mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-29 04:48:50 +00:00
Merge branch 'main' into feat/litellm_sambanova_usage
This commit is contained in:
commit
b7f16ac7a6
535 changed files with 23539 additions and 8112 deletions
|
|
@ -3,7 +3,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
|
@ -17,7 +17,7 @@ class HuggingfaceDatasetIOConfig(BaseModel):
|
|||
kvstore: KVStoreConfig
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any
|
||||
from urllib.parse import parse_qs, urlparse
|
||||
|
||||
import datasets as hf_datasets
|
||||
|
|
@ -70,8 +70,8 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|||
async def iterrows(
|
||||
self,
|
||||
dataset_id: str,
|
||||
start_index: Optional[int] = None,
|
||||
limit: Optional[int] = None,
|
||||
start_index: int | None = None,
|
||||
limit: int | None = None,
|
||||
) -> PaginatedResponse:
|
||||
dataset_def = self.dataset_infos[dataset_id]
|
||||
path, params = parse_hf_params(dataset_def)
|
||||
|
|
@ -80,7 +80,7 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|||
records = [loaded_dataset[i] for i in range(len(loaded_dataset))]
|
||||
return paginate_records(records, start_index, limit)
|
||||
|
||||
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
|
||||
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None:
|
||||
dataset_def = self.dataset_infos[dataset_id]
|
||||
path, params = parse_hf_params(dataset_def)
|
||||
loaded_dataset = hf_datasets.load_dataset(path, **params)
|
||||
|
|
|
|||
74
llama_stack/providers/remote/datasetio/nvidia/README.md
Normal file
74
llama_stack/providers/remote/datasetio/nvidia/README.md
Normal file
|
|
@ -0,0 +1,74 @@
|
|||
# NVIDIA DatasetIO Provider for LlamaStack
|
||||
|
||||
This provider enables dataset management using NVIDIA's NeMo Customizer service.
|
||||
|
||||
## Features
|
||||
|
||||
- Register datasets for fine-tuning LLMs
|
||||
- Unregister datasets
|
||||
|
||||
## Getting Started
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- LlamaStack with NVIDIA configuration
|
||||
- Access to Hosted NVIDIA NeMo Microservice
|
||||
- API key for authentication with the NVIDIA service
|
||||
|
||||
### Setup
|
||||
|
||||
Build the NVIDIA environment:
|
||||
|
||||
```bash
|
||||
llama stack build --template nvidia --image-type conda
|
||||
```
|
||||
|
||||
### Basic Usage using the LlamaStack Python Client
|
||||
|
||||
#### Initialize the client
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
os.environ["NVIDIA_API_KEY"] = "your-api-key"
|
||||
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
|
||||
os.environ["NVIDIA_USER_ID"] = "llama-stack-user"
|
||||
os.environ["NVIDIA_DATASET_NAMESPACE"] = "default"
|
||||
os.environ["NVIDIA_PROJECT_ID"] = "test-project"
|
||||
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
||||
|
||||
client = LlamaStackAsLibraryClient("nvidia")
|
||||
client.initialize()
|
||||
```
|
||||
|
||||
#### Register a dataset
|
||||
|
||||
```python
|
||||
client.datasets.register(
|
||||
purpose="post-training/messages",
|
||||
dataset_id="my-training-dataset",
|
||||
source={"type": "uri", "uri": "hf://datasets/default/sample-dataset"},
|
||||
metadata={
|
||||
"format": "json",
|
||||
"description": "Dataset for LLM fine-tuning",
|
||||
"provider": "nvidia",
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
#### Get a list of all registered datasets
|
||||
|
||||
```python
|
||||
datasets = client.datasets.list()
|
||||
for dataset in datasets:
|
||||
print(f"Dataset ID: {dataset.identifier}")
|
||||
print(f"Description: {dataset.metadata.get('description', '')}")
|
||||
print(f"Source: {dataset.source.uri}")
|
||||
print("---")
|
||||
```
|
||||
|
||||
#### Unregister a dataset
|
||||
|
||||
```python
|
||||
client.datasets.unregister(dataset_id="my-training-dataset")
|
||||
```
|
||||
23
llama_stack/providers/remote/datasetio/nvidia/__init__.py
Normal file
23
llama_stack/providers/remote/datasetio/nvidia/__init__.py
Normal file
|
|
@ -0,0 +1,23 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import NvidiaDatasetIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(
|
||||
config: NvidiaDatasetIOConfig,
|
||||
_deps,
|
||||
):
|
||||
from .datasetio import NvidiaDatasetIOAdapter
|
||||
|
||||
if not isinstance(config, NvidiaDatasetIOConfig):
|
||||
raise RuntimeError(f"Unexpected config type: {type(config)}")
|
||||
|
||||
impl = NvidiaDatasetIOAdapter(config)
|
||||
return impl
|
||||
|
||||
|
||||
__all__ = ["get_adapter_impl", "NvidiaDatasetIOAdapter"]
|
||||
61
llama_stack/providers/remote/datasetio/nvidia/config.py
Normal file
61
llama_stack/providers/remote/datasetio/nvidia/config.py
Normal file
|
|
@ -0,0 +1,61 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import warnings
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class NvidiaDatasetIOConfig(BaseModel):
|
||||
"""Configuration for NVIDIA DatasetIO implementation."""
|
||||
|
||||
api_key: str | None = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),
|
||||
description="The NVIDIA API key.",
|
||||
)
|
||||
|
||||
dataset_namespace: str | None = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_DATASET_NAMESPACE", "default"),
|
||||
description="The NVIDIA dataset namespace.",
|
||||
)
|
||||
|
||||
project_id: str | None = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_PROJECT_ID", "test-project"),
|
||||
description="The NVIDIA project ID.",
|
||||
)
|
||||
|
||||
datasets_url: str = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_DATASETS_URL", "http://nemo.test"),
|
||||
description="Base URL for the NeMo Dataset API",
|
||||
)
|
||||
|
||||
# warning for default values
|
||||
def __post_init__(self):
|
||||
default_values = []
|
||||
if os.getenv("NVIDIA_PROJECT_ID") is None:
|
||||
default_values.append("project_id='test-project'")
|
||||
if os.getenv("NVIDIA_DATASET_NAMESPACE") is None:
|
||||
default_values.append("dataset_namespace='default'")
|
||||
if os.getenv("NVIDIA_DATASETS_URL") is None:
|
||||
default_values.append("datasets_url='http://nemo.test'")
|
||||
|
||||
if default_values:
|
||||
warnings.warn(
|
||||
f"Using default values: {', '.join(default_values)}. \
|
||||
Please set the environment variables to avoid this default behavior.",
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": "${env.NVIDIA_API_KEY:}",
|
||||
"dataset_namespace": "${env.NVIDIA_DATASET_NAMESPACE:default}",
|
||||
"project_id": "${env.NVIDIA_PROJECT_ID:test-project}",
|
||||
"datasets_url": "${env.NVIDIA_DATASETS_URL:http://nemo.test}",
|
||||
}
|
||||
112
llama_stack/providers/remote/datasetio/nvidia/datasetio.py
Normal file
112
llama_stack/providers/remote/datasetio/nvidia/datasetio.py
Normal file
|
|
@ -0,0 +1,112 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
import aiohttp
|
||||
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.common.responses import PaginatedResponse
|
||||
from llama_stack.apis.common.type_system import ParamType
|
||||
from llama_stack.apis.datasets import Dataset
|
||||
|
||||
from .config import NvidiaDatasetIOConfig
|
||||
|
||||
|
||||
class NvidiaDatasetIOAdapter:
|
||||
"""Nvidia NeMo DatasetIO API."""
|
||||
|
||||
def __init__(self, config: NvidiaDatasetIOConfig):
|
||||
self.config = config
|
||||
self.headers = {}
|
||||
|
||||
async def _make_request(
|
||||
self,
|
||||
method: str,
|
||||
path: str,
|
||||
headers: dict[str, Any] | None = None,
|
||||
params: dict[str, Any] | None = None,
|
||||
json: dict[str, Any] | None = None,
|
||||
**kwargs,
|
||||
) -> dict[str, Any]:
|
||||
"""Helper method to make HTTP requests to the Customizer API."""
|
||||
url = f"{self.config.datasets_url}{path}"
|
||||
request_headers = self.headers.copy()
|
||||
|
||||
if headers:
|
||||
request_headers.update(headers)
|
||||
|
||||
async with aiohttp.ClientSession(headers=request_headers) as session:
|
||||
async with session.request(method, url, params=params, json=json, **kwargs) as response:
|
||||
if response.status != 200:
|
||||
error_data = await response.json()
|
||||
raise Exception(f"API request failed: {error_data}")
|
||||
return await response.json()
|
||||
|
||||
async def register_dataset(
|
||||
self,
|
||||
dataset_def: Dataset,
|
||||
) -> Dataset:
|
||||
"""Register a new dataset.
|
||||
|
||||
Args:
|
||||
dataset_def [Dataset]: The dataset definition.
|
||||
dataset_id [str]: The ID of the dataset.
|
||||
source [DataSource]: The source of the dataset.
|
||||
metadata [Dict[str, Any]]: The metadata of the dataset.
|
||||
format [str]: The format of the dataset.
|
||||
description [str]: The description of the dataset.
|
||||
Returns:
|
||||
Dataset
|
||||
"""
|
||||
## add warnings for unsupported params
|
||||
request_body = {
|
||||
"name": dataset_def.identifier,
|
||||
"namespace": self.config.dataset_namespace,
|
||||
"files_url": dataset_def.source.uri,
|
||||
"project": self.config.project_id,
|
||||
}
|
||||
if dataset_def.metadata:
|
||||
request_body["format"] = dataset_def.metadata.get("format")
|
||||
request_body["description"] = dataset_def.metadata.get("description")
|
||||
await self._make_request(
|
||||
"POST",
|
||||
"/v1/datasets",
|
||||
json=request_body,
|
||||
)
|
||||
return dataset_def
|
||||
|
||||
async def update_dataset(
|
||||
self,
|
||||
dataset_id: str,
|
||||
dataset_schema: dict[str, ParamType],
|
||||
url: URL,
|
||||
provider_dataset_id: str | None = None,
|
||||
provider_id: str | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> None:
|
||||
raise NotImplementedError("Not implemented")
|
||||
|
||||
async def unregister_dataset(
|
||||
self,
|
||||
dataset_id: str,
|
||||
) -> None:
|
||||
await self._make_request(
|
||||
"DELETE",
|
||||
f"/v1/datasets/{self.config.dataset_namespace}/{dataset_id}",
|
||||
headers={"Accept": "application/json", "Content-Type": "application/json"},
|
||||
)
|
||||
|
||||
async def iterrows(
|
||||
self,
|
||||
dataset_id: str,
|
||||
start_index: int | None = None,
|
||||
limit: int | None = None,
|
||||
) -> PaginatedResponse:
|
||||
raise NotImplementedError("Not implemented")
|
||||
|
||||
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None:
|
||||
raise NotImplementedError("Not implemented")
|
||||
5
llama_stack/providers/remote/eval/__init__.py
Normal file
5
llama_stack/providers/remote/eval/__init__.py
Normal file
|
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
134
llama_stack/providers/remote/eval/nvidia/README.md
Normal file
134
llama_stack/providers/remote/eval/nvidia/README.md
Normal file
|
|
@ -0,0 +1,134 @@
|
|||
# NVIDIA NeMo Evaluator Eval Provider
|
||||
|
||||
|
||||
## Overview
|
||||
|
||||
For the first integration, Benchmarks are mapped to Evaluation Configs on in the NeMo Evaluator. The full evaluation config object is provided as part of the meta-data. The `dataset_id` and `scoring_functions` are not used.
|
||||
|
||||
Below are a few examples of how to register a benchmark, which in turn will create an evaluation config in NeMo Evaluator and how to trigger an evaluation.
|
||||
|
||||
### Example for register an academic benchmark
|
||||
|
||||
```
|
||||
POST /eval/benchmarks
|
||||
```
|
||||
```json
|
||||
{
|
||||
"benchmark_id": "mmlu",
|
||||
"dataset_id": "",
|
||||
"scoring_functions": [],
|
||||
"metadata": {
|
||||
"type": "mmlu"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Example for register a custom evaluation
|
||||
|
||||
```
|
||||
POST /eval/benchmarks
|
||||
```
|
||||
```json
|
||||
{
|
||||
"benchmark_id": "my-custom-benchmark",
|
||||
"dataset_id": "",
|
||||
"scoring_functions": [],
|
||||
"metadata": {
|
||||
"type": "custom",
|
||||
"params": {
|
||||
"parallelism": 8
|
||||
},
|
||||
"tasks": {
|
||||
"qa": {
|
||||
"type": "completion",
|
||||
"params": {
|
||||
"template": {
|
||||
"prompt": "{{prompt}}",
|
||||
"max_tokens": 200
|
||||
}
|
||||
},
|
||||
"dataset": {
|
||||
"files_url": "hf://datasets/default/sample-basic-test/testing/testing.jsonl"
|
||||
},
|
||||
"metrics": {
|
||||
"bleu": {
|
||||
"type": "bleu",
|
||||
"params": {
|
||||
"references": [
|
||||
"{{ideal_response}}"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Example for triggering a benchmark/custom evaluation
|
||||
|
||||
```
|
||||
POST /eval/benchmarks/{benchmark_id}/jobs
|
||||
```
|
||||
```json
|
||||
{
|
||||
"benchmark_id": "my-custom-benchmark",
|
||||
"benchmark_config": {
|
||||
"eval_candidate": {
|
||||
"type": "model",
|
||||
"model": "meta-llama/Llama3.1-8B-Instruct",
|
||||
"sampling_params": {
|
||||
"max_tokens": 100,
|
||||
"temperature": 0.7
|
||||
}
|
||||
},
|
||||
"scoring_params": {}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Response example:
|
||||
```json
|
||||
{
|
||||
"job_id": "eval-1234",
|
||||
"status": "in_progress"
|
||||
}
|
||||
```
|
||||
|
||||
### Example for getting the status of a job
|
||||
```
|
||||
GET /eval/benchmarks/{benchmark_id}/jobs/{job_id}
|
||||
```
|
||||
|
||||
Response example:
|
||||
```json
|
||||
{
|
||||
"job_id": "eval-1234",
|
||||
"status": "in_progress"
|
||||
}
|
||||
```
|
||||
|
||||
### Example for cancelling a job
|
||||
```
|
||||
POST /eval/benchmarks/{benchmark_id}/jobs/{job_id}/cancel
|
||||
```
|
||||
|
||||
### Example for getting the results
|
||||
```
|
||||
GET /eval/benchmarks/{benchmark_id}/results
|
||||
```
|
||||
```json
|
||||
{
|
||||
"generations": [],
|
||||
"scores": {
|
||||
"{benchmark_id}": {
|
||||
"score_rows": [],
|
||||
"aggregated_results": {
|
||||
"tasks": {},
|
||||
"groups": {}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
31
llama_stack/providers/remote/eval/nvidia/__init__.py
Normal file
31
llama_stack/providers/remote/eval/nvidia/__init__.py
Normal file
|
|
@ -0,0 +1,31 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
from .config import NVIDIAEvalConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(
|
||||
config: NVIDIAEvalConfig,
|
||||
deps: dict[Api, Any],
|
||||
):
|
||||
from .eval import NVIDIAEvalImpl
|
||||
|
||||
impl = NVIDIAEvalImpl(
|
||||
config,
|
||||
deps[Api.datasetio],
|
||||
deps[Api.datasets],
|
||||
deps[Api.scoring],
|
||||
deps[Api.inference],
|
||||
deps[Api.agents],
|
||||
)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
||||
|
||||
__all__ = ["get_adapter_impl", "NVIDIAEvalImpl"]
|
||||
29
llama_stack/providers/remote/eval/nvidia/config.py
Normal file
29
llama_stack/providers/remote/eval/nvidia/config.py
Normal file
|
|
@ -0,0 +1,29 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import os
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class NVIDIAEvalConfig(BaseModel):
|
||||
"""
|
||||
Configuration for the NVIDIA NeMo Evaluator microservice endpoint.
|
||||
|
||||
Attributes:
|
||||
evaluator_url (str): A base url for accessing the NVIDIA evaluation endpoint, e.g. http://localhost:8000.
|
||||
"""
|
||||
|
||||
evaluator_url: str = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_EVALUATOR_URL", "http://0.0.0.0:7331"),
|
||||
description="The url for accessing the evaluator service",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"evaluator_url": "${env.NVIDIA_EVALUATOR_URL:http://localhost:7331}",
|
||||
}
|
||||
154
llama_stack/providers/remote/eval/nvidia/eval.py
Normal file
154
llama_stack/providers/remote/eval/nvidia/eval.py
Normal file
|
|
@ -0,0 +1,154 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any
|
||||
|
||||
import requests
|
||||
|
||||
from llama_stack.apis.agents import Agents
|
||||
from llama_stack.apis.benchmarks import Benchmark
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.scoring import Scoring, ScoringResult
|
||||
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
|
||||
from llama_stack.providers.remote.inference.nvidia.models import MODEL_ENTRIES
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
|
||||
from .....apis.common.job_types import Job, JobStatus
|
||||
from .....apis.eval.eval import BenchmarkConfig, Eval, EvaluateResponse
|
||||
from .config import NVIDIAEvalConfig
|
||||
|
||||
DEFAULT_NAMESPACE = "nvidia"
|
||||
|
||||
|
||||
class NVIDIAEvalImpl(
|
||||
Eval,
|
||||
BenchmarksProtocolPrivate,
|
||||
ModelRegistryHelper,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
config: NVIDIAEvalConfig,
|
||||
datasetio_api: DatasetIO,
|
||||
datasets_api: Datasets,
|
||||
scoring_api: Scoring,
|
||||
inference_api: Inference,
|
||||
agents_api: Agents,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
self.scoring_api = scoring_api
|
||||
self.inference_api = inference_api
|
||||
self.agents_api = agents_api
|
||||
|
||||
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def _evaluator_get(self, path):
|
||||
"""Helper for making GET requests to the evaluator service."""
|
||||
response = requests.get(url=f"{self.config.evaluator_url}{path}")
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
async def _evaluator_post(self, path, data):
|
||||
"""Helper for making POST requests to the evaluator service."""
|
||||
response = requests.post(url=f"{self.config.evaluator_url}{path}", json=data)
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
async def register_benchmark(self, task_def: Benchmark) -> None:
|
||||
"""Register a benchmark as an evaluation configuration."""
|
||||
await self._evaluator_post(
|
||||
"/v1/evaluation/configs",
|
||||
{
|
||||
"namespace": DEFAULT_NAMESPACE,
|
||||
"name": task_def.benchmark_id,
|
||||
# metadata is copied to request body as-is
|
||||
**task_def.metadata,
|
||||
},
|
||||
)
|
||||
|
||||
async def run_eval(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
benchmark_config: BenchmarkConfig,
|
||||
) -> Job:
|
||||
"""Run an evaluation job for a benchmark."""
|
||||
model = (
|
||||
benchmark_config.eval_candidate.model
|
||||
if benchmark_config.eval_candidate.type == "model"
|
||||
else benchmark_config.eval_candidate.config.model
|
||||
)
|
||||
nvidia_model = self.get_provider_model_id(model) or model
|
||||
|
||||
result = await self._evaluator_post(
|
||||
"/v1/evaluation/jobs",
|
||||
{
|
||||
"config": f"{DEFAULT_NAMESPACE}/{benchmark_id}",
|
||||
"target": {"type": "model", "model": nvidia_model},
|
||||
},
|
||||
)
|
||||
|
||||
return Job(job_id=result["id"], status=JobStatus.in_progress)
|
||||
|
||||
async def evaluate_rows(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
input_rows: list[dict[str, Any]],
|
||||
scoring_functions: list[str],
|
||||
benchmark_config: BenchmarkConfig,
|
||||
) -> EvaluateResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def job_status(self, benchmark_id: str, job_id: str) -> Job:
|
||||
"""Get the status of an evaluation job.
|
||||
|
||||
EvaluatorStatus: "created", "pending", "running", "cancelled", "cancelling", "failed", "completed".
|
||||
JobStatus: "scheduled", "in_progress", "completed", "cancelled", "failed"
|
||||
"""
|
||||
result = await self._evaluator_get(f"/v1/evaluation/jobs/{job_id}")
|
||||
result_status = result["status"]
|
||||
|
||||
job_status = JobStatus.failed
|
||||
if result_status in ["created", "pending"]:
|
||||
job_status = JobStatus.scheduled
|
||||
elif result_status in ["running"]:
|
||||
job_status = JobStatus.in_progress
|
||||
elif result_status in ["completed"]:
|
||||
job_status = JobStatus.completed
|
||||
elif result_status in ["cancelled"]:
|
||||
job_status = JobStatus.cancelled
|
||||
|
||||
return Job(job_id=job_id, status=job_status)
|
||||
|
||||
async def job_cancel(self, benchmark_id: str, job_id: str) -> None:
|
||||
"""Cancel the evaluation job."""
|
||||
await self._evaluator_post(f"/v1/evaluation/jobs/{job_id}/cancel", {})
|
||||
|
||||
async def job_result(self, benchmark_id: str, job_id: str) -> EvaluateResponse:
|
||||
"""Returns the results of the evaluation job."""
|
||||
|
||||
job = await self.job_status(benchmark_id, job_id)
|
||||
status = job.status
|
||||
if not status or status != JobStatus.completed:
|
||||
raise ValueError(f"Job {job_id} not completed. Status: {status.value}")
|
||||
|
||||
result = await self._evaluator_get(f"/v1/evaluation/jobs/{job_id}/results")
|
||||
|
||||
return EvaluateResponse(
|
||||
# TODO: these are stored in detailed results on NeMo Evaluator side; can be added
|
||||
generations=[],
|
||||
scores={
|
||||
benchmark_id: ScoringResult(
|
||||
score_rows=[],
|
||||
aggregated_results=result,
|
||||
)
|
||||
},
|
||||
)
|
||||
|
|
@ -4,15 +4,13 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import AnthropicConfig
|
||||
|
||||
|
||||
class AnthropicProviderDataValidator(BaseModel):
|
||||
anthropic_api_key: Optional[str] = None
|
||||
anthropic_api_key: str | None = None
|
||||
|
||||
|
||||
async def get_adapter_impl(config: AnthropicConfig, _deps):
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -12,7 +12,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
|
||||
class AnthropicProviderDataValidator(BaseModel):
|
||||
anthropic_api_key: Optional[str] = Field(
|
||||
anthropic_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Anthropic models",
|
||||
)
|
||||
|
|
@ -20,13 +20,13 @@ class AnthropicProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class AnthropicConfig(BaseModel):
|
||||
api_key: Optional[str] = Field(
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Anthropic models",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.ANTHROPIC_API_KEY}", **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.ANTHROPIC_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,18 +1,18 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from .config import BedrockConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: BedrockConfig, _deps):
|
||||
from .bedrock import BedrockInferenceAdapter
|
||||
|
||||
assert isinstance(config, BedrockConfig), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = BedrockInferenceAdapter(config)
|
||||
|
||||
await impl.initialize()
|
||||
|
||||
return impl
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from .config import BedrockConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: BedrockConfig, _deps):
|
||||
from .bedrock import BedrockInferenceAdapter
|
||||
|
||||
assert isinstance(config, BedrockConfig), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = BedrockInferenceAdapter(config)
|
||||
|
||||
await impl.initialize()
|
||||
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from typing import AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
|
||||
from botocore.client import BaseClient
|
||||
|
||||
|
|
@ -79,26 +79,26 @@ class BedrockInferenceAdapter(
|
|||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
|
@ -151,7 +151,7 @@ class BedrockInferenceAdapter(
|
|||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params_for_chat_completion(self, request: ChatCompletionRequest) -> Dict:
|
||||
async def _get_params_for_chat_completion(self, request: ChatCompletionRequest) -> dict:
|
||||
bedrock_model = request.model
|
||||
|
||||
sampling_params = request.sampling_params
|
||||
|
|
@ -176,10 +176,10 @@ class BedrockInferenceAdapter(
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[str] | List[InterleavedContentItem],
|
||||
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
||||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
embeddings = []
|
||||
|
|
|
|||
|
|
@ -1,11 +1,11 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.utils.bedrock.config import BedrockBaseConfig
|
||||
|
||||
|
||||
class BedrockConfig(BedrockBaseConfig):
|
||||
pass
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.utils.bedrock.config import BedrockBaseConfig
|
||||
|
||||
|
||||
class BedrockConfig(BedrockBaseConfig):
|
||||
pass
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncGenerator, List, Optional, Union
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from cerebras.cloud.sdk import AsyncCerebras
|
||||
|
||||
|
|
@ -79,10 +79,10 @@ class CerebrasInferenceAdapter(
|
|||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -120,15 +120,15 @@ class CerebrasInferenceAdapter(
|
|||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -166,7 +166,7 @@ class CerebrasInferenceAdapter(
|
|||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
||||
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
||||
if request.sampling_params and isinstance(request.sampling_params.strategy, TopKSamplingStrategy):
|
||||
raise ValueError("`top_k` not supported by Cerebras")
|
||||
|
||||
|
|
@ -188,9 +188,9 @@ class CerebrasInferenceAdapter(
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[str] | List[InterleavedContentItem],
|
||||
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
||||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
|
@ -20,13 +20,13 @@ class CerebrasImplConfig(BaseModel):
|
|||
default=os.environ.get("CEREBRAS_BASE_URL", DEFAULT_BASE_URL),
|
||||
description="Base URL for the Cerebras API",
|
||||
)
|
||||
api_key: Optional[SecretStr] = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
default=os.environ.get("CEREBRAS_API_KEY"),
|
||||
description="Cerebras API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"base_url": DEFAULT_BASE_URL,
|
||||
"api_key": "${env.CEREBRAS_API_KEY}",
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -12,7 +12,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
|
||||
class CerebrasProviderDataValidator(BaseModel):
|
||||
cerebras_api_key: Optional[str] = Field(
|
||||
cerebras_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Cerebras models",
|
||||
)
|
||||
|
|
@ -20,7 +20,7 @@ class CerebrasProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class CerebrasCompatConfig(BaseModel):
|
||||
api_key: Optional[str] = Field(
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The Cerebras API key",
|
||||
)
|
||||
|
|
@ -31,7 +31,7 @@ class CerebrasCompatConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.CEREBRAS_API_KEY}", **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.CEREBRAS_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"openai_compat_api_base": "https://api.cerebras.ai/v1",
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -28,7 +28,7 @@ class DatabricksImplConfig(BaseModel):
|
|||
url: str = "${env.DATABRICKS_URL}",
|
||||
api_token: str = "${env.DATABRICKS_API_TOKEN}",
|
||||
**kwargs: Any,
|
||||
) -> Dict[str, Any]:
|
||||
) -> dict[str, Any]:
|
||||
return {
|
||||
"url": url,
|
||||
"api_token": api_token,
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncGenerator, List, Optional
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
|
|
@ -78,25 +78,25 @@ class DatabricksInferenceAdapter(
|
|||
self,
|
||||
model: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -146,9 +146,9 @@ class DatabricksInferenceAdapter(
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[str] | List[InterleavedContentItem],
|
||||
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
||||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
|
@ -17,13 +17,13 @@ class FireworksImplConfig(BaseModel):
|
|||
default="https://api.fireworks.ai/inference/v1",
|
||||
description="The URL for the Fireworks server",
|
||||
)
|
||||
api_key: Optional[SecretStr] = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="The Fireworks.ai API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.FIREWORKS_API_KEY}", **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.FIREWORKS_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.fireworks.ai/inference/v1",
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -4,7 +4,8 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from fireworks.client import Fireworks
|
||||
from openai import AsyncOpenAI
|
||||
|
|
@ -105,10 +106,10 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -146,9 +147,9 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: Optional[SamplingParams],
|
||||
sampling_params: SamplingParams | None,
|
||||
fmt: ResponseFormat,
|
||||
logprobs: Optional[LogProbConfig],
|
||||
logprobs: LogProbConfig | None,
|
||||
) -> dict:
|
||||
options = get_sampling_options(sampling_params)
|
||||
options.setdefault("max_tokens", 512)
|
||||
|
|
@ -177,15 +178,15 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -229,7 +230,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
||||
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
|
||||
|
|
@ -263,10 +264,10 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[str] | List[InterleavedContentItem],
|
||||
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
||||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
|
|
@ -288,24 +289,24 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: Union[str, List[str], List[int], List[List[int]]],
|
||||
best_of: Optional[int] = None,
|
||||
echo: Optional[bool] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
guided_choice: Optional[List[str]] = None,
|
||||
prompt_logprobs: Optional[int] = None,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
) -> OpenAICompletion:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
||||
|
|
@ -338,30 +339,63 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[OpenAIMessageParam],
|
||||
frequency_penalty: Optional[float] = None,
|
||||
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
functions: Optional[List[Dict[str, Any]]] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
parallel_tool_calls: Optional[bool] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
response_format: Optional[OpenAIResponseFormatParam] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
tools: Optional[List[Dict[str, Any]]] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
||||
# Divert Llama Models through Llama Stack inference APIs because
|
||||
# Fireworks chat completions OpenAI-compatible API does not support
|
||||
# tool calls properly.
|
||||
llama_model = self.get_llama_model(model_obj.provider_resource_id)
|
||||
if llama_model:
|
||||
return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion(
|
||||
self,
|
||||
model=model,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
|
|
@ -387,11 +421,4 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
user=user,
|
||||
)
|
||||
|
||||
# Divert Llama Models through Llama Stack inference APIs because
|
||||
# Fireworks chat completions OpenAI-compatible API does not support
|
||||
# tool calls properly.
|
||||
llama_model = self.get_llama_model(model_obj.provider_resource_id)
|
||||
if llama_model:
|
||||
return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion(self, model=model, **params)
|
||||
|
||||
return await self._get_openai_client().chat.completions.create(model=model_obj.provider_resource_id, **params)
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -12,7 +12,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
|
||||
class FireworksProviderDataValidator(BaseModel):
|
||||
fireworks_api_key: Optional[str] = Field(
|
||||
fireworks_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Fireworks models",
|
||||
)
|
||||
|
|
@ -20,7 +20,7 @@ class FireworksProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class FireworksCompatConfig(BaseModel):
|
||||
api_key: Optional[str] = Field(
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The Fireworks API key",
|
||||
)
|
||||
|
|
@ -31,7 +31,7 @@ class FireworksCompatConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.FIREWORKS_API_KEY}", **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.FIREWORKS_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"openai_compat_api_base": "https://api.fireworks.ai/inference/v1",
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -4,15 +4,13 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import GeminiConfig
|
||||
|
||||
|
||||
class GeminiProviderDataValidator(BaseModel):
|
||||
gemini_api_key: Optional[str] = None
|
||||
gemini_api_key: str | None = None
|
||||
|
||||
|
||||
async def get_adapter_impl(config: GeminiConfig, _deps):
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -12,7 +12,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
|
||||
class GeminiProviderDataValidator(BaseModel):
|
||||
gemini_api_key: Optional[str] = Field(
|
||||
gemini_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Gemini models",
|
||||
)
|
||||
|
|
@ -20,13 +20,13 @@ class GeminiProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class GeminiConfig(BaseModel):
|
||||
api_key: Optional[str] = Field(
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Gemini models",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.GEMINI_API_KEY}", **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.GEMINI_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -12,7 +12,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
|
||||
class GroqProviderDataValidator(BaseModel):
|
||||
groq_api_key: Optional[str] = Field(
|
||||
groq_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Groq models",
|
||||
)
|
||||
|
|
@ -20,7 +20,7 @@ class GroqProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class GroqConfig(BaseModel):
|
||||
api_key: Optional[str] = Field(
|
||||
api_key: str | None = Field(
|
||||
# The Groq client library loads the GROQ_API_KEY environment variable by default
|
||||
default=None,
|
||||
description="The Groq API key",
|
||||
|
|
@ -32,7 +32,7 @@ class GroqConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.GROQ_API_KEY}", **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.GROQ_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.groq.com",
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -4,7 +4,8 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, AsyncIterator, Dict, List, Optional, Union
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
|
|
@ -59,29 +60,29 @@ class GroqInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[OpenAIMessageParam],
|
||||
frequency_penalty: Optional[float] = None,
|
||||
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
functions: Optional[List[Dict[str, Any]]] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
parallel_tool_calls: Optional[bool] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
response_format: Optional[OpenAIResponseFormatParam] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
tools: Optional[List[Dict[str, Any]]] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
||||
# Groq does not support json_schema response format, so we need to convert it to json_object
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -12,7 +12,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
|
||||
class GroqProviderDataValidator(BaseModel):
|
||||
groq_api_key: Optional[str] = Field(
|
||||
groq_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Groq models",
|
||||
)
|
||||
|
|
@ -20,7 +20,7 @@ class GroqProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class GroqCompatConfig(BaseModel):
|
||||
api_key: Optional[str] = Field(
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The Groq API key",
|
||||
)
|
||||
|
|
@ -31,7 +31,7 @@ class GroqCompatConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.GROQ_API_KEY}", **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.GROQ_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"openai_compat_api_base": "https://api.groq.com/openai/v1",
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -0,0 +1,17 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import Inference
|
||||
|
||||
from .config import LlamaCompatConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: LlamaCompatConfig, _deps) -> Inference:
|
||||
# import dynamically so the import is used only when it is needed
|
||||
from .llama import LlamaCompatInferenceAdapter
|
||||
|
||||
adapter = LlamaCompatInferenceAdapter(config)
|
||||
return adapter
|
||||
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class LlamaProviderDataValidator(BaseModel):
|
||||
llama_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for api.llama models",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class LlamaCompatConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The Llama API key",
|
||||
)
|
||||
|
||||
openai_compat_api_base: str = Field(
|
||||
default="https://api.llama.com/compat/v1/",
|
||||
description="The URL for the Llama API server",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.LLAMA_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"openai_compat_api_base": "https://api.llama.com/compat/v1/",
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
|
@ -0,0 +1,34 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.remote.inference.llama_openai_compat.config import (
|
||||
LlamaCompatConfig,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import (
|
||||
LiteLLMOpenAIMixin,
|
||||
)
|
||||
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
|
||||
class LlamaCompatInferenceAdapter(LiteLLMOpenAIMixin):
|
||||
_config: LlamaCompatConfig
|
||||
|
||||
def __init__(self, config: LlamaCompatConfig):
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
model_entries=MODEL_ENTRIES,
|
||||
api_key_from_config=config.api_key,
|
||||
provider_data_api_key_field="llama_api_key",
|
||||
openai_compat_api_base=config.openai_compat_api_base,
|
||||
)
|
||||
self.config = config
|
||||
|
||||
async def initialize(self):
|
||||
await super().initialize()
|
||||
|
||||
async def shutdown(self):
|
||||
await super().shutdown()
|
||||
|
|
@ -0,0 +1,25 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.models.llama.sku_types import CoreModelId
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_hf_repo_model_entry,
|
||||
)
|
||||
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"Llama-3.3-70B-Instruct",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"Llama-4-Scout-17B-16E-Instruct-FP8",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"Llama-4-Maverick-17B-128E-Instruct-FP8",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
),
|
||||
]
|
||||
85
llama_stack/providers/remote/inference/nvidia/NVIDIA.md
Normal file
85
llama_stack/providers/remote/inference/nvidia/NVIDIA.md
Normal file
|
|
@ -0,0 +1,85 @@
|
|||
# NVIDIA Inference Provider for LlamaStack
|
||||
|
||||
This provider enables running inference using NVIDIA NIM.
|
||||
|
||||
## Features
|
||||
- Endpoints for completions, chat completions, and embeddings for registered models
|
||||
|
||||
## Getting Started
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- LlamaStack with NVIDIA configuration
|
||||
- Access to NVIDIA NIM deployment
|
||||
- NIM for model to use for inference is deployed
|
||||
|
||||
### Setup
|
||||
|
||||
Build the NVIDIA environment:
|
||||
|
||||
```bash
|
||||
llama stack build --template nvidia --image-type conda
|
||||
```
|
||||
|
||||
### Basic Usage using the LlamaStack Python Client
|
||||
|
||||
#### Initialize the client
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
os.environ["NVIDIA_API_KEY"] = (
|
||||
"" # Required if using hosted NIM endpoint. If self-hosted, not required.
|
||||
)
|
||||
os.environ["NVIDIA_BASE_URL"] = "http://nim.test" # NIM URL
|
||||
|
||||
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
||||
|
||||
client = LlamaStackAsLibraryClient("nvidia")
|
||||
client.initialize()
|
||||
```
|
||||
|
||||
### Create Completion
|
||||
|
||||
```python
|
||||
response = client.completion(
|
||||
model_id="meta-llama/Llama-3.1-8b-Instruct",
|
||||
content="Complete the sentence using one word: Roses are red, violets are :",
|
||||
stream=False,
|
||||
sampling_params={
|
||||
"max_tokens": 50,
|
||||
},
|
||||
)
|
||||
print(f"Response: {response.content}")
|
||||
```
|
||||
|
||||
### Create Chat Completion
|
||||
|
||||
```python
|
||||
response = client.chat_completion(
|
||||
model_id="meta-llama/Llama-3.1-8b-Instruct",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You must respond to each message with only one word",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Complete the sentence using one word: Roses are red, violets are:",
|
||||
},
|
||||
],
|
||||
stream=False,
|
||||
sampling_params={
|
||||
"max_tokens": 50,
|
||||
},
|
||||
)
|
||||
print(f"Response: {response.completion_message.content}")
|
||||
```
|
||||
|
||||
### Create Embeddings
|
||||
```python
|
||||
response = client.embeddings(
|
||||
model_id="meta-llama/Llama-3.1-8b-Instruct", contents=["foo", "bar", "baz"]
|
||||
)
|
||||
print(f"Embeddings: {response.embeddings}")
|
||||
```
|
||||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
|
@ -39,7 +39,7 @@ class NVIDIAConfig(BaseModel):
|
|||
default_factory=lambda: os.getenv("NVIDIA_BASE_URL", "https://integrate.api.nvidia.com"),
|
||||
description="A base url for accessing the NVIDIA NIM",
|
||||
)
|
||||
api_key: Optional[SecretStr] = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),
|
||||
description="The NVIDIA API key, only needed of using the hosted service",
|
||||
)
|
||||
|
|
@ -47,10 +47,15 @@ class NVIDIAConfig(BaseModel):
|
|||
default=60,
|
||||
description="Timeout for the HTTP requests",
|
||||
)
|
||||
append_api_version: bool = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_APPEND_API_VERSION", "True").lower() != "false",
|
||||
description="When set to false, the API version will not be appended to the base_url. By default, it is true.",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "${env.NVIDIA_BASE_URL:https://integrate.api.nvidia.com}",
|
||||
"api_key": "${env.NVIDIA_API_KEY:}",
|
||||
"append_api_version": "${env.NVIDIA_APPEND_API_VERSION:True}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -48,6 +48,10 @@ MODEL_ENTRIES = [
|
|||
"meta/llama-3.2-90b-vision-instruct",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta/llama-3.3-70b-instruct",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
# NeMo Retriever Text Embedding models -
|
||||
#
|
||||
# https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html
|
||||
|
|
|
|||
|
|
@ -6,8 +6,9 @@
|
|||
|
||||
import logging
|
||||
import warnings
|
||||
from collections.abc import AsyncIterator
|
||||
from functools import lru_cache
|
||||
from typing import Any, AsyncIterator, Dict, List, Optional, Union
|
||||
from typing import Any
|
||||
|
||||
from openai import APIConnectionError, AsyncOpenAI, BadRequestError
|
||||
|
||||
|
|
@ -33,7 +34,6 @@ from llama_stack.apis.inference import (
|
|||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIChatCompletion,
|
||||
|
|
@ -42,7 +42,11 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
from llama_stack.models.llama.datatypes import ToolPromptFormat
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolPromptFormat
|
||||
from llama_stack.providers.utils.inference import (
|
||||
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
|
|
@ -120,21 +124,29 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
"meta/llama-3.2-90b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct",
|
||||
}
|
||||
|
||||
base_url = f"{self._config.url}/v1"
|
||||
base_url = f"{self._config.url}/v1" if self._config.append_api_version else self._config.url
|
||||
|
||||
if _is_nvidia_hosted(self._config) and provider_model_id in special_model_urls:
|
||||
base_url = special_model_urls[provider_model_id]
|
||||
|
||||
return _get_client_for_base_url(base_url)
|
||||
|
||||
async def _get_provider_model_id(self, model_id: str) -> str:
|
||||
if not self.model_store:
|
||||
raise RuntimeError("Model store is not set")
|
||||
model = await self.model_store.get_model(model_id)
|
||||
if model is None:
|
||||
raise ValueError(f"Model {model_id} is unknown")
|
||||
return model.provider_model_id
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> CompletionResponse | AsyncIterator[CompletionResponseStreamChunk]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
if content_has_media(content):
|
||||
|
|
@ -144,7 +156,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
# removing this health check as NeMo customizer endpoint health check is returning 404
|
||||
# await check_health(self._config) # this raises errors
|
||||
|
||||
provider_model_id = self.get_provider_model_id(model_id)
|
||||
provider_model_id = await self._get_provider_model_id(model_id)
|
||||
request = convert_completion_request(
|
||||
request=CompletionRequest(
|
||||
model=provider_model_id,
|
||||
|
|
@ -171,24 +183,24 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[str] | List[InterleavedContentItem],
|
||||
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
||||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
if any(content_has_media(content) for content in contents):
|
||||
raise NotImplementedError("Media is not supported")
|
||||
|
||||
#
|
||||
# Llama Stack: contents = List[str] | List[InterleavedContentItem]
|
||||
# Llama Stack: contents = list[str] | list[InterleavedContentItem]
|
||||
# ->
|
||||
# OpenAI: input = str | List[str]
|
||||
# OpenAI: input = str | list[str]
|
||||
#
|
||||
# we can ignore str and always pass List[str] to OpenAI
|
||||
# we can ignore str and always pass list[str] to OpenAI
|
||||
#
|
||||
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
|
||||
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
|
||||
model = self.get_provider_model_id(model_id)
|
||||
provider_model_id = await self._get_provider_model_id(model_id)
|
||||
|
||||
extra_body = {}
|
||||
|
||||
|
|
@ -211,8 +223,8 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
extra_body["input_type"] = task_type_options[task_type]
|
||||
|
||||
try:
|
||||
response = await self._get_client(model).embeddings.create(
|
||||
model=model,
|
||||
response = await self._get_client(provider_model_id).embeddings.create(
|
||||
model=provider_model_id,
|
||||
input=input,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
|
@ -220,25 +232,25 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
raise ValueError(f"Failed to get embeddings: {e}") from e
|
||||
|
||||
#
|
||||
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=List[float], ...)], ...)
|
||||
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=list[float], ...)], ...)
|
||||
# ->
|
||||
# Llama Stack: EmbeddingsResponse(embeddings=List[List[float]])
|
||||
# Llama Stack: EmbeddingsResponse(embeddings=list[list[float]])
|
||||
#
|
||||
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
if tool_prompt_format:
|
||||
|
|
@ -246,10 +258,10 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
|
||||
# await check_health(self._config) # this raises errors
|
||||
|
||||
provider_model_id = self.get_provider_model_id(model_id)
|
||||
provider_model_id = await self._get_provider_model_id(model_id)
|
||||
request = await convert_chat_completion_request(
|
||||
request=ChatCompletionRequest(
|
||||
model=self.get_provider_model_id(model_id),
|
||||
model=provider_model_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
|
|
@ -275,26 +287,26 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: Union[str, List[str], List[int], List[List[int]]],
|
||||
best_of: Optional[int] = None,
|
||||
echo: Optional[bool] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
guided_choice: Optional[List[str]] = None,
|
||||
prompt_logprobs: Optional[int] = None,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
) -> OpenAICompletion:
|
||||
provider_model_id = self.get_provider_model_id(model)
|
||||
provider_model_id = await self._get_provider_model_id(model)
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
model=provider_model_id,
|
||||
|
|
@ -324,30 +336,30 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[OpenAIMessageParam],
|
||||
frequency_penalty: Optional[float] = None,
|
||||
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
functions: Optional[List[Dict[str, Any]]] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
parallel_tool_calls: Optional[bool] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
response_format: Optional[OpenAIResponseFormatParam] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
tools: Optional[List[Dict[str, Any]]] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
provider_model_id = self.get_provider_model_id(model)
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
provider_model_id = await self._get_provider_model_id(model)
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
model=provider_model_id,
|
||||
|
|
@ -379,3 +391,44 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
return await self._get_client(provider_model_id).chat.completions.create(**params)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
"""
|
||||
Allow non-llama model registration.
|
||||
|
||||
Non-llama model registration: API Catalogue models, post-training models, etc.
|
||||
client = LlamaStackAsLibraryClient("nvidia")
|
||||
client.models.register(
|
||||
model_id="mistralai/mixtral-8x7b-instruct-v0.1",
|
||||
model_type=ModelType.llm,
|
||||
provider_id="nvidia",
|
||||
provider_model_id="mistralai/mixtral-8x7b-instruct-v0.1"
|
||||
)
|
||||
|
||||
NOTE: Only supports models endpoints compatible with AsyncOpenAI base_url format.
|
||||
"""
|
||||
if model.model_type == ModelType.embedding:
|
||||
# embedding models are always registered by their provider model id and does not need to be mapped to a llama model
|
||||
provider_resource_id = model.provider_resource_id
|
||||
else:
|
||||
provider_resource_id = self.get_provider_model_id(model.provider_resource_id)
|
||||
|
||||
if provider_resource_id:
|
||||
model.provider_resource_id = provider_resource_id
|
||||
else:
|
||||
llama_model = model.metadata.get("llama_model")
|
||||
existing_llama_model = self.get_llama_model(model.provider_resource_id)
|
||||
if existing_llama_model:
|
||||
if existing_llama_model != llama_model:
|
||||
raise ValueError(
|
||||
f"Provider model id '{model.provider_resource_id}' is already registered to a different llama model: '{existing_llama_model}'"
|
||||
)
|
||||
else:
|
||||
# not llama model
|
||||
if llama_model in ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR:
|
||||
self.provider_id_to_llama_model_map[model.provider_resource_id] = (
|
||||
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR[llama_model]
|
||||
)
|
||||
else:
|
||||
self.alias_to_provider_id_map[model.provider_model_id] = model.provider_model_id
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -5,7 +5,8 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import warnings
|
||||
from typing import Any, AsyncGenerator, Dict, List, Optional
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Any
|
||||
|
||||
from openai import AsyncStream
|
||||
from openai.types.chat.chat_completion import (
|
||||
|
|
@ -64,7 +65,7 @@ async def convert_chat_completion_request(
|
|||
)
|
||||
|
||||
nvext = {}
|
||||
payload: Dict[str, Any] = dict(
|
||||
payload: dict[str, Any] = dict(
|
||||
model=request.model,
|
||||
messages=[await convert_message_to_openai_dict_new(message) for message in request.messages],
|
||||
stream=request.stream,
|
||||
|
|
@ -137,7 +138,7 @@ def convert_completion_request(
|
|||
# logprobs.top_k -> logprobs
|
||||
|
||||
nvext = {}
|
||||
payload: Dict[str, Any] = dict(
|
||||
payload: dict[str, Any] = dict(
|
||||
model=request.model,
|
||||
prompt=request.content,
|
||||
stream=request.stream,
|
||||
|
|
@ -176,8 +177,8 @@ def convert_completion_request(
|
|||
|
||||
|
||||
def _convert_openai_completion_logprobs(
|
||||
logprobs: Optional[OpenAICompletionLogprobs],
|
||||
) -> Optional[List[TokenLogProbs]]:
|
||||
logprobs: OpenAICompletionLogprobs | None,
|
||||
) -> list[TokenLogProbs] | None:
|
||||
"""
|
||||
Convert an OpenAI CompletionLogprobs into a list of TokenLogProbs.
|
||||
"""
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
from typing import Tuple
|
||||
|
||||
import httpx
|
||||
|
||||
|
|
@ -18,7 +17,7 @@ def _is_nvidia_hosted(config: NVIDIAConfig) -> bool:
|
|||
return "integrate.api.nvidia.com" in config.url
|
||||
|
||||
|
||||
async def _get_health(url: str) -> Tuple[bool, bool]:
|
||||
async def _get_health(url: str) -> tuple[bool, bool]:
|
||||
"""
|
||||
Query {url}/v1/health/{live,ready} to check if the server is running and ready
|
||||
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
|
@ -15,5 +15,5 @@ class OllamaImplConfig(BaseModel):
|
|||
url: str = DEFAULT_OLLAMA_URL
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, url: str = "${env.OLLAMA_URL:http://localhost:11434}", **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, url: str = "${env.OLLAMA_URL:http://localhost:11434}", **kwargs) -> dict[str, Any]:
|
||||
return {"url": url}
|
||||
|
|
|
|||
|
|
@ -5,10 +5,11 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
from ollama import AsyncClient
|
||||
from ollama import AsyncClient # type: ignore[attr-defined]
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
|
|
@ -130,10 +131,10 @@ class OllamaInferenceAdapter(
|
|||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -188,15 +189,15 @@ class OllamaInferenceAdapter(
|
|||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -216,7 +217,7 @@ class OllamaInferenceAdapter(
|
|||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
||||
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
||||
sampling_options = get_sampling_options(request.sampling_params)
|
||||
# This is needed since the Ollama API expects num_predict to be set
|
||||
# for early truncation instead of max_tokens.
|
||||
|
|
@ -314,10 +315,10 @@ class OllamaInferenceAdapter(
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[str] | List[InterleavedContentItem],
|
||||
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
||||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self._get_model(model_id)
|
||||
|
||||
|
|
@ -333,7 +334,10 @@ class OllamaInferenceAdapter(
|
|||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
model = await self.register_helper.register_model(model)
|
||||
try:
|
||||
model = await self.register_helper.register_model(model)
|
||||
except ValueError:
|
||||
pass # Ignore statically unknown model, will check live listing
|
||||
if model.model_type == ModelType.embedding:
|
||||
logger.info(f"Pulling embedding model `{model.provider_resource_id}` if necessary...")
|
||||
await self.client.pull(model.provider_resource_id)
|
||||
|
|
@ -342,9 +346,12 @@ class OllamaInferenceAdapter(
|
|||
# - models not currently running are run by the ollama server as needed
|
||||
response = await self.client.list()
|
||||
available_models = [m["model"] for m in response["models"]]
|
||||
if model.provider_resource_id not in available_models:
|
||||
provider_resource_id = self.register_helper.get_provider_model_id(model.provider_resource_id)
|
||||
if provider_resource_id is None:
|
||||
provider_resource_id = model.provider_resource_id
|
||||
if provider_resource_id not in available_models:
|
||||
available_models_latest = [m["model"].split(":latest")[0] for m in response["models"]]
|
||||
if model.provider_resource_id in available_models_latest:
|
||||
if provider_resource_id in available_models_latest:
|
||||
logger.warning(
|
||||
f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'"
|
||||
)
|
||||
|
|
@ -352,30 +359,31 @@ class OllamaInferenceAdapter(
|
|||
raise ValueError(
|
||||
f"Model '{model.provider_resource_id}' is not available in Ollama. Available models: {', '.join(available_models)}"
|
||||
)
|
||||
model.provider_resource_id = provider_resource_id
|
||||
|
||||
return model
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: Union[str, List[str], List[int], List[List[int]]],
|
||||
best_of: Optional[int] = None,
|
||||
echo: Optional[bool] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
guided_choice: Optional[List[str]] = None,
|
||||
prompt_logprobs: Optional[int] = None,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
) -> OpenAICompletion:
|
||||
if not isinstance(prompt, str):
|
||||
raise ValueError("Ollama does not support non-string prompts for completion")
|
||||
|
|
@ -409,30 +417,36 @@ class OllamaInferenceAdapter(
|
|||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[OpenAIMessageParam],
|
||||
frequency_penalty: Optional[float] = None,
|
||||
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
functions: Optional[List[Dict[str, Any]]] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
parallel_tool_calls: Optional[bool] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
response_format: Optional[OpenAIResponseFormatParam] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
tools: Optional[List[Dict[str, Any]]] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
model_obj = await self._get_model(model)
|
||||
|
||||
# ollama still makes tool calls even when tool_choice is "none"
|
||||
# so we need to remove the tools in that case
|
||||
if tool_choice == "none" and tools is not None:
|
||||
tools = None
|
||||
|
||||
params = {
|
||||
k: v
|
||||
for k, v in {
|
||||
|
|
@ -467,27 +481,27 @@ class OllamaInferenceAdapter(
|
|||
async def batch_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content_batch: List[InterleavedContent],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
content_batch: list[InterleavedContent],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch completion is not supported for Ollama")
|
||||
|
||||
async def batch_chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages_batch: List[List[Message]],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
messages_batch: list[list[Message]],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch chat completion is not supported for Ollama")
|
||||
|
||||
|
||||
async def convert_message_to_openai_dict_for_ollama(message: Message) -> List[dict]:
|
||||
async def convert_message_to_openai_dict_for_ollama(message: Message) -> list[dict]:
|
||||
async def _convert_content(content) -> dict:
|
||||
if isinstance(content, ImageContentItem):
|
||||
return {
|
||||
|
|
|
|||
|
|
@ -4,15 +4,13 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import OpenAIConfig
|
||||
|
||||
|
||||
class OpenAIProviderDataValidator(BaseModel):
|
||||
openai_api_key: Optional[str] = None
|
||||
openai_api_key: str | None = None
|
||||
|
||||
|
||||
async def get_adapter_impl(config: OpenAIConfig, _deps):
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -12,7 +12,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
|
||||
class OpenAIProviderDataValidator(BaseModel):
|
||||
openai_api_key: Optional[str] = Field(
|
||||
openai_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for OpenAI models",
|
||||
)
|
||||
|
|
@ -20,13 +20,13 @@ class OpenAIProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class OpenAIConfig(BaseModel):
|
||||
api_key: Optional[str] = Field(
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for OpenAI models",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.OPENAI_API_KEY}", **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.OPENAI_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
|
@ -18,13 +18,13 @@ class PassthroughImplConfig(BaseModel):
|
|||
description="The URL for the passthrough endpoint",
|
||||
)
|
||||
|
||||
api_key: Optional[SecretStr] = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="API Key for the passthrouth endpoint",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "${env.PASSTHROUGH_URL}",
|
||||
"api_key": "${env.PASSTHROUGH_API_KEY}",
|
||||
|
|
|
|||
|
|
@ -4,7 +4,8 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from llama_stack_client import AsyncLlamaStackClient
|
||||
|
||||
|
|
@ -93,10 +94,10 @@ class PassthroughInferenceAdapter(Inference):
|
|||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -123,15 +124,15 @@ class PassthroughInferenceAdapter(Inference):
|
|||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -165,7 +166,7 @@ class PassthroughInferenceAdapter(Inference):
|
|||
else:
|
||||
return await self._nonstream_chat_completion(json_params)
|
||||
|
||||
async def _nonstream_chat_completion(self, json_params: Dict[str, Any]) -> ChatCompletionResponse:
|
||||
async def _nonstream_chat_completion(self, json_params: dict[str, Any]) -> ChatCompletionResponse:
|
||||
client = self._get_client()
|
||||
response = await client.inference.chat_completion(**json_params)
|
||||
|
||||
|
|
@ -178,7 +179,7 @@ class PassthroughInferenceAdapter(Inference):
|
|||
logprobs=response.logprobs,
|
||||
)
|
||||
|
||||
async def _stream_chat_completion(self, json_params: Dict[str, Any]) -> AsyncGenerator:
|
||||
async def _stream_chat_completion(self, json_params: dict[str, Any]) -> AsyncGenerator:
|
||||
client = self._get_client()
|
||||
stream_response = await client.inference.chat_completion(**json_params)
|
||||
|
||||
|
|
@ -193,10 +194,10 @@ class PassthroughInferenceAdapter(Inference):
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedContent],
|
||||
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
||||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
contents: list[InterleavedContent],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
client = self._get_client()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
|
@ -212,24 +213,24 @@ class PassthroughInferenceAdapter(Inference):
|
|||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: Union[str, List[str], List[int], List[List[int]]],
|
||||
best_of: Optional[int] = None,
|
||||
echo: Optional[bool] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
guided_choice: Optional[List[str]] = None,
|
||||
prompt_logprobs: Optional[int] = None,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
) -> OpenAICompletion:
|
||||
client = self._get_client()
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
|
@ -261,29 +262,29 @@ class PassthroughInferenceAdapter(Inference):
|
|||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[OpenAIMessageParam],
|
||||
frequency_penalty: Optional[float] = None,
|
||||
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
functions: Optional[List[Dict[str, Any]]] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
parallel_tool_calls: Optional[bool] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
response_format: Optional[OpenAIResponseFormatParam] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
tools: Optional[List[Dict[str, Any]]] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
client = self._get_client()
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
||||
|
|
@ -315,7 +316,7 @@ class PassthroughInferenceAdapter(Inference):
|
|||
|
||||
return await client.inference.openai_chat_completion(**params)
|
||||
|
||||
def cast_value_to_json_dict(self, request_params: Dict[str, Any]) -> Dict[str, Any]:
|
||||
def cast_value_to_json_dict(self, request_params: dict[str, Any]) -> dict[str, Any]:
|
||||
json_params = {}
|
||||
for key, value in request_params.items():
|
||||
json_input = convert_pydantic_to_json_value(value)
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -13,17 +13,17 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
@json_schema_type
|
||||
class RunpodImplConfig(BaseModel):
|
||||
url: Optional[str] = Field(
|
||||
url: str | None = Field(
|
||||
default=None,
|
||||
description="The URL for the Runpod model serving endpoint",
|
||||
)
|
||||
api_token: Optional[str] = Field(
|
||||
api_token: str | None = Field(
|
||||
default=None,
|
||||
description="The API token",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs: Any) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "${env.RUNPOD_URL:}",
|
||||
"api_token": "${env.RUNPOD_API_TOKEN:}",
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import AsyncGenerator
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
|
@ -12,7 +12,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
|
||||
class SambaNovaProviderDataValidator(BaseModel):
|
||||
sambanova_api_key: Optional[str] = Field(
|
||||
sambanova_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="Sambanova Cloud API key",
|
||||
)
|
||||
|
|
@ -24,13 +24,13 @@ class SambaNovaImplConfig(BaseModel):
|
|||
default="https://api.sambanova.ai/v1",
|
||||
description="The URL for the SambaNova AI server",
|
||||
)
|
||||
api_key: Optional[SecretStr] = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="The SambaNova cloud API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY}", **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.sambanova.ai/v1",
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from typing import Dict, Iterable, List, Union
|
||||
from collections.abc import Iterable
|
||||
|
||||
from openai.types.chat import (
|
||||
ChatCompletionAssistantMessageParam as OpenAIChatCompletionAssistantMessage,
|
||||
|
|
@ -72,7 +72,7 @@ logger = get_logger(name=__name__, category="inference")
|
|||
|
||||
|
||||
async def convert_message_to_openai_dict_with_b64_images(
|
||||
message: Message | Dict,
|
||||
message: Message | dict,
|
||||
) -> OpenAIChatCompletionMessage:
|
||||
"""
|
||||
Convert a Message to an OpenAI API-compatible dictionary.
|
||||
|
|
@ -101,10 +101,10 @@ async def convert_message_to_openai_dict_with_b64_images(
|
|||
# List[...] -> List[...]
|
||||
async def _convert_message_content(
|
||||
content: InterleavedContent,
|
||||
) -> Union[str, Iterable[OpenAIChatCompletionContentPartParam]]:
|
||||
) -> str | Iterable[OpenAIChatCompletionContentPartParam]:
|
||||
async def impl(
|
||||
content_: InterleavedContent,
|
||||
) -> Union[str, OpenAIChatCompletionContentPartParam, List[OpenAIChatCompletionContentPartParam]]:
|
||||
) -> str | OpenAIChatCompletionContentPartParam | list[OpenAIChatCompletionContentPartParam]:
|
||||
# Llama Stack and OpenAI spec match for str and text input
|
||||
if isinstance(content_, str):
|
||||
return content_
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -12,7 +12,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
|
||||
class SambaNovaProviderDataValidator(BaseModel):
|
||||
sambanova_api_key: Optional[str] = Field(
|
||||
sambanova_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for SambaNova models",
|
||||
)
|
||||
|
|
@ -20,7 +20,7 @@ class SambaNovaProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class SambaNovaCompatConfig(BaseModel):
|
||||
api_key: Optional[str] = Field(
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The SambaNova API key",
|
||||
)
|
||||
|
|
@ -31,7 +31,7 @@ class SambaNovaCompatConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY}", **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"openai_compat_api_base": "https://api.sambanova.ai/v1",
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -4,13 +4,11 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Union
|
||||
|
||||
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(
|
||||
config: Union[InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig],
|
||||
config: InferenceAPIImplConfig | InferenceEndpointImplConfig | TGIImplConfig,
|
||||
_deps,
|
||||
):
|
||||
from .tgi import InferenceAPIAdapter, InferenceEndpointAdapter, TGIAdapter
|
||||
|
|
|
|||
|
|
@ -4,7 +4,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
|
@ -29,7 +28,7 @@ class InferenceEndpointImplConfig(BaseModel):
|
|||
endpoint_name: str = Field(
|
||||
description="The name of the Hugging Face Inference Endpoint in the format of '{namespace}/{endpoint_name}' (e.g. 'my-cool-org/meta-llama-3-1-8b-instruct-rce'). Namespace is optional and will default to the user account if not provided.",
|
||||
)
|
||||
api_token: Optional[SecretStr] = Field(
|
||||
api_token: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
|
||||
)
|
||||
|
|
@ -52,7 +51,7 @@ class InferenceAPIImplConfig(BaseModel):
|
|||
huggingface_repo: str = Field(
|
||||
description="The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct')",
|
||||
)
|
||||
api_token: Optional[SecretStr] = Field(
|
||||
api_token: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
|
||||
import logging
|
||||
from typing import AsyncGenerator, List, Optional
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from huggingface_hub import AsyncInferenceClient, HfApi
|
||||
|
||||
|
|
@ -105,10 +105,10 @@ class _HfAdapter(
|
|||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -134,7 +134,7 @@ class _HfAdapter(
|
|||
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
fmt: ResponseFormat = None,
|
||||
):
|
||||
options = get_sampling_options(sampling_params)
|
||||
|
|
@ -209,15 +209,15 @@ class _HfAdapter(
|
|||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -284,10 +284,10 @@ class _HfAdapter(
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[str] | List[InterleavedContentItem],
|
||||
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
||||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
|
@ -17,13 +17,13 @@ class TogetherImplConfig(BaseModel):
|
|||
default="https://api.together.xyz/v1",
|
||||
description="The URL for the Together AI server",
|
||||
)
|
||||
api_key: Optional[SecretStr] = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="The Together AI API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.together.xyz/v1",
|
||||
"api_key": "${env.TOGETHER_API_KEY:}",
|
||||
|
|
|
|||
|
|
@ -4,7 +4,8 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from openai import AsyncOpenAI
|
||||
from together import AsyncTogether
|
||||
|
|
@ -76,17 +77,20 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
|
||||
async def shutdown(self) -> None:
|
||||
if self._client:
|
||||
await self._client.close()
|
||||
# Together client has no close method, so just set to None
|
||||
self._client = None
|
||||
if self._openai_client:
|
||||
await self._openai_client.close()
|
||||
self._openai_client = None
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -144,8 +148,8 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: Optional[SamplingParams],
|
||||
logprobs: Optional[LogProbConfig],
|
||||
sampling_params: SamplingParams | None,
|
||||
logprobs: LogProbConfig | None,
|
||||
fmt: ResponseFormat,
|
||||
) -> dict:
|
||||
options = get_sampling_options(sampling_params)
|
||||
|
|
@ -172,15 +176,15 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
|
@ -221,7 +225,7 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
||||
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
|
|
@ -246,10 +250,10 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[str] | List[InterleavedContentItem],
|
||||
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
||||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
assert all(not content_has_media(content) for content in contents), (
|
||||
|
|
@ -266,24 +270,24 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: Union[str, List[str], List[int], List[List[int]]],
|
||||
best_of: Optional[int] = None,
|
||||
echo: Optional[bool] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
guided_choice: Optional[List[str]] = None,
|
||||
prompt_logprobs: Optional[int] = None,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
) -> OpenAICompletion:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
|
|
@ -310,29 +314,29 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[OpenAIMessageParam],
|
||||
frequency_penalty: Optional[float] = None,
|
||||
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
functions: Optional[List[Dict[str, Any]]] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
parallel_tool_calls: Optional[bool] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
response_format: Optional[OpenAIResponseFormatParam] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
tools: Optional[List[Dict[str, Any]]] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
|
|
@ -359,7 +363,7 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
if params.get("stream", True):
|
||||
if params.get("stream", False):
|
||||
return self._stream_openai_chat_completion(params)
|
||||
return await self._get_openai_client().chat.completions.create(**params) # type: ignore
|
||||
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -12,7 +12,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
|
||||
class TogetherProviderDataValidator(BaseModel):
|
||||
together_api_key: Optional[str] = Field(
|
||||
together_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for Together models",
|
||||
)
|
||||
|
|
@ -20,7 +20,7 @@ class TogetherProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class TogetherCompatConfig(BaseModel):
|
||||
api_key: Optional[str] = Field(
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The Together API key",
|
||||
)
|
||||
|
|
@ -31,7 +31,7 @@ class TogetherCompatConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, api_key: str = "${env.TOGETHER_API_KEY}", **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, api_key: str = "${env.TOGETHER_API_KEY}", **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"openai_compat_api_base": "https://api.together.xyz/v1",
|
||||
"api_key": api_key,
|
||||
|
|
|
|||
|
|
@ -4,7 +4,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -13,7 +12,7 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
@json_schema_type
|
||||
class VLLMInferenceAdapterConfig(BaseModel):
|
||||
url: Optional[str] = Field(
|
||||
url: str | None = Field(
|
||||
default=None,
|
||||
description="The URL for the vLLM model serving endpoint",
|
||||
)
|
||||
|
|
@ -21,7 +20,7 @@ class VLLMInferenceAdapterConfig(BaseModel):
|
|||
default=4096,
|
||||
description="Maximum number of tokens to generate.",
|
||||
)
|
||||
api_token: Optional[str] = Field(
|
||||
api_token: str | None = Field(
|
||||
default="fake",
|
||||
description="The API token",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -5,7 +5,8 @@
|
|||
# the root directory of this source tree.
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
from openai import AsyncOpenAI
|
||||
|
|
@ -94,7 +95,7 @@ def build_hf_repo_model_entries():
|
|||
|
||||
def _convert_to_vllm_tool_calls_in_response(
|
||||
tool_calls,
|
||||
) -> List[ToolCall]:
|
||||
) -> list[ToolCall]:
|
||||
if not tool_calls:
|
||||
return []
|
||||
|
||||
|
|
@ -109,7 +110,7 @@ def _convert_to_vllm_tool_calls_in_response(
|
|||
]
|
||||
|
||||
|
||||
def _convert_to_vllm_tools_in_request(tools: List[ToolDefinition]) -> List[dict]:
|
||||
def _convert_to_vllm_tools_in_request(tools: list[ToolDefinition]) -> list[dict]:
|
||||
compat_tools = []
|
||||
|
||||
for tool in tools:
|
||||
|
|
@ -231,12 +232,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
self.client = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
log.info(f"Initializing VLLM client with base_url={self.config.url}")
|
||||
self.client = AsyncOpenAI(
|
||||
base_url=self.config.url,
|
||||
api_key=self.config.api_token,
|
||||
http_client=None if self.config.tls_verify else httpx.AsyncClient(verify=False),
|
||||
)
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
|
@ -249,15 +245,30 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
raise ValueError("Model store not set")
|
||||
return await self.model_store.get_model(model_id)
|
||||
|
||||
def _lazy_initialize_client(self):
|
||||
if self.client is not None:
|
||||
return
|
||||
|
||||
log.info(f"Initializing vLLM client with base_url={self.config.url}")
|
||||
self.client = self._create_client()
|
||||
|
||||
def _create_client(self):
|
||||
return AsyncOpenAI(
|
||||
base_url=self.config.url,
|
||||
api_key=self.config.api_token,
|
||||
http_client=None if self.config.tls_verify else httpx.AsyncClient(verify=False),
|
||||
)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
|
||||
self._lazy_initialize_client()
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self._get_model(model_id)
|
||||
|
|
@ -277,16 +288,17 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
self._lazy_initialize_client()
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self._get_model(model_id)
|
||||
|
|
@ -357,9 +369,15 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
yield chunk
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
assert self.client is not None
|
||||
model = await self.register_helper.register_model(model)
|
||||
res = await self.client.models.list()
|
||||
# register_model is called during Llama Stack initialization, hence we cannot init self.client if not initialized yet.
|
||||
# self.client should only be created after the initialization is complete to avoid asyncio cross-context errors.
|
||||
# Changing this may lead to unpredictable behavior.
|
||||
client = self._create_client() if self.client is None else self.client
|
||||
try:
|
||||
model = await self.register_helper.register_model(model)
|
||||
except ValueError:
|
||||
pass # Ignore statically unknown model, will check live listing
|
||||
res = await client.models.list()
|
||||
available_models = [m.id async for m in res]
|
||||
if model.provider_resource_id not in available_models:
|
||||
raise ValueError(
|
||||
|
|
@ -368,13 +386,14 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
)
|
||||
return model
|
||||
|
||||
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
||||
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
||||
options = get_sampling_options(request.sampling_params)
|
||||
if "max_tokens" not in options:
|
||||
options["max_tokens"] = self.config.max_tokens
|
||||
|
||||
input_dict: dict[str, Any] = {}
|
||||
if isinstance(request, ChatCompletionRequest) and request.tools is not None:
|
||||
# Only include the 'tools' param if there is any. It can break things if an empty list is sent to the vLLM.
|
||||
if isinstance(request, ChatCompletionRequest) and request.tools:
|
||||
input_dict = {"tools": _convert_to_vllm_tools_in_request(request.tools)}
|
||||
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
|
|
@ -404,11 +423,12 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[str] | List[InterleavedContentItem],
|
||||
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
||||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
self._lazy_initialize_client()
|
||||
assert self.client is not None
|
||||
model = await self._get_model(model_id)
|
||||
|
||||
|
|
@ -429,28 +449,29 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: Union[str, List[str], List[int], List[List[int]]],
|
||||
best_of: Optional[int] = None,
|
||||
echo: Optional[bool] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
guided_choice: Optional[List[str]] = None,
|
||||
prompt_logprobs: Optional[int] = None,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
) -> OpenAICompletion:
|
||||
self._lazy_initialize_client()
|
||||
model_obj = await self._get_model(model)
|
||||
|
||||
extra_body: Dict[str, Any] = {}
|
||||
extra_body: dict[str, Any] = {}
|
||||
if prompt_logprobs is not None and prompt_logprobs >= 0:
|
||||
extra_body["prompt_logprobs"] = prompt_logprobs
|
||||
if guided_choice:
|
||||
|
|
@ -481,29 +502,30 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[OpenAIMessageParam],
|
||||
frequency_penalty: Optional[float] = None,
|
||||
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
functions: Optional[List[Dict[str, Any]]] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
parallel_tool_calls: Optional[bool] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
response_format: Optional[OpenAIResponseFormatParam] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
tools: Optional[List[Dict[str, Any]]] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
self._lazy_initialize_client()
|
||||
model_obj = await self._get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
|
|
@ -535,21 +557,21 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def batch_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content_batch: List[InterleavedContent],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
content_batch: list[InterleavedContent],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch completion is not supported for Ollama")
|
||||
|
||||
async def batch_chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages_batch: List[List[Message]],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
messages_batch: list[list[Message]],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
):
|
||||
raise NotImplementedError("Batch chat completion is not supported for Ollama")
|
||||
|
|
|
|||
22
llama_stack/providers/remote/inference/watsonx/__init__.py
Normal file
22
llama_stack/providers/remote/inference/watsonx/__init__.py
Normal file
|
|
@ -0,0 +1,22 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import Inference
|
||||
|
||||
from .config import WatsonXConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: WatsonXConfig, _deps) -> Inference:
|
||||
# import dynamically so `llama stack build` does not fail due to missing dependencies
|
||||
from .watsonx import WatsonXInferenceAdapter
|
||||
|
||||
if not isinstance(config, WatsonXConfig):
|
||||
raise RuntimeError(f"Unexpected config type: {type(config)}")
|
||||
adapter = WatsonXInferenceAdapter(config)
|
||||
return adapter
|
||||
|
||||
|
||||
__all__ = ["get_adapter_impl", "WatsonXConfig"]
|
||||
46
llama_stack/providers/remote/inference/watsonx/config.py
Normal file
46
llama_stack/providers/remote/inference/watsonx/config.py
Normal file
|
|
@ -0,0 +1,46 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class WatsonXProviderDataValidator(BaseModel):
|
||||
url: str
|
||||
api_key: str
|
||||
project_id: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class WatsonXConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_BASE_URL", "https://us-south.ml.cloud.ibm.com"),
|
||||
description="A base url for accessing the watsonx.ai",
|
||||
)
|
||||
api_key: SecretStr | None = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_API_KEY"),
|
||||
description="The watsonx API key, only needed of using the hosted service",
|
||||
)
|
||||
project_id: str | None = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_PROJECT_ID"),
|
||||
description="The Project ID key, only needed of using the hosted service",
|
||||
)
|
||||
timeout: int = Field(
|
||||
default=60,
|
||||
description="Timeout for the HTTP requests",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"url": "${env.WATSONX_BASE_URL:https://us-south.ml.cloud.ibm.com}",
|
||||
"api_key": "${env.WATSONX_API_KEY:}",
|
||||
"project_id": "${env.WATSONX_PROJECT_ID:}",
|
||||
}
|
||||
47
llama_stack/providers/remote/inference/watsonx/models.py
Normal file
47
llama_stack/providers/remote/inference/watsonx/models.py
Normal file
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.models.llama.sku_types import CoreModelId
|
||||
from llama_stack.providers.utils.inference.model_registry import build_hf_repo_model_entry
|
||||
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-3-70b-instruct",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-2-13b-chat",
|
||||
CoreModelId.llama2_13b.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-1-70b-instruct",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-1-8b-instruct",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-2-11b-vision-instruct",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-2-1b-instruct",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-2-3b-instruct",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-3-2-90b-vision-instruct",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/llama-guard-3-11b-vision",
|
||||
CoreModelId.llama_guard_3_11b_vision.value,
|
||||
),
|
||||
]
|
||||
379
llama_stack/providers/remote/inference/watsonx/watsonx.py
Normal file
379
llama_stack/providers/remote/inference/watsonx/watsonx.py
Normal file
|
|
@ -0,0 +1,379 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from ibm_watson_machine_learning.foundation_models import Model
|
||||
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent, InterleavedContentItem
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
GreedySamplingStrategy,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
TopKSamplingStrategy,
|
||||
TopPSamplingStrategy,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
prepare_openai_completion_params,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
from . import WatsonXConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
|
||||
class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
||||
def __init__(self, config: WatsonXConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
||||
|
||||
print(f"Initializing watsonx InferenceAdapter({config.url})...")
|
||||
|
||||
self._config = config
|
||||
|
||||
self._project_id = self._config.project_id
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
def _get_client(self, model_id) -> Model:
|
||||
config_api_key = self._config.api_key.get_secret_value() if self._config.api_key else None
|
||||
config_url = self._config.url
|
||||
project_id = self._config.project_id
|
||||
credentials = {"url": config_url, "apikey": config_api_key}
|
||||
|
||||
return Model(model_id=model_id, credentials=credentials, project_id=project_id)
|
||||
|
||||
def _get_openai_client(self) -> AsyncOpenAI:
|
||||
if not self._openai_client:
|
||||
self._openai_client = AsyncOpenAI(
|
||||
base_url=f"{self._config.url}/openai/v1",
|
||||
api_key=self._config.api_key,
|
||||
)
|
||||
return self._openai_client
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = self._get_client(request.model).generate(**params)
|
||||
choices = []
|
||||
if "results" in r:
|
||||
for result in r["results"]:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=result["stop_reason"] if result["stop_reason"] else None,
|
||||
text=result["generated_text"],
|
||||
)
|
||||
choices.append(choice)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=choices,
|
||||
)
|
||||
return process_completion_response(response)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = self._get_client(request.model).generate_text_stream(**params)
|
||||
for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=None,
|
||||
text=chunk,
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_completion_stream_response(stream):
|
||||
yield chunk
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: list[Message],
|
||||
sampling_params: SamplingParams | None = None,
|
||||
tools: list[ToolDefinition] | None = None,
|
||||
tool_choice: ToolChoice | None = ToolChoice.auto,
|
||||
tool_prompt_format: ToolPromptFormat | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
tool_config=tool_config,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = self._get_client(request.model).generate(**params)
|
||||
choices = []
|
||||
if "results" in r:
|
||||
for result in r["results"]:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=result["stop_reason"] if result["stop_reason"] else None,
|
||||
text=result["generated_text"],
|
||||
)
|
||||
choices.append(choice)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=choices,
|
||||
)
|
||||
return process_chat_completion_response(response, request)
|
||||
|
||||
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
model_id = request.model
|
||||
|
||||
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
||||
async def _to_async_generator():
|
||||
s = self._get_client(model_id).generate_text_stream(**params)
|
||||
for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=None,
|
||||
text=chunk,
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
||||
input_dict = {"params": {}}
|
||||
media_present = request_has_media(request)
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
||||
else:
|
||||
assert not media_present, "Together does not support media for Completion requests"
|
||||
input_dict["prompt"] = await completion_request_to_prompt(request)
|
||||
if request.sampling_params:
|
||||
if request.sampling_params.strategy:
|
||||
input_dict["params"][GenParams.DECODING_METHOD] = request.sampling_params.strategy.type
|
||||
if request.sampling_params.max_tokens:
|
||||
input_dict["params"][GenParams.MAX_NEW_TOKENS] = request.sampling_params.max_tokens
|
||||
if request.sampling_params.repetition_penalty:
|
||||
input_dict["params"][GenParams.REPETITION_PENALTY] = request.sampling_params.repetition_penalty
|
||||
|
||||
if isinstance(request.sampling_params.strategy, TopPSamplingStrategy):
|
||||
input_dict["params"][GenParams.TOP_P] = request.sampling_params.strategy.top_p
|
||||
input_dict["params"][GenParams.TEMPERATURE] = request.sampling_params.strategy.temperature
|
||||
if isinstance(request.sampling_params.strategy, TopKSamplingStrategy):
|
||||
input_dict["params"][GenParams.TOP_K] = request.sampling_params.strategy.top_k
|
||||
if isinstance(request.sampling_params.strategy, GreedySamplingStrategy):
|
||||
input_dict["params"][GenParams.TEMPERATURE] = 0.0
|
||||
|
||||
input_dict["params"][GenParams.STOP_SEQUENCES] = ["<|endoftext|>"]
|
||||
|
||||
params = {
|
||||
**input_dict,
|
||||
}
|
||||
return params
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: list[str] | list[InterleavedContentItem],
|
||||
text_truncation: TextTruncation | None = TextTruncation.none,
|
||||
output_dimension: int | None = None,
|
||||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError("embedding is not supported for watsonx")
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
) -> OpenAICompletion:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
return await self._get_openai_client().completions.create(**params) # type: ignore
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
if params.get("stream", False):
|
||||
return self._stream_openai_chat_completion(params)
|
||||
return await self._get_openai_client().chat.completions.create(**params) # type: ignore
|
||||
|
||||
async def _stream_openai_chat_completion(self, params: dict) -> AsyncGenerator:
|
||||
# watsonx.ai sometimes adds usage data to the stream
|
||||
include_usage = False
|
||||
if params.get("stream_options", None):
|
||||
include_usage = params["stream_options"].get("include_usage", False)
|
||||
stream = await self._get_openai_client().chat.completions.create(**params)
|
||||
|
||||
seen_finish_reason = False
|
||||
async for chunk in stream:
|
||||
# Final usage chunk with no choices that the user didn't request, so discard
|
||||
if not include_usage and seen_finish_reason and len(chunk.choices) == 0:
|
||||
break
|
||||
yield chunk
|
||||
for choice in chunk.choices:
|
||||
if choice.finish_reason:
|
||||
seen_finish_reason = True
|
||||
break
|
||||
|
|
@ -36,7 +36,6 @@ import os
|
|||
|
||||
os.environ["NVIDIA_API_KEY"] = "your-api-key"
|
||||
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
|
||||
os.environ["NVIDIA_USER_ID"] = "llama-stack-user"
|
||||
os.environ["NVIDIA_DATASET_NAMESPACE"] = "default"
|
||||
os.environ["NVIDIA_PROJECT_ID"] = "test-project"
|
||||
os.environ["NVIDIA_OUTPUT_MODEL_DIR"] = "test-example-model@v1"
|
||||
|
|
@ -125,6 +124,21 @@ client.post_training.job.cancel(job_uuid="your-job-id")
|
|||
|
||||
### Inference with the fine-tuned model
|
||||
|
||||
#### 1. Register the model
|
||||
|
||||
```python
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
|
||||
client.models.register(
|
||||
model_id="test-example-model@v1",
|
||||
provider_id="nvidia",
|
||||
provider_model_id="test-example-model@v1",
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
```
|
||||
|
||||
#### 2. Inference with the fine-tuned model
|
||||
|
||||
```python
|
||||
response = client.inference.completion(
|
||||
content="Complete the sentence using one word: Roses are red, violets are ",
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -15,23 +15,23 @@ from pydantic import BaseModel, Field
|
|||
class NvidiaPostTrainingConfig(BaseModel):
|
||||
"""Configuration for NVIDIA Post Training implementation."""
|
||||
|
||||
api_key: Optional[str] = Field(
|
||||
api_key: str | None = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),
|
||||
description="The NVIDIA API key.",
|
||||
)
|
||||
|
||||
dataset_namespace: Optional[str] = Field(
|
||||
dataset_namespace: str | None = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_DATASET_NAMESPACE", "default"),
|
||||
description="The NVIDIA dataset namespace.",
|
||||
)
|
||||
|
||||
project_id: Optional[str] = Field(
|
||||
project_id: str | None = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_PROJECT_ID", "test-example-model@v1"),
|
||||
description="The NVIDIA project ID.",
|
||||
)
|
||||
|
||||
# ToDO: validate this, add default value
|
||||
customizer_url: Optional[str] = Field(
|
||||
customizer_url: str | None = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_CUSTOMIZER_URL"),
|
||||
description="Base URL for the NeMo Customizer API",
|
||||
)
|
||||
|
|
@ -53,7 +53,7 @@ class NvidiaPostTrainingConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": "${env.NVIDIA_API_KEY:}",
|
||||
"dataset_namespace": "${env.NVIDIA_DATASET_NAMESPACE:default}",
|
||||
|
|
@ -71,27 +71,27 @@ class SFTLoRADefaultConfig(BaseModel):
|
|||
n_epochs: int = 50
|
||||
|
||||
# NeMo customizer specific parameters
|
||||
log_every_n_steps: Optional[int] = None
|
||||
log_every_n_steps: int | None = None
|
||||
val_check_interval: float = 0.25
|
||||
sequence_packing_enabled: bool = False
|
||||
weight_decay: float = 0.01
|
||||
lr: float = 0.0001
|
||||
|
||||
# SFT specific parameters
|
||||
hidden_dropout: Optional[float] = None
|
||||
attention_dropout: Optional[float] = None
|
||||
ffn_dropout: Optional[float] = None
|
||||
hidden_dropout: float | None = None
|
||||
attention_dropout: float | None = None
|
||||
ffn_dropout: float | None = None
|
||||
|
||||
# LoRA default parameters
|
||||
lora_adapter_dim: int = 8
|
||||
lora_adapter_dropout: Optional[float] = None
|
||||
lora_adapter_dropout: float | None = None
|
||||
lora_alpha: int = 16
|
||||
|
||||
# Data config
|
||||
batch_size: int = 8
|
||||
|
||||
@classmethod
|
||||
def sample_config(cls) -> Dict[str, Any]:
|
||||
def sample_config(cls) -> dict[str, Any]:
|
||||
"""Return a sample configuration for NVIDIA training."""
|
||||
return {
|
||||
"n_epochs": 50,
|
||||
|
|
|
|||
|
|
@ -4,7 +4,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from llama_stack.models.llama.sku_types import CoreModelId
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
|
|
@ -16,9 +15,13 @@ _MODEL_ENTRIES = [
|
|||
build_hf_repo_model_entry(
|
||||
"meta/llama-3.1-8b-instruct",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
)
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta/llama-3.2-1b-instruct",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def get_model_entries() -> List[ProviderModelEntry]:
|
||||
def get_model_entries() -> list[ProviderModelEntry]:
|
||||
return _MODEL_ENTRIES
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
import warnings
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List, Literal, Optional
|
||||
from typing import Any, Literal
|
||||
|
||||
import aiohttp
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
|
@ -27,11 +27,12 @@ from .models import _MODEL_ENTRIES
|
|||
|
||||
# Map API status to JobStatus enum
|
||||
STATUS_MAPPING = {
|
||||
"running": "in_progress",
|
||||
"completed": "completed",
|
||||
"failed": "failed",
|
||||
"cancelled": "cancelled",
|
||||
"pending": "scheduled",
|
||||
"running": JobStatus.in_progress.value,
|
||||
"completed": JobStatus.completed.value,
|
||||
"failed": JobStatus.failed.value,
|
||||
"cancelled": JobStatus.cancelled.value,
|
||||
"pending": JobStatus.scheduled.value,
|
||||
"unknown": JobStatus.scheduled.value,
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -49,7 +50,7 @@ class NvidiaPostTrainingJob(PostTrainingJob):
|
|||
|
||||
|
||||
class ListNvidiaPostTrainingJobs(BaseModel):
|
||||
data: List[NvidiaPostTrainingJob]
|
||||
data: list[NvidiaPostTrainingJob]
|
||||
|
||||
|
||||
class NvidiaPostTrainingJobStatusResponse(PostTrainingJobStatusResponse):
|
||||
|
|
@ -66,22 +67,27 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
self.timeout = aiohttp.ClientTimeout(total=config.timeout)
|
||||
# TODO: filter by available models based on /config endpoint
|
||||
ModelRegistryHelper.__init__(self, model_entries=_MODEL_ENTRIES)
|
||||
self.session = aiohttp.ClientSession(headers=self.headers, timeout=self.timeout)
|
||||
self.customizer_url = config.customizer_url
|
||||
self.session = None
|
||||
|
||||
self.customizer_url = config.customizer_url
|
||||
if not self.customizer_url:
|
||||
warnings.warn("Customizer URL is not set, using default value: http://nemo.test", stacklevel=2)
|
||||
self.customizer_url = "http://nemo.test"
|
||||
|
||||
async def _get_session(self) -> aiohttp.ClientSession:
|
||||
if self.session is None or self.session.closed:
|
||||
self.session = aiohttp.ClientSession(headers=self.headers, timeout=self.timeout)
|
||||
return self.session
|
||||
|
||||
async def _make_request(
|
||||
self,
|
||||
method: str,
|
||||
path: str,
|
||||
headers: Optional[Dict[str, Any]] = None,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
json: Optional[Dict[str, Any]] = None,
|
||||
headers: dict[str, Any] | None = None,
|
||||
params: dict[str, Any] | None = None,
|
||||
json: dict[str, Any] | None = None,
|
||||
**kwargs,
|
||||
) -> Dict[str, Any]:
|
||||
) -> dict[str, Any]:
|
||||
"""Helper method to make HTTP requests to the Customizer API."""
|
||||
url = f"{self.customizer_url}{path}"
|
||||
request_headers = self.headers.copy()
|
||||
|
|
@ -93,8 +99,9 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
if json and "Content-Type" not in request_headers:
|
||||
request_headers["Content-Type"] = "application/json"
|
||||
|
||||
session = await self._get_session()
|
||||
for _ in range(self.config.max_retries):
|
||||
async with self.session.request(method, url, params=params, json=json, **kwargs) as response:
|
||||
async with session.request(method, url, params=params, json=json, **kwargs) as response:
|
||||
if response.status >= 400:
|
||||
error_data = await response.json()
|
||||
raise Exception(f"API request failed: {error_data}")
|
||||
|
|
@ -102,9 +109,9 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
|
||||
async def get_training_jobs(
|
||||
self,
|
||||
page: Optional[int] = 1,
|
||||
page_size: Optional[int] = 10,
|
||||
sort: Optional[Literal["created_at", "-created_at"]] = "created_at",
|
||||
page: int | None = 1,
|
||||
page_size: int | None = 10,
|
||||
sort: Literal["created_at", "-created_at"] | None = "created_at",
|
||||
) -> ListNvidiaPostTrainingJobs:
|
||||
"""Get all customization jobs.
|
||||
Updated the base class return type from ListPostTrainingJobsResponse to ListNvidiaPostTrainingJobs.
|
||||
|
|
@ -121,8 +128,8 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
jobs = []
|
||||
for job in response.get("data", []):
|
||||
job_id = job.pop("id")
|
||||
job_status = job.pop("status", "unknown").lower()
|
||||
mapped_status = STATUS_MAPPING.get(job_status, "unknown")
|
||||
job_status = job.pop("status", "scheduled").lower()
|
||||
mapped_status = STATUS_MAPPING.get(job_status, "scheduled")
|
||||
|
||||
# Convert string timestamps to datetime objects
|
||||
created_at = (
|
||||
|
|
@ -176,7 +183,7 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
)
|
||||
|
||||
api_status = response.pop("status").lower()
|
||||
mapped_status = STATUS_MAPPING.get(api_status, "unknown")
|
||||
mapped_status = STATUS_MAPPING.get(api_status, "scheduled")
|
||||
|
||||
return NvidiaPostTrainingJobStatusResponse(
|
||||
status=JobStatus(mapped_status),
|
||||
|
|
@ -200,12 +207,12 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
async def supervised_fine_tune(
|
||||
self,
|
||||
job_uuid: str,
|
||||
training_config: Dict[str, Any],
|
||||
hyperparam_search_config: Dict[str, Any],
|
||||
logger_config: Dict[str, Any],
|
||||
training_config: dict[str, Any],
|
||||
hyperparam_search_config: dict[str, Any],
|
||||
logger_config: dict[str, Any],
|
||||
model: str,
|
||||
checkpoint_dir: Optional[str],
|
||||
algorithm_config: Optional[AlgorithmConfig] = None,
|
||||
checkpoint_dir: str | None,
|
||||
algorithm_config: AlgorithmConfig | None = None,
|
||||
) -> NvidiaPostTrainingJob:
|
||||
"""
|
||||
Fine-tunes a model on a dataset.
|
||||
|
|
@ -238,6 +245,7 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
|
||||
Supported models:
|
||||
- meta/llama-3.1-8b-instruct
|
||||
- meta/llama-3.2-1b-instruct
|
||||
|
||||
Supported algorithm configs:
|
||||
- LoRA, SFT
|
||||
|
|
@ -283,10 +291,6 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
|
||||
- LoRA config:
|
||||
## NeMo customizer specific LoRA parameters
|
||||
- adapter_dim: int - Adapter dimension
|
||||
Default: 8 (supports powers of 2)
|
||||
- adapter_dropout: float - Adapter dropout
|
||||
Default: None (0.0-1.0)
|
||||
- alpha: int - Scaling factor for the LoRA update
|
||||
Default: 16
|
||||
Note:
|
||||
|
|
@ -296,7 +300,7 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
User is informed about unsupported parameters via warnings.
|
||||
"""
|
||||
# Map model to nvidia model name
|
||||
# ToDo: only supports llama-3.1-8b-instruct now, need to update this to support other models
|
||||
# See `_MODEL_ENTRIES` for supported models
|
||||
nvidia_model = self.get_provider_model_id(model)
|
||||
|
||||
# Check for unsupported method parameters
|
||||
|
|
@ -329,7 +333,7 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
},
|
||||
"data_config": {"dataset_id", "batch_size"},
|
||||
"optimizer_config": {"lr", "weight_decay"},
|
||||
"lora_config": {"type", "adapter_dim", "adapter_dropout", "alpha"},
|
||||
"lora_config": {"type", "alpha"},
|
||||
}
|
||||
|
||||
# Validate all parameters at once
|
||||
|
|
@ -388,16 +392,10 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
|
||||
# Handle LoRA-specific configuration
|
||||
if algorithm_config:
|
||||
if isinstance(algorithm_config, dict) and algorithm_config.get("type") == "LoRA":
|
||||
if algorithm_config.type == "LoRA":
|
||||
warn_unsupported_params(algorithm_config, supported_params["lora_config"], "LoRA config")
|
||||
job_config["hyperparameters"]["lora"] = {
|
||||
k: v
|
||||
for k, v in {
|
||||
"adapter_dim": algorithm_config.get("adapter_dim"),
|
||||
"alpha": algorithm_config.get("alpha"),
|
||||
"adapter_dropout": algorithm_config.get("adapter_dropout"),
|
||||
}.items()
|
||||
if v is not None
|
||||
k: v for k, v in {"alpha": algorithm_config.alpha}.items() if v is not None
|
||||
}
|
||||
else:
|
||||
raise NotImplementedError(f"Unsupported algorithm config: {algorithm_config}")
|
||||
|
|
@ -425,8 +423,8 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
finetuned_model: str,
|
||||
algorithm_config: DPOAlignmentConfig,
|
||||
training_config: TrainingConfig,
|
||||
hyperparam_search_config: Dict[str, Any],
|
||||
logger_config: Dict[str, Any],
|
||||
hyperparam_search_config: dict[str, Any],
|
||||
logger_config: dict[str, Any],
|
||||
) -> PostTrainingJob:
|
||||
"""Optimize a model based on preference data."""
|
||||
raise NotImplementedError("Preference optimization is not implemented yet")
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
import logging
|
||||
import warnings
|
||||
from typing import Any, Dict, Set, Tuple
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
|
@ -18,7 +18,7 @@ from .config import NvidiaPostTrainingConfig
|
|||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def warn_unsupported_params(config_dict: Any, supported_keys: Set[str], config_name: str) -> None:
|
||||
def warn_unsupported_params(config_dict: Any, supported_keys: set[str], config_name: str) -> None:
|
||||
keys = set(config_dict.__annotations__.keys()) if isinstance(config_dict, BaseModel) else config_dict.keys()
|
||||
unsupported_params = [k for k in keys if k not in supported_keys]
|
||||
if unsupported_params:
|
||||
|
|
@ -28,7 +28,7 @@ def warn_unsupported_params(config_dict: Any, supported_keys: Set[str], config_n
|
|||
|
||||
|
||||
def validate_training_params(
|
||||
training_config: Dict[str, Any], supported_keys: Set[str], config_name: str = "TrainingConfig"
|
||||
training_config: dict[str, Any], supported_keys: set[str], config_name: str = "TrainingConfig"
|
||||
) -> None:
|
||||
"""
|
||||
Validates training parameters against supported keys.
|
||||
|
|
@ -57,7 +57,7 @@ def validate_training_params(
|
|||
|
||||
|
||||
# ToDo: implement post health checks for customizer are enabled
|
||||
async def _get_health(url: str) -> Tuple[bool, bool]: ...
|
||||
async def _get_health(url: str) -> tuple[bool, bool]: ...
|
||||
|
||||
|
||||
async def check_health(config: NvidiaPostTrainingConfig) -> None: ...
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.inference import Message
|
||||
from llama_stack.apis.safety import (
|
||||
|
|
@ -53,7 +53,7 @@ class BedrockSafetyAdapter(Safety, ShieldsProtocolPrivate):
|
|||
)
|
||||
|
||||
async def run_shield(
|
||||
self, shield_id: str, messages: List[Message], params: Dict[str, Any] = None
|
||||
self, shield_id: str, messages: list[Message], params: dict[str, Any] = None
|
||||
) -> RunShieldResponse:
|
||||
shield = await self.shield_store.get_shield(shield_id)
|
||||
if not shield:
|
||||
|
|
|
|||
77
llama_stack/providers/remote/safety/nvidia/README.md
Normal file
77
llama_stack/providers/remote/safety/nvidia/README.md
Normal file
|
|
@ -0,0 +1,77 @@
|
|||
# NVIDIA Safety Provider for LlamaStack
|
||||
|
||||
This provider enables safety checks and guardrails for LLM interactions using NVIDIA's NeMo Guardrails service.
|
||||
|
||||
## Features
|
||||
|
||||
- Run safety checks for messages
|
||||
|
||||
## Getting Started
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- LlamaStack with NVIDIA configuration
|
||||
- Access to NVIDIA NeMo Guardrails service
|
||||
- NIM for model to use for safety check is deployed
|
||||
|
||||
### Setup
|
||||
|
||||
Build the NVIDIA environment:
|
||||
|
||||
```bash
|
||||
llama stack build --template nvidia --image-type conda
|
||||
```
|
||||
|
||||
### Basic Usage using the LlamaStack Python Client
|
||||
|
||||
#### Initialize the client
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
os.environ["NVIDIA_API_KEY"] = "your-api-key"
|
||||
os.environ["NVIDIA_GUARDRAILS_URL"] = "http://guardrails.test"
|
||||
|
||||
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
||||
|
||||
client = LlamaStackAsLibraryClient("nvidia")
|
||||
client.initialize()
|
||||
```
|
||||
|
||||
#### Create a safety shield
|
||||
|
||||
```python
|
||||
from llama_stack.apis.safety import Shield
|
||||
from llama_stack.apis.inference import Message
|
||||
|
||||
# Create a safety shield
|
||||
shield = Shield(
|
||||
shield_id="your-shield-id",
|
||||
provider_resource_id="safety-model-id", # The model to use for safety checks
|
||||
description="Safety checks for content moderation",
|
||||
)
|
||||
|
||||
# Register the shield
|
||||
await client.safety.register_shield(shield)
|
||||
```
|
||||
|
||||
#### Run safety checks
|
||||
|
||||
```python
|
||||
# Messages to check
|
||||
messages = [Message(role="user", content="Your message to check")]
|
||||
|
||||
# Run safety check
|
||||
response = await client.safety.run_shield(
|
||||
shield_id="your-shield-id",
|
||||
messages=messages,
|
||||
)
|
||||
|
||||
# Check for violations
|
||||
if response.violation:
|
||||
print(f"Safety violation detected: {response.violation.user_message}")
|
||||
print(f"Violation level: {response.violation.violation_level}")
|
||||
print(f"Metadata: {response.violation.metadata}")
|
||||
else:
|
||||
print("No safety violations detected")
|
||||
```
|
||||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import os
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -27,10 +27,10 @@ class NVIDIASafetyConfig(BaseModel):
|
|||
default_factory=lambda: os.getenv("GUARDRAILS_SERVICE_URL", "http://0.0.0.0:7331"),
|
||||
description="The url for accessing the guardrails service",
|
||||
)
|
||||
config_id: Optional[str] = Field(default="self-check", description="Config ID to use from the config store")
|
||||
config_id: str | None = Field(default="self-check", description="Config ID to use from the config store")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
|
||||
return {
|
||||
"guardrails_service_url": "${env.GUARDRAILS_SERVICE_URL:http://localhost:7331}",
|
||||
"config_id": "self-check",
|
||||
|
|
|
|||
|
|
@ -5,15 +5,15 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
from typing import Any, List, Optional
|
||||
from typing import Any
|
||||
|
||||
import requests
|
||||
|
||||
from llama_stack.apis.inference import Message
|
||||
from llama_stack.apis.safety import RunShieldResponse, Safety, SafetyViolation, ViolationLevel
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.distribution.library_client import convert_pydantic_to_json_value
|
||||
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.openai_compat import convert_message_to_openai_dict_new
|
||||
|
||||
from .config import NVIDIASafetyConfig
|
||||
|
||||
|
|
@ -28,7 +28,6 @@ class NVIDIASafetyAdapter(Safety, ShieldsProtocolPrivate):
|
|||
Args:
|
||||
config (NVIDIASafetyConfig): The configuration containing the guardrails service URL and config ID.
|
||||
"""
|
||||
print(f"Initializing NVIDIASafetyAdapter({config.guardrails_service_url})...")
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
|
|
@ -42,7 +41,7 @@ class NVIDIASafetyAdapter(Safety, ShieldsProtocolPrivate):
|
|||
raise ValueError("Shield model not provided.")
|
||||
|
||||
async def run_shield(
|
||||
self, shield_id: str, messages: List[Message], params: Optional[dict[str, Any]] = None
|
||||
self, shield_id: str, messages: list[Message], params: dict[str, Any] | None = None
|
||||
) -> RunShieldResponse:
|
||||
"""
|
||||
Run a safety shield check against the provided messages.
|
||||
|
|
@ -113,7 +112,7 @@ class NeMoGuardrails:
|
|||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
async def run(self, messages: List[Message]) -> RunShieldResponse:
|
||||
async def run(self, messages: list[Message]) -> RunShieldResponse:
|
||||
"""
|
||||
Queries the /v1/guardrails/checks endpoint of the NeMo guardrails deployed API.
|
||||
|
||||
|
|
@ -127,9 +126,10 @@ class NeMoGuardrails:
|
|||
Raises:
|
||||
requests.HTTPError: If the POST request fails.
|
||||
"""
|
||||
request_messages = [await convert_message_to_openai_dict_new(message) for message in messages]
|
||||
request_data = {
|
||||
"model": self.model,
|
||||
"messages": convert_pydantic_to_json_value(messages),
|
||||
"messages": request_messages,
|
||||
"temperature": self.temperature,
|
||||
"top_p": 1,
|
||||
"frequency_penalty": 0,
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
|
||||
|
|
@ -50,7 +50,7 @@ class BingSearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsRequestP
|
|||
return provider_data.bing_search_api_key
|
||||
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
|
||||
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
|
||||
) -> ListToolDefsResponse:
|
||||
return ListToolDefsResponse(
|
||||
data=[
|
||||
|
|
@ -68,7 +68,7 @@ class BingSearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsRequestP
|
|||
]
|
||||
)
|
||||
|
||||
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
|
||||
async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> ToolInvocationResult:
|
||||
api_key = self._get_api_key()
|
||||
headers = {
|
||||
"Ocp-Apim-Subscription-Key": api_key,
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
|
@ -12,11 +12,11 @@ from pydantic import BaseModel
|
|||
class BingSearchToolConfig(BaseModel):
|
||||
"""Configuration for Bing Search Tool Runtime"""
|
||||
|
||||
api_key: Optional[str] = None
|
||||
api_key: str | None = None
|
||||
top_k: int = 3
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": "${env.BING_API_KEY:}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
|
||||
|
|
@ -49,7 +49,7 @@ class BraveSearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsRequest
|
|||
return provider_data.brave_search_api_key
|
||||
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
|
||||
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
|
||||
) -> ListToolDefsResponse:
|
||||
return ListToolDefsResponse(
|
||||
data=[
|
||||
|
|
@ -68,7 +68,7 @@ class BraveSearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsRequest
|
|||
]
|
||||
)
|
||||
|
||||
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
|
||||
async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> ToolInvocationResult:
|
||||
api_key = self._get_api_key()
|
||||
url = "https://api.search.brave.com/res/v1/web/search"
|
||||
headers = {
|
||||
|
|
|
|||
|
|
@ -4,13 +4,13 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class BraveSearchToolConfig(BaseModel):
|
||||
api_key: Optional[str] = Field(
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The Brave Search API Key",
|
||||
)
|
||||
|
|
@ -20,7 +20,7 @@ class BraveSearchToolConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": "${env.BRAVE_SEARCH_API_KEY:}",
|
||||
"max_results": 3,
|
||||
|
|
|
|||
|
|
@ -4,12 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ModelContextProtocolConfig(BaseModel):
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from mcp import ClientSession
|
||||
|
|
@ -31,7 +31,7 @@ class ModelContextProtocolToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
|
|||
pass
|
||||
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
|
||||
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
|
||||
) -> ListToolDefsResponse:
|
||||
if mcp_endpoint is None:
|
||||
raise ValueError("mcp_endpoint is required")
|
||||
|
|
@ -63,7 +63,7 @@ class ModelContextProtocolToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
|
|||
)
|
||||
return ListToolDefsResponse(data=tools)
|
||||
|
||||
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
|
||||
async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> ToolInvocationResult:
|
||||
tool = await self.tool_store.get_tool(tool_name)
|
||||
if tool.metadata is None or tool.metadata.get("endpoint") is None:
|
||||
raise ValueError(f"Tool {tool_name} does not have metadata")
|
||||
|
|
|
|||
|
|
@ -4,13 +4,13 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class TavilySearchToolConfig(BaseModel):
|
||||
api_key: Optional[str] = Field(
|
||||
api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The Tavily Search API Key",
|
||||
)
|
||||
|
|
@ -20,7 +20,7 @@ class TavilySearchToolConfig(BaseModel):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": "${env.TAVILY_SEARCH_API_KEY:}",
|
||||
"max_results": 3,
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
|
||||
|
|
@ -49,7 +49,7 @@ class TavilySearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsReques
|
|||
return provider_data.tavily_search_api_key
|
||||
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
|
||||
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
|
||||
) -> ListToolDefsResponse:
|
||||
return ListToolDefsResponse(
|
||||
data=[
|
||||
|
|
@ -67,7 +67,7 @@ class TavilySearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsReques
|
|||
]
|
||||
)
|
||||
|
||||
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
|
||||
async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> ToolInvocationResult:
|
||||
api_key = self._get_api_key()
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
|
@ -12,10 +12,10 @@ from pydantic import BaseModel
|
|||
class WolframAlphaToolConfig(BaseModel):
|
||||
"""Configuration for WolframAlpha Tool Runtime"""
|
||||
|
||||
api_key: Optional[str] = None
|
||||
api_key: str | None = None
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": "${env.WOLFRAM_ALPHA_API_KEY:}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
|
||||
|
|
@ -50,7 +50,7 @@ class WolframAlphaToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsReques
|
|||
return provider_data.wolfram_alpha_api_key
|
||||
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
|
||||
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
|
||||
) -> ListToolDefsResponse:
|
||||
return ListToolDefsResponse(
|
||||
data=[
|
||||
|
|
@ -68,7 +68,7 @@ class WolframAlphaToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsReques
|
|||
]
|
||||
)
|
||||
|
||||
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
|
||||
async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> ToolInvocationResult:
|
||||
api_key = self._get_api_key()
|
||||
params = {
|
||||
"input": kwargs["query"],
|
||||
|
|
|
|||
|
|
@ -4,14 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import ChromaVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: ChromaVectorIOConfig, deps: Dict[Api, ProviderSpec]):
|
||||
async def get_adapter_impl(config: ChromaVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .chroma import ChromaVectorIOAdapter
|
||||
|
||||
impl = ChromaVectorIOAdapter(config, deps[Api.inference])
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
from typing import Any
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import chromadb
|
||||
|
|
@ -27,7 +27,7 @@ from .config import ChromaVectorIOConfig as RemoteChromaVectorIOConfig
|
|||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
ChromaClientType = Union[chromadb.AsyncHttpClient, chromadb.PersistentClient]
|
||||
ChromaClientType = chromadb.AsyncHttpClient | chromadb.PersistentClient
|
||||
|
||||
|
||||
# this is a helper to allow us to use async and non-async chroma clients interchangeably
|
||||
|
|
@ -42,7 +42,7 @@ class ChromaIndex(EmbeddingIndex):
|
|||
self.client = client
|
||||
self.collection = collection
|
||||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
|
@ -89,7 +89,7 @@ class ChromaIndex(EmbeddingIndex):
|
|||
class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
self,
|
||||
config: Union[RemoteChromaVectorIOConfig, InlineChromaVectorIOConfig],
|
||||
config: RemoteChromaVectorIOConfig | InlineChromaVectorIOConfig,
|
||||
inference_api: Api.inference,
|
||||
) -> None:
|
||||
log.info(f"Initializing ChromaVectorIOAdapter with url: {config}")
|
||||
|
|
@ -137,8 +137,8 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
async def insert_chunks(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
chunks: list[Chunk],
|
||||
ttl_seconds: int | None = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
|
||||
|
|
@ -148,7 +148,7 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
self,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
params: dict[str, Any] | None = None,
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
|
@ -13,5 +13,5 @@ class ChromaVectorIOConfig(BaseModel):
|
|||
url: str
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]:
|
||||
return {"url": url}
|
||||
|
|
|
|||
|
|
@ -4,14 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import MilvusVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: MilvusVectorIOConfig, deps: Dict[Api, ProviderSpec]):
|
||||
async def get_adapter_impl(config: MilvusVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .milvus import MilvusVectorIOAdapter
|
||||
|
||||
assert isinstance(config, MilvusVectorIOConfig), f"Unexpected config type: {type(config)}"
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
|
@ -14,9 +14,9 @@ from llama_stack.schema_utils import json_schema_type
|
|||
@json_schema_type
|
||||
class MilvusVectorIOConfig(BaseModel):
|
||||
uri: str
|
||||
token: Optional[str] = None
|
||||
token: str | None = None
|
||||
consistency_level: str = "Strong"
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {"uri": "${env.MILVUS_ENDPOINT}", "token": "${env.MILVUS_TOKEN}"}
|
||||
|
|
|
|||
|
|
@ -9,7 +9,7 @@ import hashlib
|
|||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
from typing import Any
|
||||
|
||||
from numpy.typing import NDArray
|
||||
from pymilvus import MilvusClient
|
||||
|
|
@ -39,7 +39,7 @@ class MilvusIndex(EmbeddingIndex):
|
|||
if await asyncio.to_thread(self.client.has_collection, self.collection_name):
|
||||
await asyncio.to_thread(self.client.drop_collection, collection_name=self.collection_name)
|
||||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
|
@ -89,7 +89,7 @@ class MilvusIndex(EmbeddingIndex):
|
|||
|
||||
class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
self, config: Union[RemoteMilvusVectorIOConfig, InlineMilvusVectorIOConfig], inference_api: Api.inference
|
||||
self, config: RemoteMilvusVectorIOConfig | InlineMilvusVectorIOConfig, inference_api: Api.inference
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.cache = {}
|
||||
|
|
@ -124,7 +124,7 @@ class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
|
||||
self.cache[vector_db.identifier] = index
|
||||
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> Optional[VectorDBWithIndex]:
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
|
|
@ -148,8 +148,8 @@ class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
async def insert_chunks(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
chunks: list[Chunk],
|
||||
ttl_seconds: int | None = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
|
|
@ -161,7 +161,7 @@ class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
self,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
params: dict[str, Any] | None = None,
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
|
|
@ -172,7 +172,7 @@ class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
|
||||
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
|
||||
"""Generate a unique chunk ID using a hash of document ID and chunk text."""
|
||||
hash_input = f"{document_id}:{chunk_text}".encode("utf-8")
|
||||
hash_input = f"{document_id}:{chunk_text}".encode()
|
||||
return str(uuid.UUID(hashlib.md5(hash_input).hexdigest()))
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -4,14 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import PGVectorVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: PGVectorVectorIOConfig, deps: Dict[Api, ProviderSpec]):
|
||||
async def get_adapter_impl(config: PGVectorVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .pgvector import PGVectorVectorIOAdapter
|
||||
|
||||
impl = PGVectorVectorIOAdapter(config, deps[Api.inference])
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
|
@ -28,5 +28,5 @@ class PGVectorVectorIOConfig(BaseModel):
|
|||
user: str = "${env.PGVECTOR_USER}",
|
||||
password: str = "${env.PGVECTOR_PASSWORD}",
|
||||
**kwargs: Any,
|
||||
) -> Dict[str, Any]:
|
||||
) -> dict[str, Any]:
|
||||
return {"host": host, "port": port, "db": db, "user": user, "password": password}
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
from typing import Any
|
||||
|
||||
import psycopg2
|
||||
from numpy.typing import NDArray
|
||||
|
|
@ -33,7 +33,7 @@ def check_extension_version(cur):
|
|||
return result[0] if result else None
|
||||
|
||||
|
||||
def upsert_models(conn, keys_models: List[Tuple[str, BaseModel]]):
|
||||
def upsert_models(conn, keys_models: list[tuple[str, BaseModel]]):
|
||||
with conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
query = sql.SQL(
|
||||
"""
|
||||
|
|
@ -74,7 +74,7 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
"""
|
||||
)
|
||||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
|
@ -180,8 +180,8 @@ class PGVectorVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
async def insert_chunks(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
chunks: list[Chunk],
|
||||
ttl_seconds: int | None = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
await index.insert_chunks(chunks)
|
||||
|
|
@ -190,7 +190,7 @@ class PGVectorVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
self,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
params: dict[str, Any] | None = None,
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
return await index.query_chunks(query, params)
|
||||
|
|
|
|||
|
|
@ -4,14 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import QdrantVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: QdrantVectorIOConfig, deps: Dict[Api, ProviderSpec]):
|
||||
async def get_adapter_impl(config: QdrantVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .qdrant import QdrantVectorIOAdapter
|
||||
|
||||
impl = QdrantVectorIOAdapter(config, deps[Api.inference])
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
|
@ -13,19 +13,19 @@ from llama_stack.schema_utils import json_schema_type
|
|||
|
||||
@json_schema_type
|
||||
class QdrantVectorIOConfig(BaseModel):
|
||||
location: Optional[str] = None
|
||||
url: Optional[str] = None
|
||||
port: Optional[int] = 6333
|
||||
location: str | None = None
|
||||
url: str | None = None
|
||||
port: int | None = 6333
|
||||
grpc_port: int = 6334
|
||||
prefer_grpc: bool = False
|
||||
https: Optional[bool] = None
|
||||
api_key: Optional[str] = None
|
||||
prefix: Optional[str] = None
|
||||
timeout: Optional[int] = None
|
||||
host: Optional[str] = None
|
||||
https: bool | None = None
|
||||
api_key: str | None = None
|
||||
prefix: str | None = None
|
||||
timeout: int | None = None
|
||||
host: str | None = None
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs: Any) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"api_key": "${env.QDRANT_API_KEY}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
from typing import Any
|
||||
|
||||
from numpy.typing import NDArray
|
||||
from qdrant_client import AsyncQdrantClient, models
|
||||
|
|
@ -44,7 +44,7 @@ class QdrantIndex(EmbeddingIndex):
|
|||
self.client = client
|
||||
self.collection_name = collection_name
|
||||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
|
@ -101,7 +101,7 @@ class QdrantIndex(EmbeddingIndex):
|
|||
|
||||
class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
self, config: Union[RemoteQdrantVectorIOConfig, InlineQdrantVectorIOConfig], inference_api: Api.inference
|
||||
self, config: RemoteQdrantVectorIOConfig | InlineQdrantVectorIOConfig, inference_api: Api.inference
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.client: AsyncQdrantClient = None
|
||||
|
|
@ -131,7 +131,7 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> Optional[VectorDBWithIndex]:
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
|
|
@ -150,8 +150,8 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
async def insert_chunks(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
chunks: list[Chunk],
|
||||
ttl_seconds: int | None = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
|
|
@ -163,7 +163,7 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
self,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
params: dict[str, Any] | None = None,
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
|
|
|
|||
|
|
@ -4,14 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import WeaviateRequestProviderData, WeaviateVectorIOConfig # noqa: F401
|
||||
from .config import WeaviateVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: WeaviateVectorIOConfig, deps: Dict[Api, ProviderSpec]):
|
||||
async def get_adapter_impl(config: WeaviateVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .weaviate import WeaviateVectorIOAdapter
|
||||
|
||||
impl = WeaviateVectorIOAdapter(config, deps[Api.inference])
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
|
@ -16,5 +16,5 @@ class WeaviateRequestProviderData(BaseModel):
|
|||
|
||||
class WeaviateVectorIOConfig(BaseModel):
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs: Any) -> Dict[str, Any]:
|
||||
def sample_run_config(cls, **kwargs: Any) -> dict[str, Any]:
|
||||
return {}
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any
|
||||
|
||||
import weaviate
|
||||
import weaviate.classes as wvc
|
||||
|
|
@ -33,7 +33,7 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
self.client = client
|
||||
self.collection_name = collection_name
|
||||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
|
|
@ -80,7 +80,7 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self, chunk_ids: List[str]) -> None:
|
||||
async def delete(self, chunk_ids: list[str]) -> None:
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
collection.data.delete_many(where=Filter.by_property("id").contains_any(chunk_ids))
|
||||
|
||||
|
|
@ -144,7 +144,7 @@ class WeaviateVectorIOAdapter(
|
|||
self.inference_api,
|
||||
)
|
||||
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> Optional[VectorDBWithIndex]:
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
|
|
@ -167,8 +167,8 @@ class WeaviateVectorIOAdapter(
|
|||
async def insert_chunks(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
chunks: list[Chunk],
|
||||
ttl_seconds: int | None = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
|
|
@ -180,7 +180,7 @@ class WeaviateVectorIOAdapter(
|
|||
self,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
params: dict[str, Any] | None = None,
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue