mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 18:00:36 +00:00
chore!: BREAKING CHANGE: vector_db_id -> vector_store_id (#3923)
# What does this PR do? ## Test Plan CI vector_io tests will fail until next client sync passed with https://github.com/llamastack/llama-stack-client-python/pull/286 checked out locally
This commit is contained in:
parent
b6954c9882
commit
b7dd3f5c56
29 changed files with 175 additions and 175 deletions
|
|
@ -72,14 +72,14 @@ description: |
|
|||
Example with hybrid search:
|
||||
```python
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
vector_store_id="my_db",
|
||||
query="your query here",
|
||||
params={"mode": "hybrid", "max_chunks": 3, "score_threshold": 0.7},
|
||||
)
|
||||
|
||||
# Using RRF ranker
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
vector_store_id="my_db",
|
||||
query="your query here",
|
||||
params={
|
||||
"mode": "hybrid",
|
||||
|
|
@ -91,7 +91,7 @@ description: |
|
|||
|
||||
# Using weighted ranker
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
vector_store_id="my_db",
|
||||
query="your query here",
|
||||
params={
|
||||
"mode": "hybrid",
|
||||
|
|
@ -105,7 +105,7 @@ description: |
|
|||
Example with explicit vector search:
|
||||
```python
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
vector_store_id="my_db",
|
||||
query="your query here",
|
||||
params={"mode": "vector", "max_chunks": 3, "score_threshold": 0.7},
|
||||
)
|
||||
|
|
@ -114,7 +114,7 @@ description: |
|
|||
Example with keyword search:
|
||||
```python
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
vector_store_id="my_db",
|
||||
query="your query here",
|
||||
params={"mode": "keyword", "max_chunks": 3, "score_threshold": 0.7},
|
||||
)
|
||||
|
|
@ -277,14 +277,14 @@ The SQLite-vec provider supports three search modes:
|
|||
Example with hybrid search:
|
||||
```python
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
vector_store_id="my_db",
|
||||
query="your query here",
|
||||
params={"mode": "hybrid", "max_chunks": 3, "score_threshold": 0.7},
|
||||
)
|
||||
|
||||
# Using RRF ranker
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
vector_store_id="my_db",
|
||||
query="your query here",
|
||||
params={
|
||||
"mode": "hybrid",
|
||||
|
|
@ -296,7 +296,7 @@ response = await vector_io.query_chunks(
|
|||
|
||||
# Using weighted ranker
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
vector_store_id="my_db",
|
||||
query="your query here",
|
||||
params={
|
||||
"mode": "hybrid",
|
||||
|
|
@ -310,7 +310,7 @@ response = await vector_io.query_chunks(
|
|||
Example with explicit vector search:
|
||||
```python
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
vector_store_id="my_db",
|
||||
query="your query here",
|
||||
params={"mode": "vector", "max_chunks": 3, "score_threshold": 0.7},
|
||||
)
|
||||
|
|
@ -319,7 +319,7 @@ response = await vector_io.query_chunks(
|
|||
Example with keyword search:
|
||||
```python
|
||||
response = await vector_io.query_chunks(
|
||||
vector_db_id="my_db",
|
||||
vector_store_id="my_db",
|
||||
query="your query here",
|
||||
params={"mode": "keyword", "max_chunks": 3, "score_threshold": 0.7},
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue