mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-02 08:44:44 +00:00
Merge branch 'meta-llama:main' into main
This commit is contained in:
commit
b7f18eb012
198 changed files with 1015 additions and 953 deletions
29
.github/PULL_REQUEST_TEMPLATE.md
vendored
29
.github/PULL_REQUEST_TEMPLATE.md
vendored
|
@ -1,17 +1,14 @@
|
|||
# What does this PR do?
|
||||
|
||||
Closes # (issue)
|
||||
In short, provide a summary of what this PR does and why. Usually, the relevant context should be present in a linked issue.
|
||||
|
||||
- [ ] Addresses issue (#issue)
|
||||
|
||||
## Feature/Issue validation/testing/test plan
|
||||
|
||||
Please describe the tests that you ran to verify your changes and relevant result summary. Provide instructions so it can be reproduced.
|
||||
Please also list any relevant details for your test configuration or test plan.
|
||||
|
||||
- [ ] Test A
|
||||
Logs for Test A
|
||||
|
||||
- [ ] Test B
|
||||
Logs for Test B
|
||||
Please describe:
|
||||
- tests you ran to verify your changes with result summaries.
|
||||
- provide instructions so it can be reproduced.
|
||||
|
||||
|
||||
## Sources
|
||||
|
@ -20,12 +17,10 @@ Please link relevant resources if necessary.
|
|||
|
||||
|
||||
## Before submitting
|
||||
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
|
||||
- [ ] Did you read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
|
||||
Pull Request section?
|
||||
- [ ] Was this discussed/approved via a Github issue? Please add a link
|
||||
to it if that's the case.
|
||||
- [ ] Did you make sure to update the documentation with your changes?
|
||||
- [ ] Did you write any new necessary tests?
|
||||
|
||||
Thanks for contributing 🎉!
|
||||
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
|
||||
- [ ] Ran pre-commit to handle lint / formatting issues.
|
||||
- [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
|
||||
Pull Request section?
|
||||
- [ ] Updated relevant documentation.
|
||||
- [ ] Wrote necessary unit or integration tests.
|
||||
|
|
2
.gitmodules
vendored
2
.gitmodules
vendored
|
@ -1,3 +1,3 @@
|
|||
[submodule "llama_stack/providers/impls/ios/inference/executorch"]
|
||||
path = llama_stack/providers/impls/ios/inference/executorch
|
||||
path = llama_stack/providers/inline/ios/inference/executorch
|
||||
url = https://github.com/pytorch/executorch
|
||||
|
|
15
distributions/bedrock/compose.yaml
Normal file
15
distributions/bedrock/compose.yaml
Normal file
|
@ -0,0 +1,15 @@
|
|||
services:
|
||||
llamastack:
|
||||
image: distribution-bedrock
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
- ./run.yaml:/root/llamastack-run-bedrock.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-bedrock.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
46
distributions/bedrock/run.yaml
Normal file
46
distributions/bedrock/run.yaml
Normal file
|
@ -0,0 +1,46 @@
|
|||
version: '2'
|
||||
built_at: '2024-11-01T17:40:45.325529'
|
||||
image_name: local
|
||||
name: bedrock
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: bedrock0
|
||||
provider_type: remote::bedrock
|
||||
config:
|
||||
aws_access_key_id: <AWS_ACCESS_KEY_ID>
|
||||
aws_secret_access_key: <AWS_SECRET_ACCESS_KEY>
|
||||
aws_session_token: <AWS_SESSION_TOKEN>
|
||||
region_name: <AWS_REGION>
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
safety:
|
||||
- provider_id: bedrock0
|
||||
provider_type: remote::bedrock
|
||||
config:
|
||||
aws_access_key_id: <AWS_ACCESS_KEY_ID>
|
||||
aws_secret_access_key: <AWS_SECRET_ACCESS_KEY>
|
||||
aws_session_token: <AWS_SESSION_TOKEN>
|
||||
region_name: <AWS_REGION>
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config: {}
|
|
@ -61,49 +61,7 @@
|
|||
"```\n",
|
||||
"For GPU inference, you need to set these environment variables for specifying local directory containing your model checkpoints, and enable GPU inference to start running docker container.\n",
|
||||
"$ export LLAMA_CHECKPOINT_DIR=~/.llama\n",
|
||||
"$ llama stack configure llamastack-meta-reference-gpu\n",
|
||||
"```\n",
|
||||
"Follow the prompts as part of configure.\n",
|
||||
"Here is a sample output \n",
|
||||
"```\n",
|
||||
"$ llama stack configure llamastack-meta-reference-gpu\n",
|
||||
"\n",
|
||||
"Could not find ~/.conda/envs/llamastack-llamastack-meta-reference-gpu/llamastack-meta-reference-gpu-build.yaml. Trying docker image name instead...\n",
|
||||
"+ podman run --network host -it -v ~/.llama/builds/docker:/app/builds llamastack-meta-reference-gpu llama stack configure ./llamastack-build.yaml --output-dir /app/builds\n",
|
||||
"\n",
|
||||
"Configuring API `inference`...\n",
|
||||
"=== Configuring provider `meta-reference` for API inference...\n",
|
||||
"Enter value for model (default: Llama3.1-8B-Instruct) (required): Llama3.2-11B-Vision-Instruct\n",
|
||||
"Do you want to configure quantization? (y/n): n\n",
|
||||
"Enter value for torch_seed (optional): \n",
|
||||
"Enter value for max_seq_len (default: 4096) (required): \n",
|
||||
"Enter value for max_batch_size (default: 1) (required): \n",
|
||||
"\n",
|
||||
"Configuring API `safety`...\n",
|
||||
"=== Configuring provider `meta-reference` for API safety...\n",
|
||||
"Do you want to configure llama_guard_shield? (y/n): n\n",
|
||||
"Do you want to configure prompt_guard_shield? (y/n): n\n",
|
||||
"\n",
|
||||
"Configuring API `agents`...\n",
|
||||
"=== Configuring provider `meta-reference` for API agents...\n",
|
||||
"Enter `type` for persistence_store (options: redis, sqlite, postgres) (default: sqlite): \n",
|
||||
"\n",
|
||||
"Configuring SqliteKVStoreConfig:\n",
|
||||
"Enter value for namespace (optional): \n",
|
||||
"Enter value for db_path (default: /root/.llama/runtime/kvstore.db) (required): \n",
|
||||
"\n",
|
||||
"Configuring API `memory`...\n",
|
||||
"=== Configuring provider `meta-reference` for API memory...\n",
|
||||
"> Please enter the supported memory bank type your provider has for memory: vector\n",
|
||||
"\n",
|
||||
"Configuring API `telemetry`...\n",
|
||||
"=== Configuring provider `meta-reference` for API telemetry...\n",
|
||||
"\n",
|
||||
"> YAML configuration has been written to /app/builds/local-gpu-run.yaml.\n",
|
||||
"You can now run `llama stack run local-gpu --port PORT`\n",
|
||||
"YAML configuration has been written to /home/hjshah/.llama/builds/docker/local-gpu-run.yaml. You can now run `llama stack run /home/hjshah/.llama/builds/docker/local-gpu-run.yaml`\n",
|
||||
"```\n",
|
||||
"NOTE: For this example, we use all local meta-reference implementations and have not setup safety. \n",
|
||||
"\n",
|
||||
"5. Run the Stack Server\n",
|
||||
"```\n",
|
||||
|
|
|
@ -6,8 +6,8 @@ This guide contains references to walk you through adding a new API provider.
|
|||
1. First, decide which API your provider falls into (e.g. Inference, Safety, Agents, Memory).
|
||||
2. Decide whether your provider is a remote provider, or inline implmentation. A remote provider is a provider that makes a remote request to an service. An inline provider is a provider where implementation is executed locally. Checkout the examples, and follow the structure to add your own API provider. Please find the following code pointers:
|
||||
|
||||
- [Inference Remote Adapter](https://github.com/meta-llama/llama-stack/tree/docs/llama_stack/providers/adapters/inference)
|
||||
- [Inference Inline Provider](https://github.com/meta-llama/llama-stack/tree/docs/llama_stack/providers/impls/meta_reference/inference)
|
||||
- [Inference Remote Adapter](https://github.com/meta-llama/llama-stack/tree/docs/llama_stack/providers/remote/inference)
|
||||
- [Inference Inline Provider](https://github.com/meta-llama/llama-stack/tree/docs/llama_stack/providers/inline/meta_reference/inference)
|
||||
|
||||
3. [Build a Llama Stack distribution](https://llama-stack.readthedocs.io/en/latest/distribution_dev/building_distro.html) with your API provider.
|
||||
4. Test your code!
|
||||
|
|
|
@ -1,53 +1,56 @@
|
|||
# Developer Guide: Assemble a Llama Stack Distribution
|
||||
|
||||
> NOTE: This doc may be out-of-date.
|
||||
|
||||
This guide will walk you through the steps to get started with building a Llama Stack distributiom from scratch with your choice of API providers. Please see the [Getting Started Guide](./getting_started.md) if you just want the basic steps to start a Llama Stack distribution.
|
||||
This guide will walk you through the steps to get started with building a Llama Stack distributiom from scratch with your choice of API providers. Please see the [Getting Started Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html) if you just want the basic steps to start a Llama Stack distribution.
|
||||
|
||||
## Step 1. Build
|
||||
In the following steps, imagine we'll be working with a `Meta-Llama3.1-8B-Instruct` model. We will name our build `8b-instruct` to help us remember the config. We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
|
||||
- `name`: the name for our distribution (e.g. `8b-instruct`)
|
||||
|
||||
### Llama Stack Build Options
|
||||
|
||||
```
|
||||
llama stack build -h
|
||||
```
|
||||
We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
|
||||
- `name`: the name for our distribution (e.g. `my-stack`)
|
||||
- `image_type`: our build image type (`conda | docker`)
|
||||
- `distribution_spec`: our distribution specs for specifying API providers
|
||||
- `description`: a short description of the configurations for the distribution
|
||||
- `providers`: specifies the underlying implementation for serving each API endpoint
|
||||
- `image_type`: `conda` | `docker` to specify whether to build the distribution in the form of Docker image or Conda environment.
|
||||
|
||||
After this step is complete, a file named `<name>-build.yaml` and template file `<name>-run.yaml` will be generated and saved at the output file path specified at the end of the command.
|
||||
|
||||
At the end of build command, we will generate `<name>-build.yaml` file storing the build configurations.
|
||||
::::{tab-set}
|
||||
:::{tab-item} Building from Scratch
|
||||
|
||||
After this step is complete, a file named `<name>-build.yaml` will be generated and saved at the output file path specified at the end of the command.
|
||||
|
||||
#### Building from scratch
|
||||
- For a new user, we could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
|
||||
```
|
||||
llama stack build
|
||||
|
||||
> Enter a name for your Llama Stack (e.g. my-local-stack): my-stack
|
||||
> Enter the image type you want your Llama Stack to be built as (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's select
|
||||
the provider types (implementations) you want to use for these APIs.
|
||||
|
||||
Tip: use <TAB> to see options for the providers.
|
||||
|
||||
> Enter provider for API inference: meta-reference
|
||||
> Enter provider for API safety: meta-reference
|
||||
> Enter provider for API agents: meta-reference
|
||||
> Enter provider for API memory: meta-reference
|
||||
> Enter provider for API datasetio: meta-reference
|
||||
> Enter provider for API scoring: meta-reference
|
||||
> Enter provider for API eval: meta-reference
|
||||
> Enter provider for API telemetry: meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack:
|
||||
|
||||
You can now edit ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml`
|
||||
```
|
||||
:::
|
||||
|
||||
Running the command above will allow you to fill in the configuration to build your Llama Stack distribution, you will see the following outputs.
|
||||
|
||||
```
|
||||
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): 8b-instruct
|
||||
> Enter the image type you want your distribution to be built with (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
|
||||
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack distribution:
|
||||
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-llama-stack/8b-instruct-build.yaml
|
||||
```
|
||||
|
||||
**Ollama (optional)**
|
||||
|
||||
If you plan to use Ollama for inference, you'll need to install the server [via these instructions](https://ollama.com/download).
|
||||
|
||||
|
||||
#### Building from templates
|
||||
:::{tab-item} Building from a template
|
||||
- To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
|
||||
|
||||
The following command will allow you to see the available templates and their corresponding providers.
|
||||
|
@ -59,17 +62,20 @@ llama stack build --list-templates
|
|||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| Template Name | Providers | Description |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| bedrock | { | Use Amazon Bedrock APIs. |
|
||||
| | "inference": "remote::bedrock", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| hf-serverless | { | Like local, but use Hugging Face Inference API (serverless) for running LLM |
|
||||
| | "inference": "remote::hf::serverless", | inference. |
|
||||
| | "memory": "meta-reference", | See https://hf.co/docs/api-inference. |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| databricks | { | Use Databricks for running LLM inference |
|
||||
| | "inference": "remote::databricks", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| together | { | Use Together.ai for running LLM inference |
|
||||
| | "inference": "remote::together", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::weaviate" | |
|
||||
| | ], | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
|
@ -88,17 +94,37 @@ llama stack build --list-templates
|
|||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| hf-endpoint | { | Like local, but use Hugging Face Inference Endpoints for running LLM inference. |
|
||||
| | "inference": "remote::hf::endpoint", | See https://hf.co/docs/api-endpoints. |
|
||||
| databricks | { | Use Databricks for running LLM inference |
|
||||
| | "inference": "remote::databricks", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| hf-serverless | { | Like local, but use Hugging Face Inference API (serverless) for running LLM |
|
||||
| | "inference": "remote::hf::serverless", | inference. |
|
||||
| | "memory": "meta-reference", | See https://hf.co/docs/api-inference. |
|
||||
| vllm | { | Like local, but use vLLM for running LLM inference |
|
||||
| | "inference": "vllm", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| tgi | { | Use TGI for running LLM inference |
|
||||
| | "inference": "remote::tgi", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::chromadb", | |
|
||||
| | "remote::pgvector" | |
|
||||
| | ], | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| bedrock | { | Use Amazon Bedrock APIs. |
|
||||
| | "inference": "remote::bedrock", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
|
@ -140,31 +166,8 @@ llama stack build --list-templates
|
|||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| tgi | { | Use TGI for running LLM inference |
|
||||
| | "inference": "remote::tgi", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::chromadb", | |
|
||||
| | "remote::pgvector" | |
|
||||
| | ], | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| together | { | Use Together.ai for running LLM inference |
|
||||
| | "inference": "remote::together", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::weaviate" | |
|
||||
| | ], | |
|
||||
| | "safety": "remote::together", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| vllm | { | Like local, but use vLLM for running LLM inference |
|
||||
| | "inference": "vllm", | |
|
||||
| hf-endpoint | { | Like local, but use Hugging Face Inference Endpoints for running LLM inference. |
|
||||
| | "inference": "remote::hf::endpoint", | See https://hf.co/docs/api-endpoints. |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
|
@ -175,6 +178,7 @@ llama stack build --list-templates
|
|||
|
||||
You may then pick a template to build your distribution with providers fitted to your liking.
|
||||
|
||||
For example, to build a distribution with TGI as the inference provider, you can run:
|
||||
```
|
||||
llama stack build --template tgi
|
||||
```
|
||||
|
@ -182,15 +186,14 @@ llama stack build --template tgi
|
|||
```
|
||||
$ llama stack build --template tgi
|
||||
...
|
||||
...
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-tgi/tgi-build.yaml
|
||||
You may now run `llama stack configure tgi` or `llama stack configure ~/.conda/envs/llamastack-tgi/tgi-build.yaml`
|
||||
You can now edit ~/.llama/distributions/llamastack-tgi/tgi-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-tgi/tgi-run.yaml`
|
||||
```
|
||||
:::
|
||||
|
||||
#### Building from config file
|
||||
:::{tab-item} Building from a pre-existing build config file
|
||||
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
|
||||
|
||||
- The config file will be of contents like the ones in `llama_stack/distributions/templates/`.
|
||||
- The config file will be of contents like the ones in `llama_stack/templates/*build.yaml`.
|
||||
|
||||
```
|
||||
$ cat llama_stack/templates/ollama/build.yaml
|
||||
|
@ -210,148 +213,111 @@ image_type: conda
|
|||
```
|
||||
llama stack build --config llama_stack/templates/ollama/build.yaml
|
||||
```
|
||||
:::
|
||||
|
||||
#### How to build distribution with Docker image
|
||||
|
||||
:::{tab-item} Building Docker
|
||||
> [!TIP]
|
||||
> Podman is supported as an alternative to Docker. Set `DOCKER_BINARY` to `podman` in your environment to use Podman.
|
||||
|
||||
To build a docker image, you may start off from a template and use the `--image-type docker` flag to specify `docker` as the build image type.
|
||||
|
||||
```
|
||||
llama stack build --template local --image-type docker
|
||||
llama stack build --template ollama --image-type docker
|
||||
```
|
||||
|
||||
Alternatively, you may use a config file and set `image_type` to `docker` in our `<name>-build.yaml` file, and run `llama stack build <name>-build.yaml`. The `<name>-build.yaml` will be of contents like:
|
||||
|
||||
```
|
||||
name: local-docker-example
|
||||
distribution_spec:
|
||||
description: Use code from `llama_stack` itself to serve all llama stack APIs
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: meta-reference
|
||||
memory: meta-reference-faiss
|
||||
safety: meta-reference
|
||||
agentic_system: meta-reference
|
||||
telemetry: console
|
||||
image_type: docker
|
||||
```
|
||||
|
||||
The following command allows you to build a Docker image with the name `<name>`
|
||||
```
|
||||
llama stack build --config <name>-build.yaml
|
||||
|
||||
Dockerfile created successfully in /tmp/tmp.I0ifS2c46A/DockerfileFROM python:3.10-slim
|
||||
WORKDIR /app
|
||||
$ llama stack build --template ollama --image-type docker
|
||||
...
|
||||
Dockerfile created successfully in /tmp/tmp.viA3a3Rdsg/DockerfileFROM python:3.10-slim
|
||||
...
|
||||
You can run it with: podman run -p 8000:8000 llamastack-docker-local
|
||||
Build spec configuration saved at ~/.llama/distributions/docker/docker-local-build.yaml
|
||||
|
||||
You can now edit ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml and run `llama stack run ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml`
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find the built docker image and test it with `llama stack run <path/to/run.yaml>`.
|
||||
:::
|
||||
|
||||
## Step 2. Configure
|
||||
After our distribution is built (either in form of docker or conda environment), we will run the following command to
|
||||
```
|
||||
llama stack configure [ <docker-image-name> | <path/to/name.build.yaml>]
|
||||
```
|
||||
- For `conda` environments: <path/to/name.build.yaml> would be the generated build spec saved from Step 1.
|
||||
- For `docker` images downloaded from Dockerhub, you could also use <docker-image-name> as the argument.
|
||||
- Run `docker images` to check list of available images on your machine.
|
||||
::::
|
||||
|
||||
|
||||
## Step 2. Run
|
||||
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack build` step.
|
||||
|
||||
```
|
||||
$ llama stack configure tgi
|
||||
|
||||
Configuring API: inference (meta-reference)
|
||||
Enter value for model (existing: Meta-Llama3.1-8B-Instruct) (required):
|
||||
Enter value for quantization (optional):
|
||||
Enter value for torch_seed (optional):
|
||||
Enter value for max_seq_len (existing: 4096) (required):
|
||||
Enter value for max_batch_size (existing: 1) (required):
|
||||
|
||||
Configuring API: memory (meta-reference-faiss)
|
||||
|
||||
Configuring API: safety (meta-reference)
|
||||
Do you want to configure llama_guard_shield? (y/n): y
|
||||
Entering sub-configuration for llama_guard_shield:
|
||||
Enter value for model (default: Llama-Guard-3-1B) (required):
|
||||
Enter value for excluded_categories (default: []) (required):
|
||||
Enter value for disable_input_check (default: False) (required):
|
||||
Enter value for disable_output_check (default: False) (required):
|
||||
Do you want to configure prompt_guard_shield? (y/n): y
|
||||
Entering sub-configuration for prompt_guard_shield:
|
||||
Enter value for model (default: Prompt-Guard-86M) (required):
|
||||
|
||||
Configuring API: agentic_system (meta-reference)
|
||||
Enter value for brave_search_api_key (optional):
|
||||
Enter value for bing_search_api_key (optional):
|
||||
Enter value for wolfram_api_key (optional):
|
||||
|
||||
Configuring API: telemetry (console)
|
||||
|
||||
YAML configuration has been written to ~/.llama/builds/conda/tgi-run.yaml
|
||||
llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find a run configuration spec in `~/.llama/builds/conda/tgi-run.yaml` with the following contents. You may edit this file to change the settings.
|
||||
|
||||
As you can see, we did basic configuration above and configured:
|
||||
- inference to run on model `Meta-Llama3.1-8B-Instruct` (obtained from `llama model list`)
|
||||
- Llama Guard safety shield with model `Llama-Guard-3-1B`
|
||||
- Prompt Guard safety shield with model `Prompt-Guard-86M`
|
||||
|
||||
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
|
||||
|
||||
Note that all configurations as well as models are stored in `~/.llama`
|
||||
|
||||
|
||||
## Step 3. Run
|
||||
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack configure` step.
|
||||
|
||||
```
|
||||
llama stack run 8b-instruct
|
||||
```
|
||||
$ llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
|
||||
|
||||
You should see the Llama Stack server start and print the APIs that it is supporting
|
||||
Loaded model...
|
||||
Serving API datasets
|
||||
GET /datasets/get
|
||||
GET /datasets/list
|
||||
POST /datasets/register
|
||||
Serving API inspect
|
||||
GET /health
|
||||
GET /providers/list
|
||||
GET /routes/list
|
||||
Serving API inference
|
||||
POST /inference/chat_completion
|
||||
POST /inference/completion
|
||||
POST /inference/embeddings
|
||||
Serving API scoring_functions
|
||||
GET /scoring_functions/get
|
||||
GET /scoring_functions/list
|
||||
POST /scoring_functions/register
|
||||
Serving API scoring
|
||||
POST /scoring/score
|
||||
POST /scoring/score_batch
|
||||
Serving API memory_banks
|
||||
GET /memory_banks/get
|
||||
GET /memory_banks/list
|
||||
POST /memory_banks/register
|
||||
Serving API memory
|
||||
POST /memory/insert
|
||||
POST /memory/query
|
||||
Serving API safety
|
||||
POST /safety/run_shield
|
||||
Serving API eval
|
||||
POST /eval/evaluate
|
||||
POST /eval/evaluate_batch
|
||||
POST /eval/job/cancel
|
||||
GET /eval/job/result
|
||||
GET /eval/job/status
|
||||
Serving API shields
|
||||
GET /shields/get
|
||||
GET /shields/list
|
||||
POST /shields/register
|
||||
Serving API datasetio
|
||||
GET /datasetio/get_rows_paginated
|
||||
Serving API telemetry
|
||||
GET /telemetry/get_trace
|
||||
POST /telemetry/log_event
|
||||
Serving API models
|
||||
GET /models/get
|
||||
GET /models/list
|
||||
POST /models/register
|
||||
Serving API agents
|
||||
POST /agents/create
|
||||
POST /agents/session/create
|
||||
POST /agents/turn/create
|
||||
POST /agents/delete
|
||||
POST /agents/session/delete
|
||||
POST /agents/session/get
|
||||
POST /agents/step/get
|
||||
POST /agents/turn/get
|
||||
|
||||
```
|
||||
$ llama stack run 8b-instruct
|
||||
|
||||
> initializing model parallel with size 1
|
||||
> initializing ddp with size 1
|
||||
> initializing pipeline with size 1
|
||||
Loaded in 19.28 seconds
|
||||
NCCL version 2.20.5+cuda12.4
|
||||
Finished model load YES READY
|
||||
Serving POST /inference/batch_chat_completion
|
||||
Serving POST /inference/batch_completion
|
||||
Serving POST /inference/chat_completion
|
||||
Serving POST /inference/completion
|
||||
Serving POST /safety/run_shield
|
||||
Serving POST /agentic_system/memory_bank/attach
|
||||
Serving POST /agentic_system/create
|
||||
Serving POST /agentic_system/session/create
|
||||
Serving POST /agentic_system/turn/create
|
||||
Serving POST /agentic_system/delete
|
||||
Serving POST /agentic_system/session/delete
|
||||
Serving POST /agentic_system/memory_bank/detach
|
||||
Serving POST /agentic_system/session/get
|
||||
Serving POST /agentic_system/step/get
|
||||
Serving POST /agentic_system/turn/get
|
||||
Listening on :::5000
|
||||
INFO: Started server process [453333]
|
||||
Listening on ['::', '0.0.0.0']:5000
|
||||
INFO: Started server process [2935911]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
INFO: Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit)
|
||||
INFO: 2401:db00:35c:2d2b:face:0:c9:0:54678 - "GET /models/list HTTP/1.1" 200 OK
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Configuration is in `~/.llama/builds/local/conda/tgi-run.yaml`. Feel free to increase `max_seq_len`.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The "local" distribution inference server currently only supports CUDA. It will not work on Apple Silicon machines.
|
||||
|
||||
> [!TIP]
|
||||
> You might need to use the flag `--disable-ipv6` to Disable IPv6 support
|
||||
|
||||
This server is running a Llama model locally.
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
We offer both remote and on-device use of Llama Stack in Swift via two components:
|
||||
|
||||
1. [llama-stack-client-swift](https://github.com/meta-llama/llama-stack-client-swift/)
|
||||
2. [LocalInferenceImpl](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/impls/ios/inference)
|
||||
2. [LocalInferenceImpl](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/inline/ios/inference)
|
||||
|
||||
```{image} ../../../../_static/remote_or_local.gif
|
||||
:alt: Seamlessly switching between local, on-device inference and remote hosted inference
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
# Bedrock Distribution
|
||||
|
||||
### Connect to a Llama Stack Bedrock Endpoint
|
||||
- You may connect to Amazon Bedrock APIs for running LLM inference
|
||||
|
||||
The `llamastack/distribution-bedrock` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |---------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::bedrock | meta-reference | meta-reference | remote::bedrock | meta-reference |
|
||||
|
||||
|
||||
### Docker: Start the Distribution (Single Node CPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have valid AWS credentials configured with access to Amazon Bedrock.
|
||||
|
||||
```
|
||||
$ cd distributions/bedrock && docker compose up
|
||||
```
|
||||
|
||||
Make sure in your `run.yaml` file, your inference provider is pointing to the correct AWS configuration. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: bedrock0
|
||||
provider_type: remote::bedrock
|
||||
config:
|
||||
aws_access_key_id: <AWS_ACCESS_KEY_ID>
|
||||
aws_secret_access_key: <AWS_SECRET_ACCESS_KEY>
|
||||
aws_session_token: <AWS_SESSION_TOKEN>
|
||||
region_name: <AWS_REGION>
|
||||
```
|
||||
|
||||
### Conda llama stack run (Single Node CPU)
|
||||
|
||||
```bash
|
||||
llama stack build --template bedrock --image-type conda
|
||||
# -- modify run.yaml with valid AWS credentials
|
||||
llama stack run ./run.yaml
|
||||
```
|
||||
|
||||
### (Optional) Update Model Serving Configuration
|
||||
|
||||
Use `llama-stack-client models list` to check the available models served by Amazon Bedrock.
|
||||
|
||||
```
|
||||
$ llama-stack-client models list
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| identifier | llama_model | provider_id | metadata |
|
||||
+==============================+==============================+===============+============+
|
||||
| Llama3.1-8B-Instruct | meta.llama3-1-8b-instruct-v1:0 | bedrock0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.1-70B-Instruct | meta.llama3-1-70b-instruct-v1:0 | bedrock0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.1-405B-Instruct | meta.llama3-1-405b-instruct-v1:0 | bedrock0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
```
|
|
@ -102,7 +102,7 @@ ollama pull llama3.1:70b-instruct-fp16
|
|||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Please check the [OLLAMA_SUPPORTED_MODELS](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/adapters/inference/ollama/ollama.py) for the supported Ollama models.
|
||||
> Please check the [OLLAMA_SUPPORTED_MODELS](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers.remote/inference/ollama/ollama.py) for the supported Ollama models.
|
||||
|
||||
|
||||
To serve a new model with `ollama`
|
||||
|
|
|
@ -386,7 +386,7 @@ ollama pull llama3.1:8b-instruct-fp16
|
|||
ollama pull llama3.1:70b-instruct-fp16
|
||||
```
|
||||
|
||||
> Please check the [OLLAMA_SUPPORTED_MODELS](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/adapters/inference/ollama/ollama.py) for the supported Ollama models.
|
||||
> Please check the [OLLAMA_SUPPORTED_MODELS](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers.remote/inference/ollama/ollama.py) for the supported Ollama models.
|
||||
|
||||
|
||||
To serve a new model with `ollama`
|
||||
|
|
|
@ -39,7 +39,7 @@ class RunShieldResponse(BaseModel):
|
|||
|
||||
|
||||
class ShieldStore(Protocol):
|
||||
def get_shield(self, identifier: str) -> ShieldDef: ...
|
||||
async def get_shield(self, identifier: str) -> ShieldDef: ...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
|
@ -48,5 +48,5 @@ class Safety(Protocol):
|
|||
|
||||
@webmethod(route="/safety/run_shield")
|
||||
async def run_shield(
|
||||
self, shield_type: str, messages: List[Message], params: Dict[str, Any] = None
|
||||
self, identifier: str, messages: List[Message], params: Dict[str, Any] = None
|
||||
) -> RunShieldResponse: ...
|
||||
|
|
|
@ -46,7 +46,7 @@ class Shields(Protocol):
|
|||
async def list_shields(self) -> List[ShieldDefWithProvider]: ...
|
||||
|
||||
@webmethod(route="/shields/get", method="GET")
|
||||
async def get_shield(self, shield_type: str) -> Optional[ShieldDefWithProvider]: ...
|
||||
async def get_shield(self, identifier: str) -> Optional[ShieldDefWithProvider]: ...
|
||||
|
||||
@webmethod(route="/shields/register", method="POST")
|
||||
async def register_shield(self, shield: ShieldDefWithProvider) -> None: ...
|
||||
|
|
|
@ -12,6 +12,10 @@ import os
|
|||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.distribution.distribution import get_provider_registry
|
||||
from llama_stack.distribution.utils.dynamic import instantiate_class_type
|
||||
|
||||
|
||||
TEMPLATES_PATH = Path(os.path.relpath(__file__)).parent.parent.parent / "templates"
|
||||
|
||||
|
||||
|
@ -176,6 +180,66 @@ class StackBuild(Subcommand):
|
|||
return
|
||||
self._run_stack_build_command_from_build_config(build_config)
|
||||
|
||||
def _generate_run_config(self, build_config: BuildConfig, build_dir: Path) -> None:
|
||||
"""
|
||||
Generate a run.yaml template file for user to edit from a build.yaml file
|
||||
"""
|
||||
import json
|
||||
|
||||
import yaml
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.distribution.build import ImageType
|
||||
|
||||
apis = list(build_config.distribution_spec.providers.keys())
|
||||
run_config = StackRunConfig(
|
||||
built_at=datetime.now(),
|
||||
docker_image=(
|
||||
build_config.name
|
||||
if build_config.image_type == ImageType.docker.value
|
||||
else None
|
||||
),
|
||||
image_name=build_config.name,
|
||||
conda_env=(
|
||||
build_config.name
|
||||
if build_config.image_type == ImageType.conda.value
|
||||
else None
|
||||
),
|
||||
apis=apis,
|
||||
providers={},
|
||||
)
|
||||
# build providers dict
|
||||
provider_registry = get_provider_registry()
|
||||
for api in apis:
|
||||
run_config.providers[api] = []
|
||||
provider_types = build_config.distribution_spec.providers[api]
|
||||
if isinstance(provider_types, str):
|
||||
provider_types = [provider_types]
|
||||
|
||||
for i, provider_type in enumerate(provider_types):
|
||||
p_spec = Provider(
|
||||
provider_id=f"{provider_type}-{i}",
|
||||
provider_type=provider_type,
|
||||
config={},
|
||||
)
|
||||
config_type = instantiate_class_type(
|
||||
provider_registry[Api(api)][provider_type].config_class
|
||||
)
|
||||
p_spec.config = config_type()
|
||||
run_config.providers[api].append(p_spec)
|
||||
|
||||
os.makedirs(build_dir, exist_ok=True)
|
||||
run_config_file = build_dir / f"{build_config.name}-run.yaml"
|
||||
|
||||
with open(run_config_file, "w") as f:
|
||||
to_write = json.loads(run_config.model_dump_json())
|
||||
f.write(yaml.dump(to_write, sort_keys=False))
|
||||
|
||||
cprint(
|
||||
f"You can now edit {run_config_file} and run `llama stack run {run_config_file}`",
|
||||
color="green",
|
||||
)
|
||||
|
||||
def _run_stack_build_command_from_build_config(
|
||||
self, build_config: BuildConfig
|
||||
) -> None:
|
||||
|
@ -183,48 +247,24 @@ class StackBuild(Subcommand):
|
|||
import os
|
||||
|
||||
import yaml
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.distribution.build import build_image, ImageType
|
||||
from llama_stack.distribution.build import build_image
|
||||
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR
|
||||
from llama_stack.distribution.utils.serialize import EnumEncoder
|
||||
|
||||
# save build.yaml spec for building same distribution again
|
||||
if build_config.image_type == ImageType.docker.value:
|
||||
# docker needs build file to be in the llama-stack repo dir to be able to copy over to the image
|
||||
llama_stack_path = Path(
|
||||
os.path.abspath(__file__)
|
||||
).parent.parent.parent.parent
|
||||
build_dir = llama_stack_path / "tmp/configs/"
|
||||
else:
|
||||
build_dir = DISTRIBS_BASE_DIR / f"llamastack-{build_config.name}"
|
||||
|
||||
os.makedirs(build_dir, exist_ok=True)
|
||||
build_file_path = build_dir / f"{build_config.name}-build.yaml"
|
||||
|
||||
with open(build_file_path, "w") as f:
|
||||
to_write = json.loads(json.dumps(build_config.dict(), cls=EnumEncoder))
|
||||
to_write = json.loads(build_config.model_dump_json())
|
||||
f.write(yaml.dump(to_write, sort_keys=False))
|
||||
|
||||
return_code = build_image(build_config, build_file_path)
|
||||
if return_code != 0:
|
||||
return
|
||||
|
||||
configure_name = (
|
||||
build_config.name
|
||||
if build_config.image_type == "conda"
|
||||
else (f"llamastack-{build_config.name}")
|
||||
)
|
||||
if build_config.image_type == "conda":
|
||||
cprint(
|
||||
f"You can now run `llama stack configure {configure_name}`",
|
||||
color="green",
|
||||
)
|
||||
else:
|
||||
cprint(
|
||||
f"You can now edit your run.yaml file and run `docker run -it -p 5000:5000 {build_config.name}`. See full command in llama-stack/distributions/",
|
||||
color="green",
|
||||
)
|
||||
self._generate_run_config(build_config, build_dir)
|
||||
|
||||
def _run_template_list_cmd(self, args: argparse.Namespace) -> None:
|
||||
import json
|
||||
|
|
|
@ -7,8 +7,6 @@
|
|||
import argparse
|
||||
|
||||
from llama_stack.cli.subcommand import Subcommand
|
||||
from llama_stack.distribution.utils.config_dirs import BUILDS_BASE_DIR
|
||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
|
||||
|
||||
class StackConfigure(Subcommand):
|
||||
|
@ -39,123 +37,10 @@ class StackConfigure(Subcommand):
|
|||
)
|
||||
|
||||
def _run_stack_configure_cmd(self, args: argparse.Namespace) -> None:
|
||||
import json
|
||||
import os
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
import pkg_resources
|
||||
|
||||
import yaml
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.distribution.build import ImageType
|
||||
from llama_stack.distribution.utils.exec import run_with_pty
|
||||
|
||||
docker_image = None
|
||||
|
||||
build_config_file = Path(args.config)
|
||||
if build_config_file.exists():
|
||||
with open(build_config_file, "r") as f:
|
||||
build_config = BuildConfig(**yaml.safe_load(f))
|
||||
self._configure_llama_distribution(build_config, args.output_dir)
|
||||
return
|
||||
|
||||
conda_dir = (
|
||||
Path(os.path.expanduser("~/.conda/envs")) / f"llamastack-{args.config}"
|
||||
)
|
||||
output = subprocess.check_output(["bash", "-c", "conda info --json"])
|
||||
conda_envs = json.loads(output.decode("utf-8"))["envs"]
|
||||
|
||||
for x in conda_envs:
|
||||
if x.endswith(f"/llamastack-{args.config}"):
|
||||
conda_dir = Path(x)
|
||||
break
|
||||
|
||||
build_config_file = Path(conda_dir) / f"{args.config}-build.yaml"
|
||||
if build_config_file.exists():
|
||||
with open(build_config_file, "r") as f:
|
||||
build_config = BuildConfig(**yaml.safe_load(f))
|
||||
|
||||
cprint(f"Using {build_config_file}...", "green")
|
||||
self._configure_llama_distribution(build_config, args.output_dir)
|
||||
return
|
||||
|
||||
docker_image = args.config
|
||||
builds_dir = BUILDS_BASE_DIR / ImageType.docker.value
|
||||
if args.output_dir:
|
||||
builds_dir = Path(output_dir)
|
||||
os.makedirs(builds_dir, exist_ok=True)
|
||||
|
||||
script = pkg_resources.resource_filename(
|
||||
"llama_stack", "distribution/configure_container.sh"
|
||||
)
|
||||
script_args = [script, docker_image, str(builds_dir)]
|
||||
|
||||
return_code = run_with_pty(script_args)
|
||||
if return_code != 0:
|
||||
self.parser.error(
|
||||
f"Failed to configure container {docker_image} with return code {return_code}. Please run `llama stack build` first. "
|
||||
)
|
||||
|
||||
def _configure_llama_distribution(
|
||||
self,
|
||||
build_config: BuildConfig,
|
||||
output_dir: Optional[str] = None,
|
||||
):
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import yaml
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.distribution.configure import (
|
||||
configure_api_providers,
|
||||
parse_and_maybe_upgrade_config,
|
||||
)
|
||||
from llama_stack.distribution.utils.serialize import EnumEncoder
|
||||
|
||||
builds_dir = BUILDS_BASE_DIR / build_config.image_type
|
||||
if output_dir:
|
||||
builds_dir = Path(output_dir)
|
||||
os.makedirs(builds_dir, exist_ok=True)
|
||||
image_name = build_config.name.replace("::", "-")
|
||||
run_config_file = builds_dir / f"{image_name}-run.yaml"
|
||||
|
||||
if run_config_file.exists():
|
||||
cprint(
|
||||
f"Configuration already exists at `{str(run_config_file)}`. Will overwrite...",
|
||||
"yellow",
|
||||
attrs=["bold"],
|
||||
)
|
||||
config_dict = yaml.safe_load(run_config_file.read_text())
|
||||
config = parse_and_maybe_upgrade_config(config_dict)
|
||||
else:
|
||||
config = StackRunConfig(
|
||||
built_at=datetime.now(),
|
||||
image_name=image_name,
|
||||
apis=list(build_config.distribution_spec.providers.keys()),
|
||||
providers={},
|
||||
)
|
||||
|
||||
config = configure_api_providers(config, build_config.distribution_spec)
|
||||
|
||||
config.docker_image = (
|
||||
image_name if build_config.image_type == "docker" else None
|
||||
)
|
||||
config.conda_env = image_name if build_config.image_type == "conda" else None
|
||||
|
||||
with open(run_config_file, "w") as f:
|
||||
to_write = json.loads(json.dumps(config.dict(), cls=EnumEncoder))
|
||||
f.write(yaml.dump(to_write, sort_keys=False))
|
||||
|
||||
cprint(
|
||||
f"> YAML configuration has been written to `{run_config_file}`.",
|
||||
color="blue",
|
||||
)
|
||||
|
||||
cprint(
|
||||
f"You can now run `llama stack run {image_name} --port PORT`",
|
||||
color="green",
|
||||
"""
|
||||
DEPRECATED! llama stack configure has been deprecated.
|
||||
Please use llama stack run --config <path/to/run.yaml> instead.
|
||||
Please see example run.yaml in /distributions folder.
|
||||
"""
|
||||
)
|
||||
|
|
|
@ -45,7 +45,6 @@ class StackRun(Subcommand):
|
|||
|
||||
import pkg_resources
|
||||
import yaml
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.distribution.build import ImageType
|
||||
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
|
||||
|
@ -71,12 +70,10 @@ class StackRun(Subcommand):
|
|||
|
||||
if not config_file.exists():
|
||||
self.parser.error(
|
||||
f"File {str(config_file)} does not exist. Please run `llama stack build` and `llama stack configure <name>` to generate a run.yaml file"
|
||||
f"File {str(config_file)} does not exist. Please run `llama stack build` to generate (and optionally edit) a run.yaml file"
|
||||
)
|
||||
return
|
||||
|
||||
cprint(f"Using config `{config_file}`", "green")
|
||||
with open(config_file, "r") as f:
|
||||
config_dict = yaml.safe_load(config_file.read_text())
|
||||
config = parse_and_maybe_upgrade_config(config_dict)
|
||||
|
||||
|
|
|
@ -36,7 +36,6 @@ SCRIPT_DIR=$(dirname "$(readlink -f "$0")")
|
|||
REPO_DIR=$(dirname $(dirname "$SCRIPT_DIR"))
|
||||
DOCKER_BINARY=${DOCKER_BINARY:-docker}
|
||||
DOCKER_OPTS=${DOCKER_OPTS:-}
|
||||
REPO_CONFIGS_DIR="$REPO_DIR/tmp/configs"
|
||||
|
||||
TEMP_DIR=$(mktemp -d)
|
||||
|
||||
|
@ -115,8 +114,6 @@ ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server"]
|
|||
|
||||
EOF
|
||||
|
||||
add_to_docker "ADD tmp/configs/$(basename "$build_file_path") ./llamastack-build.yaml"
|
||||
|
||||
printf "Dockerfile created successfully in $TEMP_DIR/Dockerfile"
|
||||
cat $TEMP_DIR/Dockerfile
|
||||
printf "\n"
|
||||
|
@ -138,7 +135,6 @@ set -x
|
|||
$DOCKER_BINARY build $DOCKER_OPTS -t $image_name -f "$TEMP_DIR/Dockerfile" "$REPO_DIR" $mounts
|
||||
|
||||
# clean up tmp/configs
|
||||
rm -rf $REPO_CONFIGS_DIR
|
||||
set +x
|
||||
|
||||
echo "Success!"
|
||||
|
|
|
@ -143,14 +143,21 @@ def create_api_client_class(protocol, additional_protocol) -> Type:
|
|||
else:
|
||||
data.update(convert(kwargs))
|
||||
|
||||
return dict(
|
||||
ret = dict(
|
||||
method=webmethod.method or "POST",
|
||||
url=url,
|
||||
headers={"Content-Type": "application/json"},
|
||||
params=params,
|
||||
json=data,
|
||||
headers={
|
||||
"Accept": "application/json",
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
timeout=30,
|
||||
)
|
||||
if params:
|
||||
ret["params"] = params
|
||||
if data:
|
||||
ret["json"] = data
|
||||
|
||||
return ret
|
||||
|
||||
# Add protocol methods to the wrapper
|
||||
for p in protocols:
|
||||
|
|
|
@ -154,12 +154,12 @@ class SafetyRouter(Safety):
|
|||
|
||||
async def run_shield(
|
||||
self,
|
||||
shield_type: str,
|
||||
identifier: str,
|
||||
messages: List[Message],
|
||||
params: Dict[str, Any] = None,
|
||||
) -> RunShieldResponse:
|
||||
return await self.routing_table.get_provider_impl(shield_type).run_shield(
|
||||
shield_type=shield_type,
|
||||
return await self.routing_table.get_provider_impl(identifier).run_shield(
|
||||
identifier=identifier,
|
||||
messages=messages,
|
||||
params=params,
|
||||
)
|
||||
|
|
|
@ -182,6 +182,12 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
objs = await self.dist_registry.get_all()
|
||||
return [obj for obj in objs if obj.type == type]
|
||||
|
||||
async def get_all_with_types(
|
||||
self, types: List[str]
|
||||
) -> List[RoutableObjectWithProvider]:
|
||||
objs = await self.dist_registry.get_all()
|
||||
return [obj for obj in objs if obj.type in types]
|
||||
|
||||
|
||||
class ModelsRoutingTable(CommonRoutingTableImpl, Models):
|
||||
async def list_models(self) -> List[ModelDefWithProvider]:
|
||||
|
@ -198,8 +204,8 @@ class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
|
|||
async def list_shields(self) -> List[ShieldDef]:
|
||||
return await self.get_all_with_type("shield")
|
||||
|
||||
async def get_shield(self, shield_type: str) -> Optional[ShieldDefWithProvider]:
|
||||
return await self.get_object_by_identifier(shield_type)
|
||||
async def get_shield(self, identifier: str) -> Optional[ShieldDefWithProvider]:
|
||||
return await self.get_object_by_identifier(identifier)
|
||||
|
||||
async def register_shield(self, shield: ShieldDefWithProvider) -> None:
|
||||
await self.register_object(shield)
|
||||
|
@ -207,7 +213,14 @@ class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
|
|||
|
||||
class MemoryBanksRoutingTable(CommonRoutingTableImpl, MemoryBanks):
|
||||
async def list_memory_banks(self) -> List[MemoryBankDefWithProvider]:
|
||||
return await self.get_all_with_type("memory_bank")
|
||||
return await self.get_all_with_types(
|
||||
[
|
||||
MemoryBankType.vector.value,
|
||||
MemoryBankType.keyvalue.value,
|
||||
MemoryBankType.keyword.value,
|
||||
MemoryBankType.graph.value,
|
||||
]
|
||||
)
|
||||
|
||||
async def get_memory_bank(
|
||||
self, identifier: str
|
||||
|
|
|
@ -209,7 +209,8 @@ async def maybe_await(value):
|
|||
|
||||
async def sse_generator(event_gen):
|
||||
try:
|
||||
async for item in await event_gen:
|
||||
event_gen = await event_gen
|
||||
async for item in event_gen:
|
||||
yield create_sse_event(item)
|
||||
await asyncio.sleep(0.01)
|
||||
except asyncio.CancelledError:
|
||||
|
@ -229,7 +230,6 @@ async def sse_generator(event_gen):
|
|||
|
||||
|
||||
def create_dynamic_typed_route(func: Any, method: str):
|
||||
|
||||
async def endpoint(request: Request, **kwargs):
|
||||
await start_trace(func.__name__)
|
||||
|
||||
|
|
|
@ -1,15 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import VLLMImplConfig
|
||||
from .vllm import VLLMInferenceAdapter
|
||||
|
||||
|
||||
async def get_adapter_impl(config: VLLMImplConfig, _deps):
|
||||
assert isinstance(config, VLLMImplConfig), f"Unexpected config type: {type(config)}"
|
||||
impl = VLLMInferenceAdapter(config)
|
||||
await impl.initialize()
|
||||
return impl
|
|
@ -1,16 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class BedrockSafetyConfig(BaseModel):
|
||||
"""Configuration information for a guardrail that you want to use in the request."""
|
||||
|
||||
aws_profile: str = Field(
|
||||
default="default",
|
||||
description="The profile on the machine having valid aws credentials. This will ensure separation of creation to invocation",
|
||||
)
|
|
@ -1,26 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class TogetherProviderDataValidator(BaseModel):
|
||||
together_api_key: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TogetherSafetyConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default="https://api.together.xyz/v1",
|
||||
description="The URL for the Together AI server",
|
||||
)
|
||||
api_key: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The Together AI API Key (default for the distribution, if any)",
|
||||
)
|
|
@ -1,101 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from together import Together
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.safety import * # noqa: F403
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
|
||||
|
||||
from .config import TogetherSafetyConfig
|
||||
|
||||
|
||||
TOGETHER_SHIELD_MODEL_MAP = {
|
||||
"llama_guard": "meta-llama/Meta-Llama-Guard-3-8B",
|
||||
"Llama-Guard-3-8B": "meta-llama/Meta-Llama-Guard-3-8B",
|
||||
"Llama-Guard-3-11B-Vision": "meta-llama/Llama-Guard-3-11B-Vision-Turbo",
|
||||
}
|
||||
|
||||
|
||||
class TogetherSafetyImpl(Safety, NeedsRequestProviderData, ShieldsProtocolPrivate):
|
||||
def __init__(self, config: TogetherSafetyConfig) -> None:
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_shield(self, shield: ShieldDef) -> None:
|
||||
raise ValueError("Registering dynamic shields is not supported")
|
||||
|
||||
async def list_shields(self) -> List[ShieldDef]:
|
||||
return [
|
||||
ShieldDef(
|
||||
identifier=ShieldType.llama_guard.value,
|
||||
shield_type=ShieldType.llama_guard.value,
|
||||
params={},
|
||||
)
|
||||
]
|
||||
|
||||
async def run_shield(
|
||||
self, shield_type: str, messages: List[Message], params: Dict[str, Any] = None
|
||||
) -> RunShieldResponse:
|
||||
shield_def = await self.shield_store.get_shield(shield_type)
|
||||
if not shield_def:
|
||||
raise ValueError(f"Unknown shield {shield_type}")
|
||||
|
||||
model = shield_def.params.get("model", "llama_guard")
|
||||
if model not in TOGETHER_SHIELD_MODEL_MAP:
|
||||
raise ValueError(f"Unsupported safety model: {model}")
|
||||
|
||||
together_api_key = None
|
||||
if self.config.api_key is not None:
|
||||
together_api_key = self.config.api_key
|
||||
else:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.together_api_key:
|
||||
raise ValueError(
|
||||
'Pass Together API Key in the header X-LlamaStack-ProviderData as { "together_api_key": <your api key>}'
|
||||
)
|
||||
together_api_key = provider_data.together_api_key
|
||||
|
||||
# messages can have role assistant or user
|
||||
api_messages = []
|
||||
for message in messages:
|
||||
if message.role in (Role.user.value, Role.assistant.value):
|
||||
api_messages.append({"role": message.role, "content": message.content})
|
||||
|
||||
violation = await get_safety_response(
|
||||
together_api_key, TOGETHER_SHIELD_MODEL_MAP[model], api_messages
|
||||
)
|
||||
return RunShieldResponse(violation=violation)
|
||||
|
||||
|
||||
async def get_safety_response(
|
||||
api_key: str, model_name: str, messages: List[Dict[str, str]]
|
||||
) -> Optional[SafetyViolation]:
|
||||
client = Together(api_key=api_key)
|
||||
response = client.chat.completions.create(messages=messages, model=model_name)
|
||||
if len(response.choices) == 0:
|
||||
return None
|
||||
|
||||
response_text = response.choices[0].message.content
|
||||
if response_text == "safe":
|
||||
return None
|
||||
|
||||
parts = response_text.split("\n")
|
||||
if len(parts) != 2:
|
||||
return None
|
||||
|
||||
if parts[0] == "unsafe":
|
||||
return SafetyViolation(
|
||||
violation_level=ViolationLevel.ERROR,
|
||||
metadata={"violation_type": parts[1]},
|
||||
)
|
||||
|
||||
return None
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
from enum import Enum
|
||||
from typing import Any, List, Optional, Protocol
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
@ -145,11 +146,19 @@ Fully-qualified name of the module to import. The module is expected to have:
|
|||
|
||||
class RemoteProviderConfig(BaseModel):
|
||||
host: str = "localhost"
|
||||
port: int
|
||||
port: Optional[int] = None
|
||||
protocol: str = "http"
|
||||
|
||||
@property
|
||||
def url(self) -> str:
|
||||
return f"http://{self.host}:{self.port}"
|
||||
if self.port is None:
|
||||
return f"{self.protocol}://{self.host}"
|
||||
return f"{self.protocol}://{self.host}:{self.port}"
|
||||
|
||||
@classmethod
|
||||
def from_url(cls, url: str) -> "RemoteProviderConfig":
|
||||
parsed = urlparse(url)
|
||||
return cls(host=parsed.hostname, port=parsed.port, protocol=parsed.scheme)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
@ -16,7 +16,7 @@ from llama_stack.apis.datasets import * # noqa: F403
|
|||
from autoevals.llm import Factuality
|
||||
from autoevals.ragas import AnswerCorrectness
|
||||
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
||||
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.common import (
|
||||
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.common import (
|
||||
aggregate_average,
|
||||
)
|
||||
|
|
@ -4,10 +4,11 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore import KVStoreConfig
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
|
||||
|
||||
class MetaReferenceAgentsImplConfig(BaseModel):
|
||||
persistence_store: KVStoreConfig
|
||||
persistence_store: KVStoreConfig = Field(default=SqliteKVStoreConfig())
|
|
@ -32,18 +32,18 @@ class ShieldRunnerMixin:
|
|||
self.output_shields = output_shields
|
||||
|
||||
async def run_multiple_shields(
|
||||
self, messages: List[Message], shield_types: List[str]
|
||||
self, messages: List[Message], identifiers: List[str]
|
||||
) -> None:
|
||||
responses = await asyncio.gather(
|
||||
*[
|
||||
self.safety_api.run_shield(
|
||||
shield_type=shield_type,
|
||||
identifier=identifier,
|
||||
messages=messages,
|
||||
)
|
||||
for shield_type in shield_types
|
||||
for identifier in identifiers
|
||||
]
|
||||
)
|
||||
for shield_type, response in zip(shield_types, responses):
|
||||
for identifier, response in zip(identifiers, responses):
|
||||
if not response.violation:
|
||||
continue
|
||||
|
||||
|
@ -52,6 +52,6 @@ class ShieldRunnerMixin:
|
|||
raise SafetyException(violation)
|
||||
elif violation.violation_level == ViolationLevel.WARN:
|
||||
cprint(
|
||||
f"[Warn]{shield_type} raised a warning",
|
||||
f"[Warn]{identifier} raised a warning",
|
||||
color="red",
|
||||
)
|
|
@ -9,7 +9,7 @@ from typing import List
|
|||
from llama_stack.apis.inference import Message
|
||||
from llama_stack.apis.safety import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.impls.meta_reference.agents.safety import ShieldRunnerMixin
|
||||
from llama_stack.providers.inline.meta_reference.agents.safety import ShieldRunnerMixin
|
||||
|
||||
from .builtin import BaseTool
|
||||
|
|
@ -27,7 +27,7 @@ from torchao.quantization.GPTQ import Int8DynActInt4WeightLinear
|
|||
|
||||
from llama_stack.apis.inference import QuantizationType
|
||||
|
||||
from llama_stack.providers.impls.meta_reference.inference.config import (
|
||||
from llama_stack.providers.inline.meta_reference.inference.config import (
|
||||
MetaReferenceQuantizedInferenceConfig,
|
||||
)
|
||||
|
|
@ -8,9 +8,9 @@ import tempfile
|
|||
|
||||
import pytest
|
||||
from llama_stack.apis.memory import MemoryBankType, VectorMemoryBankDef
|
||||
from llama_stack.providers.impls.meta_reference.memory.config import FaissImplConfig
|
||||
from llama_stack.providers.inline.meta_reference.memory.config import FaissImplConfig
|
||||
|
||||
from llama_stack.providers.impls.meta_reference.memory.faiss import FaissMemoryImpl
|
||||
from llama_stack.providers.inline.meta_reference.memory.faiss import FaissMemoryImpl
|
||||
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
|
||||
|
||||
|
|
@ -57,13 +57,13 @@ class MetaReferenceSafetyImpl(Safety, ShieldsProtocolPrivate):
|
|||
|
||||
async def run_shield(
|
||||
self,
|
||||
shield_type: str,
|
||||
identifier: str,
|
||||
messages: List[Message],
|
||||
params: Dict[str, Any] = None,
|
||||
) -> RunShieldResponse:
|
||||
shield_def = await self.shield_store.get_shield(shield_type)
|
||||
shield_def = await self.shield_store.get_shield(identifier)
|
||||
if not shield_def:
|
||||
raise ValueError(f"Unknown shield {shield_type}")
|
||||
raise ValueError(f"Unknown shield {identifier}")
|
||||
|
||||
shield = self.get_shield_impl(shield_def)
|
||||
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue