chore!: BREAKING CHANGE: vector_db_id -> vector_store_id (#3923)

# What does this PR do?


## Test Plan
CI
vector_io tests will fail until next client sync

passed with
https://github.com/llamastack/llama-stack-client-python/pull/286 checked
out locally
This commit is contained in:
ehhuang 2025-10-27 14:26:06 -07:00 committed by GitHub
parent b6954c9882
commit b7dd3f5c56
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
29 changed files with 175 additions and 175 deletions

View file

@ -367,7 +367,7 @@ def test_openai_vector_store_with_chunks(
# Insert chunks using the native LlamaStack API (since OpenAI API doesn't have direct chunk insertion)
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -434,7 +434,7 @@ def test_openai_vector_store_search_relevance(
# Insert chunks using native API
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -484,7 +484,7 @@ def test_openai_vector_store_search_with_ranking_options(
# Insert chunks
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -544,7 +544,7 @@ def test_openai_vector_store_search_with_high_score_filter(
# Insert chunks
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -610,7 +610,7 @@ def test_openai_vector_store_search_with_max_num_results(
# Insert chunks
llama_client.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
@ -1175,7 +1175,7 @@ def test_openai_vector_store_search_modes(
)
client_with_models.vector_io.insert(
vector_db_id=vector_store.id,
vector_store_id=vector_store.id,
chunks=sample_chunks,
)
query = "Python programming language"

View file

@ -123,12 +123,12 @@ def test_insert_chunks(
actual_vector_store_id = create_response.id
client_with_empty_registry.vector_io.insert(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
chunks=sample_chunks,
)
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
query="What is the capital of France?",
)
assert response is not None
@ -137,7 +137,7 @@ def test_insert_chunks(
query, expected_doc_id = test_case
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
query=query,
)
assert response is not None
@ -174,13 +174,13 @@ def test_insert_chunks_with_precomputed_embeddings(
]
client_with_empty_registry.vector_io.insert(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
chunks=chunks_with_embeddings,
)
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
query="precomputed embedding test",
params=vector_io_provider_params_dict.get(provider, None),
)
@ -224,13 +224,13 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb(
]
client_with_empty_registry.vector_io.insert(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
chunks=chunks_with_embeddings,
)
provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0]
response = client_with_empty_registry.vector_io.query(
vector_db_id=actual_vector_store_id,
vector_store_id=actual_vector_store_id,
query="duplicate",
params=vector_io_provider_params_dict.get(provider, None),
)