chore!: BREAKING CHANGE: vector_db_id -> vector_store_id (#3923)

# What does this PR do?


## Test Plan
CI
vector_io tests will fail until next client sync

passed with
https://github.com/llamastack/llama-stack-client-python/pull/286 checked
out locally
This commit is contained in:
ehhuang 2025-10-27 14:26:06 -07:00 committed by GitHub
parent b6954c9882
commit b7dd3f5c56
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
29 changed files with 175 additions and 175 deletions

View file

@ -367,7 +367,7 @@ def test_openai_vector_store_with_chunks(
# Insert chunks using the native LlamaStack API (since OpenAI API doesn't have direct chunk insertion)
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -434,7 +434,7 @@ def test_openai_vector_store_search_relevance(
# Insert chunks using native API
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -484,7 +484,7 @@ def test_openai_vector_store_search_with_ranking_options(
# Insert chunks
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -544,7 +544,7 @@ def test_openai_vector_store_search_with_high_score_filter(
# Insert chunks
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -610,7 +610,7 @@ def test_openai_vector_store_search_with_max_num_results(
# Insert chunks
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -1175,7 +1175,7 @@ def test_openai_vector_store_search_modes(
)
client_with_models.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
query = "Python programming language"

View file

@ -123,12 +123,12 @@ def test_insert_chunks(
actual_vector_store_id = create_response.id
client_with_empty_registry.vector_io.insert(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
chunks=sample_chunks,
)
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
query="What is the capital of France?",
)
assert response is not None
@ -137,7 +137,7 @@ def test_insert_chunks(
query, expected_doc_id = test_case
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
query=query,
)
assert response is not None
@ -174,13 +174,13 @@ def test_insert_chunks_with_precomputed_embeddings(
]
client_with_empty_registry.vector_io.insert(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
chunks=chunks_with_embeddings,
)
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
query="precomputed embedding test",
params=vector_io_provider_params_dict.get(provider, None),
)
@ -224,13 +224,13 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
]
client_with_empty_registry.vector_io.insert(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
chunks=chunks_with_embeddings,
)
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
query="duplicate",
params=vector_io_provider_params_dict.get(provider, None),
)

View file

@ -23,14 +23,14 @@ class TestRagQuery:
config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock()
)
with pytest.raises(ValueError):
await rag_tool.query(content=MagicMock(), vector_db_ids=[])
await rag_tool.query(content=MagicMock(), vector_store_ids=[])
async def test_query_chunk_metadata_handling(self):
rag_tool = MemoryToolRuntimeImpl(
config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock()
)
content = "test query content"
vector_db_ids = ["db1"]
vector_store_ids = ["db1"]
chunk_metadata = ChunkMetadata(
document_id="doc1",
@ -55,7 +55,7 @@ class TestRagQuery:
query_response = QueryChunksResponse(chunks=[chunk], scores=[1.0])
rag_tool.vector_io_api.query_chunks = AsyncMock(return_value=query_response)
result = await rag_tool.query(content=content, vector_db_ids=vector_db_ids)
result = await rag_tool.query(content=content, vector_store_ids=vector_store_ids)
assert result is not None
expected_metadata_string = (
@ -90,7 +90,7 @@ class TestRagQuery:
files_api=MagicMock(),
)
vector_db_ids = ["db1", "db2"]
vector_store_ids = ["db1", "db2"]
# Fake chunks from each DB
chunk_metadata1 = ChunkMetadata(
@ -101,7 +101,7 @@ class TestRagQuery:
)
chunk1 = Chunk(
content="chunk from db1",
metadata={"vector_db_id": "db1", "document_id": "doc1"},
metadata={"vector_store_id": "db1", "document_id": "doc1"},
stored_chunk_id="c1",
chunk_metadata=chunk_metadata1,
)
@ -114,7 +114,7 @@ class TestRagQuery:
)
chunk2 = Chunk(
content="chunk from db2",
metadata={"vector_db_id": "db2", "document_id": "doc2"},
metadata={"vector_store_id": "db2", "document_id": "doc2"},
stored_chunk_id="c2",
chunk_metadata=chunk_metadata2,
)
@ -126,13 +126,13 @@ class TestRagQuery:
]
)
result = await rag_tool.query(content="test", vector_db_ids=vector_db_ids)
result = await rag_tool.query(content="test", vector_store_ids=vector_store_ids)
returned_chunks = result.metadata["chunks"]
returned_scores = result.metadata["scores"]
returned_doc_ids = result.metadata["document_ids"]
returned_vector_db_ids = result.metadata["vector_db_ids"]
returned_vector_store_ids = result.metadata["vector_store_ids"]
assert returned_chunks == ["chunk from db1", "chunk from db2"]
assert returned_scores == (0.9, 0.8)
assert returned_doc_ids == ["doc1", "doc2"]
assert returned_vector_db_ids == ["db1", "db2"]
assert returned_vector_store_ids == ["db1", "db2"]