-1-8b-instruct-v1:0
|
||||
provider_id: ${env.ENABLE_BEDROCK:=__disabled__}
|
||||
provider_model_id: meta.llama3-1-8b-instruct-v1:0
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_BEDROCK:=__disabled__}/meta-llama/Llama-3.1-8B-Instruct
|
||||
provider_id: ${env.ENABLE_BEDROCK:=__disabled__}
|
||||
provider_model_id: meta.llama3-1-8b-instruct-v1:0
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_BEDROCK:=__disabled__}/meta.llama3-1-70b-instruct-v1:0
|
||||
provider_id: ${env.ENABLE_BEDROCK:=__disabled__}
|
||||
provider_model_id: meta.llama3-1-70b-instruct-v1:0
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_BEDROCK:=__disabled__}/meta-llama/Llama-3.1-70B-Instruct
|
||||
provider_id: ${env.ENABLE_BEDROCK:=__disabled__}
|
||||
provider_model_id: meta.llama3-1-70b-instruct-v1:0
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_BEDROCK:=__disabled__}/meta.llama3-1-405b-instruct-v1:0
|
||||
provider_id: ${env.ENABLE_BEDROCK:=__disabled__}
|
||||
provider_model_id: meta.llama3-1-405b-instruct-v1:0
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_BEDROCK:=__disabled__}/meta-llama/Llama-3.1-405B-Instruct-FP8
|
||||
provider_id: ${env.ENABLE_BEDROCK:=__disabled__}
|
||||
provider_model_id: meta.llama3-1-405b-instruct-v1:0
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_DATABRICKS:=__disabled__}/databricks-meta-llama-3-1-70b-instruct
|
||||
provider_id: ${env.ENABLE_DATABRICKS:=__disabled__}
|
||||
provider_model_id: databricks-meta-llama-3-1-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_DATABRICKS:=__disabled__}/meta-llama/Llama-3.1-70B-Instruct
|
||||
provider_id: ${env.ENABLE_DATABRICKS:=__disabled__}
|
||||
provider_model_id: databricks-meta-llama-3-1-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_DATABRICKS:=__disabled__}/databricks-meta-llama-3-1-405b-instruct
|
||||
provider_id: ${env.ENABLE_DATABRICKS:=__disabled__}
|
||||
provider_model_id: databricks-meta-llama-3-1-405b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_DATABRICKS:=__disabled__}/meta-llama/Llama-3.1-405B-Instruct-FP8
|
||||
provider_id: ${env.ENABLE_DATABRICKS:=__disabled__}
|
||||
provider_model_id: databricks-meta-llama-3-1-405b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta/llama3-8b-instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama3-8b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta-llama/Llama-3-8B-Instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama3-8b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta/llama3-70b-instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama3-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta-llama/Llama-3-70B-Instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama3-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta/llama-3.1-8b-instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.1-8b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta-llama/Llama-3.1-8B-Instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.1-8b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta/llama-3.1-70b-instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.1-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta-llama/Llama-3.1-70B-Instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.1-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta/llama-3.1-405b-instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.1-405b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta-llama/Llama-3.1-405B-Instruct-FP8
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.1-405b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta/llama-3.2-1b-instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.2-1b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta-llama/Llama-3.2-1B-Instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.2-1b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta/llama-3.2-3b-instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.2-3b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta-llama/Llama-3.2-3B-Instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.2-3b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta/llama-3.2-11b-vision-instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.2-11b-vision-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta-llama/Llama-3.2-11B-Vision-Instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.2-11b-vision-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta/llama-3.2-90b-vision-instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.2-90b-vision-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta-llama/Llama-3.2-90B-Vision-Instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.2-90b-vision-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta/llama-3.3-70b-instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.3-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/meta-llama/Llama-3.3-70B-Instruct
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: meta/llama-3.3-70b-instruct
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 2048
|
||||
context_length: 8192
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/nvidia/llama-3.2-nv-embedqa-1b-v2
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: nvidia/llama-3.2-nv-embedqa-1b-v2
|
||||
model_type: embedding
|
||||
- metadata:
|
||||
embedding_dimension: 1024
|
||||
context_length: 512
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/nvidia/nv-embedqa-e5-v5
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: nvidia/nv-embedqa-e5-v5
|
||||
model_type: embedding
|
||||
- metadata:
|
||||
embedding_dimension: 4096
|
||||
context_length: 512
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/nvidia/nv-embedqa-mistral-7b-v2
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: nvidia/nv-embedqa-mistral-7b-v2
|
||||
model_type: embedding
|
||||
- metadata:
|
||||
embedding_dimension: 1024
|
||||
context_length: 512
|
||||
model_id: ${env.ENABLE_NVIDIA:=__disabled__}/snowflake/arctic-embed-l
|
||||
provider_id: ${env.ENABLE_NVIDIA:=__disabled__}
|
||||
provider_model_id: snowflake/arctic-embed-l
|
||||
model_type: embedding
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_RUNPOD:=__disabled__}/Llama3.1-8B
|
||||
provider_id: ${env.ENABLE_RUNPOD:=__disabled__}
|
||||
provider_model_id: Llama3.1-8B
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_RUNPOD:=__disabled__}/Llama3.1-70B
|
||||
provider_id: ${env.ENABLE_RUNPOD:=__disabled__}
|
||||
provider_model_id: Llama3.1-70B
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_RUNPOD:=__disabled__}/Llama3.1-405B:bf16-mp8
|
||||
provider_id: ${env.ENABLE_RUNPOD:=__disabled__}
|
||||
provider_model_id: Llama3.1-405B:bf16-mp8
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_RUNPOD:=__disabled__}/Llama3.1-405B
|
||||
provider_id: ${env.ENABLE_RUNPOD:=__disabled__}
|
||||
provider_model_id: Llama3.1-405B
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_RUNPOD:=__disabled__}/Llama3.1-405B:bf16-mp16
|
||||
provider_id: ${env.ENABLE_RUNPOD:=__disabled__}
|
||||
provider_model_id: Llama3.1-405B:bf16-mp16
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_RUNPOD:=__disabled__}/Llama3.1-8B-Instruct
|
||||
provider_id: ${env.ENABLE_RUNPOD:=__disabled__}
|
||||
provider_model_id: Llama3.1-8B-Instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_RUNPOD:=__disabled__}/Llama3.1-70B-Instruct
|
||||
provider_id: ${env.ENABLE_RUNPOD:=__disabled__}
|
||||
provider_model_id: Llama3.1-70B-Instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_RUNPOD:=__disabled__}/Llama3.1-405B-Instruct:bf16-mp8
|
||||
provider_id: ${env.ENABLE_RUNPOD:=__disabled__}
|
||||
provider_model_id: Llama3.1-405B-Instruct:bf16-mp8
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_RUNPOD:=__disabled__}/Llama3.1-405B-Instruct
|
||||
provider_id: ${env.ENABLE_RUNPOD:=__disabled__}
|
||||
provider_model_id: Llama3.1-405B-Instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_RUNPOD:=__disabled__}/Llama3.1-405B-Instruct:bf16-mp16
|
||||
provider_id: ${env.ENABLE_RUNPOD:=__disabled__}
|
||||
provider_model_id: Llama3.1-405B-Instruct:bf16-mp16
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_RUNPOD:=__disabled__}/Llama3.2-1B
|
||||
provider_id: ${env.ENABLE_RUNPOD:=__disabled__}
|
||||
provider_model_id: Llama3.2-1B
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_RUNPOD:=__disabled__}/Llama3.2-3B
|
||||
provider_id: ${env.ENABLE_RUNPOD:=__disabled__}
|
||||
provider_model_id: Llama3.2-3B
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.ENABLE_OPENAI:=__disabled__}/openai/gpt-4o
|
||||
provider_id: ${env.ENABLE_OPENAI:=__disabled__}
|
||||
|
@ -894,7 +1170,25 @@ models:
|
|||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: ${env.ENABLE_SENTENCE_TRANSFORMERS:=sentence-transformers}
|
||||
model_type: embedding
|
||||
shields: []
|
||||
shields:
|
||||
- shield_id: ${env.ENABLE_OLLAMA:=__disabled__}
|
||||
provider_id: llama-guard
|
||||
provider_shield_id: ${env.ENABLE_OLLAMA:=__disabled__}/${env.SAFETY_MODEL:=llama-guard3:1b}
|
||||
- shield_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
provider_id: llama-guard
|
||||
provider_shield_id: ${env.ENABLE_FIREWORKS:=__disabled__}/${env.SAFETY_MODEL:=accounts/fireworks/models/llama-guard-3-8b}
|
||||
- shield_id: ${env.ENABLE_FIREWORKS:=__disabled__}
|
||||
provider_id: llama-guard
|
||||
provider_shield_id: ${env.ENABLE_FIREWORKS:=__disabled__}/${env.SAFETY_MODEL:=accounts/fireworks/models/llama-guard-3-11b-vision}
|
||||
- shield_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
provider_id: llama-guard
|
||||
provider_shield_id: ${env.ENABLE_TOGETHER:=__disabled__}/${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-8B}
|
||||
- shield_id: ${env.ENABLE_TOGETHER:=__disabled__}
|
||||
provider_id: llama-guard
|
||||
provider_shield_id: ${env.ENABLE_TOGETHER:=__disabled__}/${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-11B-Vision-Turbo}
|
||||
- shield_id: ${env.ENABLE_SAMBANOVA:=__disabled__}
|
||||
provider_id: llama-guard
|
||||
provider_shield_id: ${env.ENABLE_SAMBANOVA:=__disabled__}/${env.SAFETY_MODEL:=sambanova/Meta-Llama-Guard-3-8B}
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
|
|
|
@ -12,6 +12,7 @@ from llama_stack.distribution.datatypes import (
|
|||
ModelInput,
|
||||
Provider,
|
||||
ProviderSpec,
|
||||
ShieldInput,
|
||||
ToolGroupInput,
|
||||
)
|
||||
from llama_stack.distribution.utils.dynamic import instantiate_class_type
|
||||
|
@ -31,24 +32,75 @@ from llama_stack.providers.registry.inference import available_providers
|
|||
from llama_stack.providers.remote.inference.anthropic.models import (
|
||||
MODEL_ENTRIES as ANTHROPIC_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.anthropic.models import (
|
||||
SAFETY_MODELS_ENTRIES as ANTHROPIC_SAFETY_MODELS_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.bedrock.models import (
|
||||
MODEL_ENTRIES as BEDROCK_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.bedrock.models import (
|
||||
SAFETY_MODELS_ENTRIES as BEDROCK_SAFETY_MODELS_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.cerebras.models import (
|
||||
MODEL_ENTRIES as CEREBRAS_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.cerebras.models import (
|
||||
SAFETY_MODELS_ENTRIES as CEREBRAS_SAFETY_MODELS_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.databricks.databricks import (
|
||||
MODEL_ENTRIES as DATABRICKS_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.databricks.databricks import (
|
||||
SAFETY_MODELS_ENTRIES as DATABRICKS_SAFETY_MODELS_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.fireworks.models import (
|
||||
MODEL_ENTRIES as FIREWORKS_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.fireworks.models import (
|
||||
SAFETY_MODELS_ENTRIES as FIREWORKS_SAFETY_MODELS_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.gemini.models import (
|
||||
MODEL_ENTRIES as GEMINI_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.gemini.models import (
|
||||
SAFETY_MODELS_ENTRIES as GEMINI_SAFETY_MODELS_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.groq.models import (
|
||||
MODEL_ENTRIES as GROQ_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.groq.models import (
|
||||
SAFETY_MODELS_ENTRIES as GROQ_SAFETY_MODELS_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.nvidia.models import (
|
||||
MODEL_ENTRIES as NVIDIA_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.nvidia.models import (
|
||||
SAFETY_MODELS_ENTRIES as NVIDIA_SAFETY_MODELS_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.openai.models import (
|
||||
MODEL_ENTRIES as OPENAI_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.openai.models import (
|
||||
SAFETY_MODELS_ENTRIES as OPENAI_SAFETY_MODELS_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.runpod.runpod import (
|
||||
MODEL_ENTRIES as RUNPOD_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.runpod.runpod import (
|
||||
SAFETY_MODELS_ENTRIES as RUNPOD_SAFETY_MODELS_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.sambanova.models import (
|
||||
MODEL_ENTRIES as SAMBANOVA_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.sambanova.models import (
|
||||
SAFETY_MODELS_ENTRIES as SAMBANOVA_SAFETY_MODELS_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.together.models import (
|
||||
MODEL_ENTRIES as TOGETHER_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.together.models import (
|
||||
SAFETY_MODELS_ENTRIES as TOGETHER_SAFETY_MODELS_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
|
||||
from llama_stack.providers.remote.vector_io.pgvector.config import (
|
||||
PGVectorVectorIOConfig,
|
||||
|
@ -72,6 +124,11 @@ def _get_model_entries_for_provider(provider_type: str) -> list[ProviderModelEnt
|
|||
"gemini": GEMINI_MODEL_ENTRIES,
|
||||
"groq": GROQ_MODEL_ENTRIES,
|
||||
"sambanova": SAMBANOVA_MODEL_ENTRIES,
|
||||
"cerebras": CEREBRAS_MODEL_ENTRIES,
|
||||
"bedrock": BEDROCK_MODEL_ENTRIES,
|
||||
"databricks": DATABRICKS_MODEL_ENTRIES,
|
||||
"nvidia": NVIDIA_MODEL_ENTRIES,
|
||||
"runpod": RUNPOD_MODEL_ENTRIES,
|
||||
}
|
||||
|
||||
# Special handling for providers with dynamic model entries
|
||||
|
@ -81,6 +138,10 @@ def _get_model_entries_for_provider(provider_type: str) -> list[ProviderModelEnt
|
|||
provider_model_id="${env.OLLAMA_INFERENCE_MODEL:=__disabled__}",
|
||||
model_type=ModelType.llm,
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="${env.SAFETY_MODEL:=__disabled__}",
|
||||
model_type=ModelType.llm,
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="${env.OLLAMA_EMBEDDING_MODEL:=__disabled__}",
|
||||
model_type=ModelType.embedding,
|
||||
|
@ -100,6 +161,35 @@ def _get_model_entries_for_provider(provider_type: str) -> list[ProviderModelEnt
|
|||
return model_entries_map.get(provider_type, [])
|
||||
|
||||
|
||||
def _get_model_safety_entries_for_provider(provider_type: str) -> list[ProviderModelEntry]:
|
||||
"""Get model entries for a specific provider type."""
|
||||
safety_model_entries_map = {
|
||||
"openai": OPENAI_SAFETY_MODELS_ENTRIES,
|
||||
"fireworks": FIREWORKS_SAFETY_MODELS_ENTRIES,
|
||||
"together": TOGETHER_SAFETY_MODELS_ENTRIES,
|
||||
"anthropic": ANTHROPIC_SAFETY_MODELS_ENTRIES,
|
||||
"gemini": GEMINI_SAFETY_MODELS_ENTRIES,
|
||||
"groq": GROQ_SAFETY_MODELS_ENTRIES,
|
||||
"sambanova": SAMBANOVA_SAFETY_MODELS_ENTRIES,
|
||||
"cerebras": CEREBRAS_SAFETY_MODELS_ENTRIES,
|
||||
"bedrock": BEDROCK_SAFETY_MODELS_ENTRIES,
|
||||
"databricks": DATABRICKS_SAFETY_MODELS_ENTRIES,
|
||||
"nvidia": NVIDIA_SAFETY_MODELS_ENTRIES,
|
||||
"runpod": RUNPOD_SAFETY_MODELS_ENTRIES,
|
||||
}
|
||||
|
||||
# Special handling for providers with dynamic model entries
|
||||
if provider_type == "ollama":
|
||||
return [
|
||||
ProviderModelEntry(
|
||||
provider_model_id="llama-guard3:1b",
|
||||
model_type=ModelType.llm,
|
||||
),
|
||||
]
|
||||
|
||||
return safety_model_entries_map.get(provider_type, [])
|
||||
|
||||
|
||||
def _get_config_for_provider(provider_spec: ProviderSpec) -> dict[str, Any]:
|
||||
"""Get configuration for a provider using its adapter's config class."""
|
||||
config_class = instantiate_class_type(provider_spec.config_class)
|
||||
|
@ -155,6 +245,31 @@ def get_remote_inference_providers() -> tuple[list[Provider], dict[str, list[Pro
|
|||
return inference_providers, available_models
|
||||
|
||||
|
||||
# build a list of shields for all possible providers
|
||||
def get_shields_for_providers(providers: list[Provider]) -> list[ShieldInput]:
|
||||
shields = []
|
||||
for provider in providers:
|
||||
provider_type = provider.provider_type.split("::")[1]
|
||||
safety_model_entries = _get_model_safety_entries_for_provider(provider_type)
|
||||
if len(safety_model_entries) == 0:
|
||||
continue
|
||||
if provider.provider_id:
|
||||
shield_id = provider.provider_id
|
||||
else:
|
||||
raise ValueError(f"Provider {provider.provider_type} has no provider_id")
|
||||
for safety_model_entry in safety_model_entries:
|
||||
print(f"provider.provider_id: {provider.provider_id}")
|
||||
print(f"safety_model_entry.provider_model_id: {safety_model_entry.provider_model_id}")
|
||||
shields.append(
|
||||
ShieldInput(
|
||||
provider_id="llama-guard",
|
||||
shield_id=shield_id,
|
||||
provider_shield_id=f"{provider.provider_id}/${{env.SAFETY_MODEL:={safety_model_entry.provider_model_id}}}",
|
||||
)
|
||||
)
|
||||
return shields
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
remote_inference_providers, available_models = get_remote_inference_providers()
|
||||
|
||||
|
@ -192,6 +307,8 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
),
|
||||
]
|
||||
|
||||
shields = get_shields_for_providers(remote_inference_providers)
|
||||
|
||||
providers = {
|
||||
"inference": ([p.provider_type for p in remote_inference_providers] + ["inline::sentence-transformers"]),
|
||||
"vector_io": ([p.provider_type for p in vector_io_providers]),
|
||||
|
@ -266,9 +383,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
default_models=default_models + [embedding_model],
|
||||
default_tool_groups=default_tool_groups,
|
||||
# TODO: add a way to enable/disable shields on the fly
|
||||
# default_shields=[
|
||||
# ShieldInput(provider_id="llama-guard", shield_id="${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-8B}")
|
||||
# ],
|
||||
default_shields=shields,
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
|
|
82
llama_stack/ui/app/logs/vector-stores/[id]/page.tsx
Normal file
82
llama_stack/ui/app/logs/vector-stores/[id]/page.tsx
Normal file
|
@ -0,0 +1,82 @@
|
|||
"use client";
|
||||
|
||||
import { useEffect, useState } from "react";
|
||||
import { useParams, useRouter } from "next/navigation";
|
||||
import { useAuthClient } from "@/hooks/use-auth-client";
|
||||
import type { VectorStore } from "llama-stack-client/resources/vector-stores/vector-stores";
|
||||
import type { VectorStoreFile } from "llama-stack-client/resources/vector-stores/files";
|
||||
import { VectorStoreDetailView } from "@/components/vector-stores/vector-store-detail";
|
||||
|
||||
export default function VectorStoreDetailPage() {
|
||||
const params = useParams();
|
||||
const id = params.id as string;
|
||||
const client = useAuthClient();
|
||||
const router = useRouter();
|
||||
|
||||
const [store, setStore] = useState<VectorStore | null>(null);
|
||||
const [files, setFiles] = useState<VectorStoreFile[]>([]);
|
||||
const [isLoadingStore, setIsLoadingStore] = useState(true);
|
||||
const [isLoadingFiles, setIsLoadingFiles] = useState(true);
|
||||
const [errorStore, setErrorStore] = useState<Error | null>(null);
|
||||
const [errorFiles, setErrorFiles] = useState<Error | null>(null);
|
||||
|
||||
useEffect(() => {
|
||||
if (!id) {
|
||||
setErrorStore(new Error("Vector Store ID is missing."));
|
||||
setIsLoadingStore(false);
|
||||
return;
|
||||
}
|
||||
const fetchStore = async () => {
|
||||
setIsLoadingStore(true);
|
||||
setErrorStore(null);
|
||||
try {
|
||||
const response = await client.vectorStores.retrieve(id);
|
||||
setStore(response as VectorStore);
|
||||
} catch (err) {
|
||||
setErrorStore(
|
||||
err instanceof Error
|
||||
? err
|
||||
: new Error("Failed to load vector store."),
|
||||
);
|
||||
} finally {
|
||||
setIsLoadingStore(false);
|
||||
}
|
||||
};
|
||||
fetchStore();
|
||||
}, [id, client]);
|
||||
|
||||
useEffect(() => {
|
||||
if (!id) {
|
||||
setErrorFiles(new Error("Vector Store ID is missing."));
|
||||
setIsLoadingFiles(false);
|
||||
return;
|
||||
}
|
||||
const fetchFiles = async () => {
|
||||
setIsLoadingFiles(true);
|
||||
setErrorFiles(null);
|
||||
try {
|
||||
const result = await client.vectorStores.files.list(id as any);
|
||||
setFiles((result as any).data);
|
||||
} catch (err) {
|
||||
setErrorFiles(
|
||||
err instanceof Error ? err : new Error("Failed to load files."),
|
||||
);
|
||||
} finally {
|
||||
setIsLoadingFiles(false);
|
||||
}
|
||||
};
|
||||
fetchFiles();
|
||||
}, [id]);
|
||||
|
||||
return (
|
||||
<VectorStoreDetailView
|
||||
store={store}
|
||||
files={files}
|
||||
isLoadingStore={isLoadingStore}
|
||||
isLoadingFiles={isLoadingFiles}
|
||||
errorStore={errorStore}
|
||||
errorFiles={errorFiles}
|
||||
id={id}
|
||||
/>
|
||||
);
|
||||
}
|
16
llama_stack/ui/app/logs/vector-stores/layout.tsx
Normal file
16
llama_stack/ui/app/logs/vector-stores/layout.tsx
Normal file
|
@ -0,0 +1,16 @@
|
|||
"use client";
|
||||
|
||||
import React from "react";
|
||||
import LogsLayout from "@/components/layout/logs-layout";
|
||||
|
||||
export default function VectorStoresLayout({
|
||||
children,
|
||||
}: {
|
||||
children: React.ReactNode;
|
||||
}) {
|
||||
return (
|
||||
<LogsLayout sectionLabel="Vector Stores" basePath="/logs/vector-stores">
|
||||
{children}
|
||||
</LogsLayout>
|
||||
);
|
||||
}
|
121
llama_stack/ui/app/logs/vector-stores/page.tsx
Normal file
121
llama_stack/ui/app/logs/vector-stores/page.tsx
Normal file
|
@ -0,0 +1,121 @@
|
|||
"use client";
|
||||
|
||||
import React from "react";
|
||||
import { useAuthClient } from "@/hooks/use-auth-client";
|
||||
import type {
|
||||
ListVectorStoresResponse,
|
||||
VectorStore,
|
||||
} from "llama-stack-client/resources/vector-stores/vector-stores";
|
||||
import { useRouter } from "next/navigation";
|
||||
import { usePagination } from "@/hooks/use-pagination";
|
||||
import {
|
||||
Table,
|
||||
TableBody,
|
||||
TableCaption,
|
||||
TableCell,
|
||||
TableHead,
|
||||
TableHeader,
|
||||
TableRow,
|
||||
} from "@/components/ui/table";
|
||||
import { Skeleton } from "@/components/ui/skeleton";
|
||||
|
||||
export default function VectorStoresPage() {
|
||||
const client = useAuthClient();
|
||||
const router = useRouter();
|
||||
const {
|
||||
data: stores,
|
||||
status,
|
||||
hasMore,
|
||||
error,
|
||||
loadMore,
|
||||
} = usePagination<VectorStore>({
|
||||
limit: 20,
|
||||
order: "desc",
|
||||
fetchFunction: async (client, params) => {
|
||||
const response = await client.vectorStores.list({
|
||||
after: params.after,
|
||||
limit: params.limit,
|
||||
order: params.order,
|
||||
} as any);
|
||||
return response as ListVectorStoresResponse;
|
||||
},
|
||||
errorMessagePrefix: "vector stores",
|
||||
});
|
||||
|
||||
// Auto-load all pages for infinite scroll behavior (like Responses)
|
||||
React.useEffect(() => {
|
||||
if (status === "idle" && hasMore) {
|
||||
loadMore();
|
||||
}
|
||||
}, [status, hasMore, loadMore]);
|
||||
|
||||
if (status === "loading") {
|
||||
return (
|
||||
<div className="space-y-2">
|
||||
<Skeleton className="h-8 w-full" />
|
||||
<Skeleton className="h-4 w-full" />
|
||||
<Skeleton className="h-4 w-full" />
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
if (status === "error") {
|
||||
return <div className="text-destructive">Error: {error?.message}</div>;
|
||||
}
|
||||
|
||||
if (!stores || stores.length === 0) {
|
||||
return <p>No vector stores found.</p>;
|
||||
}
|
||||
|
||||
return (
|
||||
<div className="overflow-auto flex-1 min-h-0">
|
||||
<Table>
|
||||
<TableHeader>
|
||||
<TableRow>
|
||||
<TableHead>ID</TableHead>
|
||||
<TableHead>Name</TableHead>
|
||||
<TableHead>Created</TableHead>
|
||||
<TableHead>Completed</TableHead>
|
||||
<TableHead>Cancelled</TableHead>
|
||||
<TableHead>Failed</TableHead>
|
||||
<TableHead>In Progress</TableHead>
|
||||
<TableHead>Total</TableHead>
|
||||
<TableHead>Usage Bytes</TableHead>
|
||||
<TableHead>Provider ID</TableHead>
|
||||
<TableHead>Provider Vector DB ID</TableHead>
|
||||
</TableRow>
|
||||
</TableHeader>
|
||||
<TableBody>
|
||||
{stores.map((store) => {
|
||||
const fileCounts = store.file_counts;
|
||||
const metadata = store.metadata || {};
|
||||
const providerId = metadata.provider_id ?? "";
|
||||
const providerDbId = metadata.provider_vector_db_id ?? "";
|
||||
|
||||
return (
|
||||
<TableRow
|
||||
key={store.id}
|
||||
onClick={() => router.push(`/logs/vector-stores/${store.id}`)}
|
||||
className="cursor-pointer hover:bg-muted/50"
|
||||
>
|
||||
<TableCell>{store.id}</TableCell>
|
||||
<TableCell>{store.name}</TableCell>
|
||||
<TableCell>
|
||||
{new Date(store.created_at * 1000).toLocaleString()}
|
||||
</TableCell>
|
||||
<TableCell>{fileCounts.completed}</TableCell>
|
||||
<TableCell>{fileCounts.cancelled}</TableCell>
|
||||
<TableCell>{fileCounts.failed}</TableCell>
|
||||
<TableCell>{fileCounts.in_progress}</TableCell>
|
||||
<TableCell>{fileCounts.total}</TableCell>
|
||||
<TableCell>{store.usage_bytes}</TableCell>
|
||||
<TableCell>{providerId}</TableCell>
|
||||
<TableCell>{providerDbId}</TableCell>
|
||||
</TableRow>
|
||||
);
|
||||
})}
|
||||
</TableBody>
|
||||
</Table>
|
||||
</div>
|
||||
);
|
||||
}
|
|
@ -1,6 +1,11 @@
|
|||
"use client";
|
||||
|
||||
import { MessageSquareText, MessagesSquare, MoveUpRight } from "lucide-react";
|
||||
import {
|
||||
MessageSquareText,
|
||||
MessagesSquare,
|
||||
MoveUpRight,
|
||||
Database,
|
||||
} from "lucide-react";
|
||||
import Link from "next/link";
|
||||
import { usePathname } from "next/navigation";
|
||||
import { cn } from "@/lib/utils";
|
||||
|
@ -28,6 +33,11 @@ const logItems = [
|
|||
url: "/logs/responses",
|
||||
icon: MessagesSquare,
|
||||
},
|
||||
{
|
||||
title: "Vector Stores",
|
||||
url: "/logs/vector-stores",
|
||||
icon: Database,
|
||||
},
|
||||
{
|
||||
title: "Documentation",
|
||||
url: "https://llama-stack.readthedocs.io/en/latest/references/api_reference/index.html",
|
||||
|
@ -57,13 +67,13 @@ export function AppSidebar() {
|
|||
className={cn(
|
||||
"justify-start",
|
||||
isActive &&
|
||||
"bg-gray-200 hover:bg-gray-200 text-primary hover:text-primary",
|
||||
"bg-gray-200 dark:bg-gray-700 hover:bg-gray-200 dark:hover:bg-gray-700 text-gray-900 dark:text-gray-100",
|
||||
)}
|
||||
>
|
||||
<Link href={item.url}>
|
||||
<item.icon
|
||||
className={cn(
|
||||
isActive && "text-primary",
|
||||
isActive && "text-gray-900 dark:text-gray-100",
|
||||
"mr-2 h-4 w-4",
|
||||
)}
|
||||
/>
|
||||
|
|
|
@ -93,7 +93,9 @@ export function PropertyItem({
|
|||
>
|
||||
<strong>{label}:</strong>{" "}
|
||||
{typeof value === "string" || typeof value === "number" ? (
|
||||
<span className="text-gray-900 font-medium">{value}</span>
|
||||
<span className="text-gray-900 dark:text-gray-100 font-medium">
|
||||
{value}
|
||||
</span>
|
||||
) : (
|
||||
value
|
||||
)}
|
||||
|
@ -112,7 +114,9 @@ export function PropertiesCard({ children }: PropertiesCardProps) {
|
|||
<CardTitle>Properties</CardTitle>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
<ul className="space-y-2 text-sm text-gray-600">{children}</ul>
|
||||
<ul className="space-y-2 text-sm text-gray-600 dark:text-gray-400">
|
||||
{children}
|
||||
</ul>
|
||||
</CardContent>
|
||||
</Card>
|
||||
);
|
||||
|
|
|
@ -17,10 +17,10 @@ export const MessageBlock: React.FC<MessageBlockProps> = ({
|
|||
}) => {
|
||||
return (
|
||||
<div className={`mb-4 ${className}`}>
|
||||
<p className="py-1 font-semibold text-gray-800 mb-1">
|
||||
<p className="py-1 font-semibold text-muted-foreground mb-1">
|
||||
{label}
|
||||
{labelDetail && (
|
||||
<span className="text-xs text-gray-500 font-normal ml-1">
|
||||
<span className="text-xs text-muted-foreground font-normal ml-1">
|
||||
{labelDetail}
|
||||
</span>
|
||||
)}
|
||||
|
|
128
llama_stack/ui/components/vector-stores/vector-store-detail.tsx
Normal file
128
llama_stack/ui/components/vector-stores/vector-store-detail.tsx
Normal file
|
@ -0,0 +1,128 @@
|
|||
"use client";
|
||||
|
||||
import type { VectorStore } from "llama-stack-client/resources/vector-stores/vector-stores";
|
||||
import type { VectorStoreFile } from "llama-stack-client/resources/vector-stores/files";
|
||||
import { Card, CardContent, CardHeader, CardTitle } from "@/components/ui/card";
|
||||
import { Skeleton } from "@/components/ui/skeleton";
|
||||
import {
|
||||
DetailLoadingView,
|
||||
DetailErrorView,
|
||||
DetailNotFoundView,
|
||||
DetailLayout,
|
||||
PropertiesCard,
|
||||
PropertyItem,
|
||||
} from "@/components/layout/detail-layout";
|
||||
import {
|
||||
Table,
|
||||
TableBody,
|
||||
TableCaption,
|
||||
TableCell,
|
||||
TableHead,
|
||||
TableHeader,
|
||||
TableRow,
|
||||
} from "@/components/ui/table";
|
||||
|
||||
interface VectorStoreDetailViewProps {
|
||||
store: VectorStore | null;
|
||||
files: VectorStoreFile[];
|
||||
isLoadingStore: boolean;
|
||||
isLoadingFiles: boolean;
|
||||
errorStore: Error | null;
|
||||
errorFiles: Error | null;
|
||||
id: string;
|
||||
}
|
||||
|
||||
export function VectorStoreDetailView({
|
||||
store,
|
||||
files,
|
||||
isLoadingStore,
|
||||
isLoadingFiles,
|
||||
errorStore,
|
||||
errorFiles,
|
||||
id,
|
||||
}: VectorStoreDetailViewProps) {
|
||||
const title = "Vector Store Details";
|
||||
|
||||
if (errorStore) {
|
||||
return <DetailErrorView title={title} id={id} error={errorStore} />;
|
||||
}
|
||||
if (isLoadingStore) {
|
||||
return <DetailLoadingView title={title} />;
|
||||
}
|
||||
if (!store) {
|
||||
return <DetailNotFoundView title={title} id={id} />;
|
||||
}
|
||||
|
||||
const mainContent = (
|
||||
<>
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle>Files</CardTitle>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
{isLoadingFiles ? (
|
||||
<Skeleton className="h-4 w-full" />
|
||||
) : errorFiles ? (
|
||||
<div className="text-destructive text-sm">
|
||||
Error loading files: {errorFiles.message}
|
||||
</div>
|
||||
) : files.length > 0 ? (
|
||||
<Table>
|
||||
<TableCaption>Files in this vector store</TableCaption>
|
||||
<TableHeader>
|
||||
<TableRow>
|
||||
<TableHead>ID</TableHead>
|
||||
<TableHead>Status</TableHead>
|
||||
<TableHead>Created</TableHead>
|
||||
<TableHead>Usage Bytes</TableHead>
|
||||
</TableRow>
|
||||
</TableHeader>
|
||||
<TableBody>
|
||||
{files.map((file) => (
|
||||
<TableRow key={file.id}>
|
||||
<TableCell>{file.id}</TableCell>
|
||||
<TableCell>{file.status}</TableCell>
|
||||
<TableCell>
|
||||
{new Date(file.created_at * 1000).toLocaleString()}
|
||||
</TableCell>
|
||||
<TableCell>{file.usage_bytes}</TableCell>
|
||||
</TableRow>
|
||||
))}
|
||||
</TableBody>
|
||||
</Table>
|
||||
) : (
|
||||
<p className="text-gray-500 italic text-sm">
|
||||
No files in this vector store.
|
||||
</p>
|
||||
)}
|
||||
</CardContent>
|
||||
</Card>
|
||||
</>
|
||||
);
|
||||
|
||||
const sidebar = (
|
||||
<PropertiesCard>
|
||||
<PropertyItem label="ID" value={store.id} />
|
||||
<PropertyItem label="Name" value={store.name || ""} />
|
||||
<PropertyItem
|
||||
label="Created"
|
||||
value={new Date(store.created_at * 1000).toLocaleString()}
|
||||
/>
|
||||
<PropertyItem label="Status" value={store.status} />
|
||||
<PropertyItem label="Total Files" value={store.file_counts.total} />
|
||||
<PropertyItem label="Usage Bytes" value={store.usage_bytes} />
|
||||
<PropertyItem
|
||||
label="Provider ID"
|
||||
value={(store.metadata.provider_id as string) || ""}
|
||||
/>
|
||||
<PropertyItem
|
||||
label="Provider DB ID"
|
||||
value={(store.metadata.provider_vector_db_id as string) || ""}
|
||||
/>
|
||||
</PropertiesCard>
|
||||
);
|
||||
|
||||
return (
|
||||
<DetailLayout title={title} mainContent={mainContent} sidebar={sidebar} />
|
||||
);
|
||||
}
|
474
llama_stack/ui/package-lock.json
generated
474
llama_stack/ui/package-lock.json
generated
|
@ -15,7 +15,7 @@
|
|||
"@radix-ui/react-tooltip": "^1.2.6",
|
||||
"class-variance-authority": "^0.7.1",
|
||||
"clsx": "^2.1.1",
|
||||
"llama-stack-client": "0.2.13",
|
||||
"llama-stack-client": "^0.2.14",
|
||||
"lucide-react": "^0.510.0",
|
||||
"next": "15.3.3",
|
||||
"next-auth": "^4.24.11",
|
||||
|
@ -676,406 +676,6 @@
|
|||
"tslib": "^2.4.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/aix-ppc64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/aix-ppc64/-/aix-ppc64-0.25.5.tgz",
|
||||
"integrity": "sha512-9o3TMmpmftaCMepOdA5k/yDw8SfInyzWWTjYTFCX3kPSDJMROQTb8jg+h9Cnwnmm1vOzvxN7gIfB5V2ewpjtGA==",
|
||||
"cpu": [
|
||||
"ppc64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"aix"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/android-arm": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/android-arm/-/android-arm-0.25.5.tgz",
|
||||
"integrity": "sha512-AdJKSPeEHgi7/ZhuIPtcQKr5RQdo6OO2IL87JkianiMYMPbCtot9fxPbrMiBADOWWm3T2si9stAiVsGbTQFkbA==",
|
||||
"cpu": [
|
||||
"arm"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"android"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/android-arm64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/android-arm64/-/android-arm64-0.25.5.tgz",
|
||||
"integrity": "sha512-VGzGhj4lJO+TVGV1v8ntCZWJktV7SGCs3Pn1GRWI1SBFtRALoomm8k5E9Pmwg3HOAal2VDc2F9+PM/rEY6oIDg==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"android"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/android-x64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/android-x64/-/android-x64-0.25.5.tgz",
|
||||
"integrity": "sha512-D2GyJT1kjvO//drbRT3Hib9XPwQeWd9vZoBJn+bu/lVsOZ13cqNdDeqIF/xQ5/VmWvMduP6AmXvylO/PIc2isw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"android"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/darwin-arm64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/darwin-arm64/-/darwin-arm64-0.25.5.tgz",
|
||||
"integrity": "sha512-GtaBgammVvdF7aPIgH2jxMDdivezgFu6iKpmT+48+F8Hhg5J/sfnDieg0aeG/jfSvkYQU2/pceFPDKlqZzwnfQ==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/darwin-x64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/darwin-x64/-/darwin-x64-0.25.5.tgz",
|
||||
"integrity": "sha512-1iT4FVL0dJ76/q1wd7XDsXrSW+oLoquptvh4CLR4kITDtqi2e/xwXwdCVH8hVHU43wgJdsq7Gxuzcs6Iq/7bxQ==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/freebsd-arm64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/freebsd-arm64/-/freebsd-arm64-0.25.5.tgz",
|
||||
"integrity": "sha512-nk4tGP3JThz4La38Uy/gzyXtpkPW8zSAmoUhK9xKKXdBCzKODMc2adkB2+8om9BDYugz+uGV7sLmpTYzvmz6Sw==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"freebsd"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/freebsd-x64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/freebsd-x64/-/freebsd-x64-0.25.5.tgz",
|
||||
"integrity": "sha512-PrikaNjiXdR2laW6OIjlbeuCPrPaAl0IwPIaRv+SMV8CiM8i2LqVUHFC1+8eORgWyY7yhQY+2U2fA55mBzReaw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"freebsd"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/linux-arm": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/linux-arm/-/linux-arm-0.25.5.tgz",
|
||||
"integrity": "sha512-cPzojwW2okgh7ZlRpcBEtsX7WBuqbLrNXqLU89GxWbNt6uIg78ET82qifUy3W6OVww6ZWobWub5oqZOVtwolfw==",
|
||||
"cpu": [
|
||||
"arm"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/linux-arm64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/linux-arm64/-/linux-arm64-0.25.5.tgz",
|
||||
"integrity": "sha512-Z9kfb1v6ZlGbWj8EJk9T6czVEjjq2ntSYLY2cw6pAZl4oKtfgQuS4HOq41M/BcoLPzrUbNd+R4BXFyH//nHxVg==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/linux-ia32": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/linux-ia32/-/linux-ia32-0.25.5.tgz",
|
||||
"integrity": "sha512-sQ7l00M8bSv36GLV95BVAdhJ2QsIbCuCjh/uYrWiMQSUuV+LpXwIqhgJDcvMTj+VsQmqAHL2yYaasENvJ7CDKA==",
|
||||
"cpu": [
|
||||
"ia32"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/linux-loong64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/linux-loong64/-/linux-loong64-0.25.5.tgz",
|
||||
"integrity": "sha512-0ur7ae16hDUC4OL5iEnDb0tZHDxYmuQyhKhsPBV8f99f6Z9KQM02g33f93rNH5A30agMS46u2HP6qTdEt6Q1kg==",
|
||||
"cpu": [
|
||||
"loong64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/linux-mips64el": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/linux-mips64el/-/linux-mips64el-0.25.5.tgz",
|
||||
"integrity": "sha512-kB/66P1OsHO5zLz0i6X0RxlQ+3cu0mkxS3TKFvkb5lin6uwZ/ttOkP3Z8lfR9mJOBk14ZwZ9182SIIWFGNmqmg==",
|
||||
"cpu": [
|
||||
"mips64el"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/linux-ppc64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/linux-ppc64/-/linux-ppc64-0.25.5.tgz",
|
||||
"integrity": "sha512-UZCmJ7r9X2fe2D6jBmkLBMQetXPXIsZjQJCjgwpVDz+YMcS6oFR27alkgGv3Oqkv07bxdvw7fyB71/olceJhkQ==",
|
||||
"cpu": [
|
||||
"ppc64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/linux-riscv64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/linux-riscv64/-/linux-riscv64-0.25.5.tgz",
|
||||
"integrity": "sha512-kTxwu4mLyeOlsVIFPfQo+fQJAV9mh24xL+y+Bm6ej067sYANjyEw1dNHmvoqxJUCMnkBdKpvOn0Ahql6+4VyeA==",
|
||||
"cpu": [
|
||||
"riscv64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/linux-s390x": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/linux-s390x/-/linux-s390x-0.25.5.tgz",
|
||||
"integrity": "sha512-K2dSKTKfmdh78uJ3NcWFiqyRrimfdinS5ErLSn3vluHNeHVnBAFWC8a4X5N+7FgVE1EjXS1QDZbpqZBjfrqMTQ==",
|
||||
"cpu": [
|
||||
"s390x"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/linux-x64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/linux-x64/-/linux-x64-0.25.5.tgz",
|
||||
"integrity": "sha512-uhj8N2obKTE6pSZ+aMUbqq+1nXxNjZIIjCjGLfsWvVpy7gKCOL6rsY1MhRh9zLtUtAI7vpgLMK6DxjO8Qm9lJw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/netbsd-arm64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/netbsd-arm64/-/netbsd-arm64-0.25.5.tgz",
|
||||
"integrity": "sha512-pwHtMP9viAy1oHPvgxtOv+OkduK5ugofNTVDilIzBLpoWAM16r7b/mxBvfpuQDpRQFMfuVr5aLcn4yveGvBZvw==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"netbsd"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/netbsd-x64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/netbsd-x64/-/netbsd-x64-0.25.5.tgz",
|
||||
"integrity": "sha512-WOb5fKrvVTRMfWFNCroYWWklbnXH0Q5rZppjq0vQIdlsQKuw6mdSihwSo4RV/YdQ5UCKKvBy7/0ZZYLBZKIbwQ==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"netbsd"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/openbsd-arm64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/openbsd-arm64/-/openbsd-arm64-0.25.5.tgz",
|
||||
"integrity": "sha512-7A208+uQKgTxHd0G0uqZO8UjK2R0DDb4fDmERtARjSHWxqMTye4Erz4zZafx7Di9Cv+lNHYuncAkiGFySoD+Mw==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"openbsd"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/openbsd-x64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/openbsd-x64/-/openbsd-x64-0.25.5.tgz",
|
||||
"integrity": "sha512-G4hE405ErTWraiZ8UiSoesH8DaCsMm0Cay4fsFWOOUcz8b8rC6uCvnagr+gnioEjWn0wC+o1/TAHt+It+MpIMg==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"openbsd"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/sunos-x64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/sunos-x64/-/sunos-x64-0.25.5.tgz",
|
||||
"integrity": "sha512-l+azKShMy7FxzY0Rj4RCt5VD/q8mG/e+mDivgspo+yL8zW7qEwctQ6YqKX34DTEleFAvCIUviCFX1SDZRSyMQA==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"sunos"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/win32-arm64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/win32-arm64/-/win32-arm64-0.25.5.tgz",
|
||||
"integrity": "sha512-O2S7SNZzdcFG7eFKgvwUEZ2VG9D/sn/eIiz8XRZ1Q/DO5a3s76Xv0mdBzVM5j5R639lXQmPmSo0iRpHqUUrsxw==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"win32"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/win32-ia32": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/win32-ia32/-/win32-ia32-0.25.5.tgz",
|
||||
"integrity": "sha512-onOJ02pqs9h1iMJ1PQphR+VZv8qBMQ77Klcsqv9CNW2w6yLqoURLcgERAIurY6QE63bbLuqgP9ATqajFLK5AMQ==",
|
||||
"cpu": [
|
||||
"ia32"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"win32"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@esbuild/win32-x64": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/@esbuild/win32-x64/-/win32-x64-0.25.5.tgz",
|
||||
"integrity": "sha512-TXv6YnJ8ZMVdX+SXWVBo/0p8LTcrUYngpWjvm91TMjjBQii7Oz11Lw5lbDV5Y0TzuhSJHwiH4hEtC1I42mMS0g==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"win32"
|
||||
],
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
}
|
||||
},
|
||||
"node_modules/@eslint-community/eslint-utils": {
|
||||
"version": "4.7.0",
|
||||
"resolved": "https://registry.npmjs.org/@eslint-community/eslint-utils/-/eslint-utils-4.7.0.tgz",
|
||||
|
@ -5999,46 +5599,6 @@
|
|||
"url": "https://github.com/sponsors/ljharb"
|
||||
}
|
||||
},
|
||||
"node_modules/esbuild": {
|
||||
"version": "0.25.5",
|
||||
"resolved": "https://registry.npmjs.org/esbuild/-/esbuild-0.25.5.tgz",
|
||||
"integrity": "sha512-P8OtKZRv/5J5hhz0cUAdu/cLuPIKXpQl1R9pZtvmHWQvrAUVd0UNIPT4IB4W3rNOqVO0rlqHmCIbSwxh/c9yUQ==",
|
||||
"hasInstallScript": true,
|
||||
"license": "MIT",
|
||||
"bin": {
|
||||
"esbuild": "bin/esbuild"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=18"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@esbuild/aix-ppc64": "0.25.5",
|
||||
"@esbuild/android-arm": "0.25.5",
|
||||
"@esbuild/android-arm64": "0.25.5",
|
||||
"@esbuild/android-x64": "0.25.5",
|
||||
"@esbuild/darwin-arm64": "0.25.5",
|
||||
"@esbuild/darwin-x64": "0.25.5",
|
||||
"@esbuild/freebsd-arm64": "0.25.5",
|
||||
"@esbuild/freebsd-x64": "0.25.5",
|
||||
"@esbuild/linux-arm": "0.25.5",
|
||||
"@esbuild/linux-arm64": "0.25.5",
|
||||
"@esbuild/linux-ia32": "0.25.5",
|
||||
"@esbuild/linux-loong64": "0.25.5",
|
||||
"@esbuild/linux-mips64el": "0.25.5",
|
||||
"@esbuild/linux-ppc64": "0.25.5",
|
||||
"@esbuild/linux-riscv64": "0.25.5",
|
||||
"@esbuild/linux-s390x": "0.25.5",
|
||||
"@esbuild/linux-x64": "0.25.5",
|
||||
"@esbuild/netbsd-arm64": "0.25.5",
|
||||
"@esbuild/netbsd-x64": "0.25.5",
|
||||
"@esbuild/openbsd-arm64": "0.25.5",
|
||||
"@esbuild/openbsd-x64": "0.25.5",
|
||||
"@esbuild/sunos-x64": "0.25.5",
|
||||
"@esbuild/win32-arm64": "0.25.5",
|
||||
"@esbuild/win32-ia32": "0.25.5",
|
||||
"@esbuild/win32-x64": "0.25.5"
|
||||
}
|
||||
},
|
||||
"node_modules/escalade": {
|
||||
"version": "3.2.0",
|
||||
"resolved": "https://registry.npmjs.org/escalade/-/escalade-3.2.0.tgz",
|
||||
|
@ -6993,6 +6553,7 @@
|
|||
"version": "2.3.3",
|
||||
"resolved": "https://registry.npmjs.org/fsevents/-/fsevents-2.3.3.tgz",
|
||||
"integrity": "sha512-5xoDfX+fL7faATnagmWPpbFtwh/R77WmMMqqHGS65C3vvB0YHrgF+B1YmZ3441tMj5n63k0212XNoJwzlhffQw==",
|
||||
"dev": true,
|
||||
"hasInstallScript": true,
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
|
@ -7154,6 +6715,7 @@
|
|||
"version": "4.10.0",
|
||||
"resolved": "https://registry.npmjs.org/get-tsconfig/-/get-tsconfig-4.10.0.tgz",
|
||||
"integrity": "sha512-kGzZ3LWWQcGIAmg6iWvXn0ei6WDtV26wzHRMwDSzmAbcXrTEXxHy6IehI6/4eT6VRKyMP1eF1VqwrVUmE/LR7A==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"resolve-pkg-maps": "^1.0.0"
|
||||
|
@ -9537,9 +9099,10 @@
|
|||
"license": "MIT"
|
||||
},
|
||||
"node_modules/llama-stack-client": {
|
||||
"version": "0.2.13",
|
||||
"resolved": "https://registry.npmjs.org/llama-stack-client/-/llama-stack-client-0.2.13.tgz",
|
||||
"integrity": "sha512-R1rTFLwgUimr+KjEUkzUvFL6vLASwS9qj3UDSVkJ5BmrKAs5GwVAMeL7yZaTBXGuPUVh124WSlC4d9H0FjWqLA==",
|
||||
"version": "0.2.14",
|
||||
"resolved": "https://registry.npmjs.org/llama-stack-client/-/llama-stack-client-0.2.14.tgz",
|
||||
"integrity": "sha512-bVU3JHp+EPEKR0Vb9vcd9ZyQj/72jSDuptKLwOXET9WrkphIQ8xuW5ueecMTgq8UEls3lwB3HiZM2cDOR9eDsQ==",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@types/node": "^18.11.18",
|
||||
"@types/node-fetch": "^2.6.4",
|
||||
|
@ -9547,8 +9110,7 @@
|
|||
"agentkeepalive": "^4.2.1",
|
||||
"form-data-encoder": "1.7.2",
|
||||
"formdata-node": "^4.3.2",
|
||||
"node-fetch": "^2.6.7",
|
||||
"tsx": "^4.19.2"
|
||||
"node-fetch": "^2.6.7"
|
||||
}
|
||||
},
|
||||
"node_modules/llama-stack-client/node_modules/@types/node": {
|
||||
|
@ -11148,6 +10710,7 @@
|
|||
"version": "1.0.0",
|
||||
"resolved": "https://registry.npmjs.org/resolve-pkg-maps/-/resolve-pkg-maps-1.0.0.tgz",
|
||||
"integrity": "sha512-seS2Tj26TBVOC2NIc2rOe2y2ZO7efxITtLZcGSOnHHNOQ7CkiUBfw0Iw2ck6xkIhPwLhKNLS8BO+hEpngQlqzw==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"funding": {
|
||||
"url": "https://github.com/privatenumber/resolve-pkg-maps?sponsor=1"
|
||||
|
@ -12198,25 +11761,6 @@
|
|||
"integrity": "sha512-oJFu94HQb+KVduSUQL7wnpmqnfmLsOA/nAh6b6EH0wCEoK0/mPeXU6c3wKDV83MkOuHPRHtSXKKU99IBazS/2w==",
|
||||
"license": "0BSD"
|
||||
},
|
||||
"node_modules/tsx": {
|
||||
"version": "4.19.4",
|
||||
"resolved": "https://registry.npmjs.org/tsx/-/tsx-4.19.4.tgz",
|
||||
"integrity": "sha512-gK5GVzDkJK1SI1zwHf32Mqxf2tSJkNx+eYcNly5+nHvWqXUJYUkWBQtKauoESz3ymezAI++ZwT855x5p5eop+Q==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"esbuild": "~0.25.0",
|
||||
"get-tsconfig": "^4.7.5"
|
||||
},
|
||||
"bin": {
|
||||
"tsx": "dist/cli.mjs"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=18.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"fsevents": "~2.3.3"
|
||||
}
|
||||
},
|
||||
"node_modules/tw-animate-css": {
|
||||
"version": "1.2.9",
|
||||
"resolved": "https://registry.npmjs.org/tw-animate-css/-/tw-animate-css-1.2.9.tgz",
|
||||
|
|
|
@ -20,7 +20,7 @@
|
|||
"@radix-ui/react-tooltip": "^1.2.6",
|
||||
"class-variance-authority": "^0.7.1",
|
||||
"clsx": "^2.1.1",
|
||||
"llama-stack-client": "0.2.13",
|
||||
"llama-stack-client": "^0.2.14",
|
||||
"lucide-react": "^0.510.0",
|
||||
"next": "15.3.3",
|
||||
"next-auth": "^4.24.11",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue