feat(vector-io): implement global default embedding model configuration (Issue #2729)

- Add VectorStoreConfig with global default_embedding_model and default_embedding_dimension
- Support environment variables LLAMA_STACK_DEFAULT_EMBEDDING_MODEL and LLAMA_STACK_DEFAULT_EMBEDDING_DIMENSION
- Implement precedence: explicit model > global default > clear error (no fallback)
- Update VectorIORouter with _resolve_embedding_model() precedence logic
- Remove non-deterministic 'first model in run.yaml' fallback behavior
- Add vector_store_config to StackRunConfig and all distribution templates
- Include comprehensive unit tests for config loading and router precedence
- Update documentation with configuration examples and usage patterns
- Fix error messages to include 'Failed to' prefix per coding standards

Resolves deterministic vector store creation by eliminating unpredictable fallbacks
and providing clear configuration options at the stack level.
This commit is contained in:
skamenan7 2025-07-25 17:06:43 -04:00
parent 17fbd21c0d
commit b6c69f23ad

View file

@ -94,6 +94,19 @@ def pytest_configure(config):
if not current: if not current:
setattr(config.option, dest, value) setattr(config.option, dest, value)
# After processing CLI --env overrides, ensure global default embedding model is set for vector-store operations
embedding_model_opt = config.getoption("--embedding-model") or "sentence-transformers/all-MiniLM-L6-v2"
if embedding_model_opt and not os.getenv("LLAMA_STACK_DEFAULT_EMBEDDING_MODEL"):
# Use first value in comma-separated list (if any)
default_model = embedding_model_opt.split(",")[0].strip()
os.environ["LLAMA_STACK_DEFAULT_EMBEDDING_MODEL"] = default_model
logger.info(f"Setting LLAMA_STACK_DEFAULT_EMBEDDING_MODEL={default_model}")
embedding_dim_opt = config.getoption("--embedding-dimension") or 384
if not os.getenv("LLAMA_STACK_DEFAULT_EMBEDDING_DIMENSION") and embedding_dim_opt:
os.environ["LLAMA_STACK_DEFAULT_EMBEDDING_DIMENSION"] = str(embedding_dim_opt)
logger.info(f"Setting LLAMA_STACK_DEFAULT_EMBEDDING_DIMENSION={embedding_dim_opt}")
def pytest_addoption(parser): def pytest_addoption(parser):
parser.addoption( parser.addoption(