This commit is contained in:
Christian Zaccaria 2025-10-27 16:22:42 +01:00 committed by GitHub
commit b85f179951
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 187 additions and 18 deletions

View file

@ -18,6 +18,7 @@ class VectorStore(Resource):
:param type: Type of resource, always 'vector_store' for vector stores
:param embedding_model: Name of the embedding model to use for vector generation
:param embedding_dimension: Dimension of the embedding vectors
:param distance_metric: Distance metric for vector similarity calculations (e.g., 'COSINE', 'L2', 'INNER_PRODUCT')
"""
type: Literal[ResourceType.vector_store] = ResourceType.vector_store
@ -25,6 +26,7 @@ class VectorStore(Resource):
embedding_model: str
embedding_dimension: int
vector_store_name: str | None = None
distance_metric: str | None = None
@property
def vector_store_id(self) -> str:
@ -42,6 +44,7 @@ class VectorStoreInput(BaseModel):
:param embedding_model: Name of the embedding model to use for vector generation
:param embedding_dimension: Dimension of the embedding vectors
:param provider_vector_store_id: (Optional) Provider-specific identifier for the vector store
:param distance_metric: (Optional) Distance metric for vector similarity calculations
"""
vector_store_id: str
@ -49,3 +52,4 @@ class VectorStoreInput(BaseModel):
embedding_dimension: int
provider_id: str | None = None
provider_vector_store_id: str | None = None
distance_metric: str | None = None

View file

@ -105,6 +105,7 @@ class VectorIORouter(VectorIO):
embedding_model = extra.get("embedding_model")
embedding_dimension = extra.get("embedding_dimension")
provider_id = extra.get("provider_id")
distance_metric = extra.get("distance_metric")
# Use default embedding model if not specified
if (
@ -154,6 +155,7 @@ class VectorIORouter(VectorIO):
provider_id=provider_id,
provider_vector_store_id=vector_store_id,
vector_store_name=params.name,
distance_metric=distance_metric,
)
provider = await self.routing_table.get_provider_impl(registered_vector_store.identifier)
@ -162,6 +164,8 @@ class VectorIORouter(VectorIO):
params.model_extra = {}
params.model_extra["provider_vector_store_id"] = registered_vector_store.provider_resource_id
params.model_extra["provider_id"] = registered_vector_store.provider_id
if distance_metric is not None:
params.model_extra["distance_metric"] = distance_metric
if embedding_model is not None:
params.model_extra["embedding_model"] = embedding_model
if embedding_dimension is not None:

View file

@ -49,6 +49,7 @@ class VectorStoresRoutingTable(CommonRoutingTableImpl):
provider_id: str | None = None,
provider_vector_store_id: str | None = None,
vector_store_name: str | None = None,
distance_metric: str | None = None,
) -> Any:
if provider_id is None:
if len(self.impls_by_provider_id) > 0:
@ -73,6 +74,7 @@ class VectorStoresRoutingTable(CommonRoutingTableImpl):
embedding_model=embedding_model,
embedding_dimension=embedding_dimension,
vector_store_name=vector_store_name,
distance_metric=distance_metric,
)
await self.register_object(vector_store)
return vector_store

View file

@ -39,7 +39,11 @@ OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_conten
class FaissIndex(EmbeddingIndex):
def __init__(self, dimension: int, kvstore: KVStore | None = None, bank_id: str | None = None):
def __init__(
self, dimension: int, kvstore: KVStore | None = None, bank_id: str | None = None, distance_metric: str = "L2"
):
self._check_distance_metric_support(distance_metric)
self.distance_metric = distance_metric
self.index = faiss.IndexFlatL2(dimension)
self.chunk_by_index: dict[int, Chunk] = {}
self.kvstore = kvstore
@ -51,8 +55,10 @@ class FaissIndex(EmbeddingIndex):
self.chunk_ids: list[Any] = []
@classmethod
async def create(cls, dimension: int, kvstore: KVStore | None = None, bank_id: str | None = None):
instance = cls(dimension, kvstore, bank_id)
async def create(
cls, dimension: int, kvstore: KVStore | None = None, bank_id: str | None = None, distance_metric: str = "L2"
):
instance = cls(dimension, kvstore, bank_id, distance_metric)
await instance.initialize()
return instance
@ -175,6 +181,22 @@ class FaissIndex(EmbeddingIndex):
"Hybrid search is not supported - underlying DB FAISS does not support this search mode"
)
def _check_distance_metric_support(self, distance_metric: str) -> None:
"""Check if the distance metric is supported by FAISS.
Args:
distance_metric: The distance metric to check
Raises:
NotImplementedError: If the distance metric is not supported yet
"""
if distance_metric != "L2":
# TODO: Implement support for other distance metrics in FAISS
raise NotImplementedError(
f"Distance metric '{distance_metric}' is not yet supported by the FAISS provider. "
f"Currently only 'L2' is supported. Please use 'L2' or switch to a different provider."
)
class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference, files_api: Files | None) -> None:
@ -229,9 +251,12 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoco
await self.kvstore.set(key=key, value=vector_store.model_dump_json())
# Store in cache
distance_metric = vector_store.distance_metric or "L2"
self.cache[vector_store.identifier] = VectorStoreWithIndex(
vector_store=vector_store,
index=await FaissIndex.create(vector_store.embedding_dimension, self.kvstore, vector_store.identifier),
index=await FaissIndex.create(
vector_store.embedding_dimension, self.kvstore, vector_store.identifier, distance_metric
),
inference_api=self.inference_api,
)

View file

@ -75,7 +75,14 @@ class SQLiteVecIndex(EmbeddingIndex):
- An FTS5 table (fts_chunks_{bank_id}) for full-text keyword search.
"""
def __init__(self, dimension: int, db_path: str, bank_id: str, kvstore: KVStore | None = None):
def __init__(
self,
dimension: int,
db_path: str,
bank_id: str,
kvstore: KVStore | None = None,
distance_metric: str = "COSINE",
):
self.dimension = dimension
self.db_path = db_path
self.bank_id = bank_id
@ -83,10 +90,12 @@ class SQLiteVecIndex(EmbeddingIndex):
self.vector_table = _make_sql_identifier(f"vec_chunks_{bank_id}")
self.fts_table = _make_sql_identifier(f"fts_chunks_{bank_id}")
self.kvstore = kvstore
self._check_distance_metric_support(distance_metric)
self.distance_metric = distance_metric
@classmethod
async def create(cls, dimension: int, db_path: str, bank_id: str):
instance = cls(dimension, db_path, bank_id)
async def create(cls, dimension: int, db_path: str, bank_id: str, distance_metric: str = "COSINE"):
instance = cls(dimension, db_path, bank_id, distance_metric=distance_metric)
await instance.initialize()
return instance
@ -373,6 +382,22 @@ class SQLiteVecIndex(EmbeddingIndex):
await asyncio.to_thread(_delete_chunks)
def _check_distance_metric_support(self, distance_metric: str) -> None:
"""Check if the distance metric is supported by SQLite-vec.
Args:
distance_metric: The distance metric to check
Raises:
NotImplementedError: If the distance metric is not supported yet
"""
if distance_metric != "COSINE":
# TODO: Implement support for other distance metrics in SQLite-vec
raise NotImplementedError(
f"Distance metric '{distance_metric}' is not yet supported by the SQLite-vec provider. "
f"Currently only 'COSINE' is supported. Please use 'COSINE' or switch to a different provider."
)
class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
"""
@ -412,8 +437,9 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresPro
return [v.vector_store for v in self.cache.values()]
async def register_vector_store(self, vector_store: VectorStore) -> None:
distance_metric = vector_store.distance_metric or "COSINE"
index = await SQLiteVecIndex.create(
vector_store.embedding_dimension, self.config.db_path, vector_store.identifier
vector_store.embedding_dimension, self.config.db_path, vector_store.identifier, distance_metric
)
self.cache[vector_store.identifier] = VectorStoreWithIndex(vector_store, index, self.inference_api)

View file

@ -45,10 +45,14 @@ async def maybe_await(result):
class ChromaIndex(EmbeddingIndex):
def __init__(self, client: ChromaClientType, collection, kvstore: KVStore | None = None):
def __init__(
self, client: ChromaClientType, collection, kvstore: KVStore | None = None, distance_metric: str = "COSINE"
):
self.client = client
self.collection = collection
self.kvstore = kvstore
self._check_distance_metric_support(distance_metric)
self.distance_metric = distance_metric
async def initialize(self):
pass
@ -102,6 +106,22 @@ class ChromaIndex(EmbeddingIndex):
ids = [f"{chunk.document_id}:{chunk.chunk_id}" for chunk in chunks_for_deletion]
await maybe_await(self.collection.delete(ids=ids))
def _check_distance_metric_support(self, distance_metric: str) -> None:
"""Check if the distance metric is supported by Chroma.
Args:
distance_metric: The distance metric to check
Raises:
NotImplementedError: If the distance metric is not supported yet
"""
if distance_metric != "COSINE":
# TODO: Implement support for other distance metrics in Chroma
raise NotImplementedError(
f"Distance metric '{distance_metric}' is not yet supported by the Chroma provider. "
f"Currently only 'COSINE' is supported. Please use 'COSINE' or switch to a different provider."
)
async def query_hybrid(
self,
embedding: NDArray,
@ -157,8 +177,9 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoc
name=vector_store.identifier, metadata={"vector_store": vector_store.model_dump_json()}
)
)
distance_metric = vector_store.distance_metric or "COSINE"
self.cache[vector_store.identifier] = VectorStoreWithIndex(
vector_store, ChromaIndex(self.client, collection), self.inference_api
vector_store, ChromaIndex(self.client, collection, distance_metric=distance_metric), self.inference_api
)
async def unregister_vector_store(self, vector_store_id: str) -> None:

View file

@ -44,12 +44,19 @@ OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_conten
class MilvusIndex(EmbeddingIndex):
def __init__(
self, client: MilvusClient, collection_name: str, consistency_level="Strong", kvstore: KVStore | None = None
self,
client: MilvusClient,
collection_name: str,
consistency_level="Strong",
kvstore: KVStore | None = None,
distance_metric: str = "COSINE",
):
self.client = client
self.collection_name = sanitize_collection_name(collection_name)
self.consistency_level = consistency_level
self.kvstore = kvstore
self._check_distance_metric_support(distance_metric)
self.distance_metric = distance_metric
async def initialize(self):
# MilvusIndex does not require explicit initialization
@ -260,6 +267,22 @@ class MilvusIndex(EmbeddingIndex):
logger.error(f"Error deleting chunks from Milvus collection {self.collection_name}: {e}")
raise
def _check_distance_metric_support(self, distance_metric: str) -> None:
"""Check if the distance metric is supported by Milvus.
Args:
distance_metric: The distance metric to check
Raises:
NotImplementedError: If the distance metric is not supported yet
"""
if distance_metric != "COSINE":
# TODO: Implement support for other distance metrics in Milvus
raise NotImplementedError(
f"Distance metric '{distance_metric}' is not yet supported by the Milvus provider. "
f"Currently only 'COSINE' is supported. Please use 'COSINE' or switch to a different provider."
)
class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
def __init__(
@ -316,9 +339,15 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoc
consistency_level = self.config.consistency_level
else:
consistency_level = "Strong"
distance_metric = vector_store.distance_metric or "COSINE"
index = VectorStoreWithIndex(
vector_store=vector_store,
index=MilvusIndex(self.client, vector_store.identifier, consistency_level=consistency_level),
index=MilvusIndex(
self.client,
vector_store.identifier,
consistency_level=consistency_level,
distance_metric=distance_metric,
),
inference_api=self.inference_api,
)

View file

@ -382,8 +382,13 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProt
upsert_models(self.conn, [(vector_store.identifier, vector_store)])
# Create and cache the PGVector index table for the vector DB
distance_metric = vector_store.distance_metric or "COSINE" # Default to COSINE if not specified
pgvector_index = PGVectorIndex(
vector_store=vector_store, dimension=vector_store.embedding_dimension, conn=self.conn, kvstore=self.kvstore
vector_store=vector_store,
dimension=vector_store.embedding_dimension,
conn=self.conn,
kvstore=self.kvstore,
distance_metric=distance_metric,
)
await pgvector_index.initialize()
index = VectorStoreWithIndex(vector_store, index=pgvector_index, inference_api=self.inference_api)
@ -420,7 +425,10 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProt
if not vector_store:
raise VectorStoreNotFoundError(vector_store_id)
index = PGVectorIndex(vector_store, vector_store.embedding_dimension, self.conn)
distance_metric = vector_store.distance_metric or "COSINE" # Default to COSINE if not specified
index = PGVectorIndex(
vector_store, vector_store.embedding_dimension, self.conn, distance_metric=distance_metric
)
await index.initialize()
self.cache[vector_store_id] = VectorStoreWithIndex(vector_store, index, self.inference_api)
return self.cache[vector_store_id]

View file

@ -56,9 +56,11 @@ def convert_id(_id: str) -> str:
class QdrantIndex(EmbeddingIndex):
def __init__(self, client: AsyncQdrantClient, collection_name: str):
def __init__(self, client: AsyncQdrantClient, collection_name: str, distance_metric: str = "COSINE"):
self.client = client
self.collection_name = collection_name
self._check_distance_metric_support(distance_metric)
self.distance_metric = distance_metric
async def initialize(self) -> None:
# Qdrant collections are created on-demand in add_chunks
@ -144,6 +146,22 @@ class QdrantIndex(EmbeddingIndex):
async def delete(self):
await self.client.delete_collection(collection_name=self.collection_name)
def _check_distance_metric_support(self, distance_metric: str) -> None:
"""Check if the distance metric is supported by Qdrant.
Args:
distance_metric: The distance metric to check
Raises:
NotImplementedError: If the distance metric is not supported yet
"""
if distance_metric != "COSINE":
# TODO: Implement support for other distance metrics in Qdrant
raise NotImplementedError(
f"Distance metric '{distance_metric}' is not yet supported by the Qdrant provider. "
f"Currently only 'COSINE' is supported. Please use 'COSINE' or switch to a different provider."
)
class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate):
def __init__(
@ -187,9 +205,10 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtoc
key = f"{VECTOR_DBS_PREFIX}{vector_store.identifier}"
await self.kvstore.set(key=key, value=vector_store.model_dump_json())
distance_metric = vector_store.distance_metric or "COSINE"
index = VectorStoreWithIndex(
vector_store=vector_store,
index=QdrantIndex(self.client, vector_store.identifier),
index=QdrantIndex(self.client, vector_store.identifier, distance_metric=distance_metric),
inference_api=self.inference_api,
)

View file

@ -45,10 +45,18 @@ OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_conten
class WeaviateIndex(EmbeddingIndex):
def __init__(self, client: weaviate.WeaviateClient, collection_name: str, kvstore: KVStore | None = None):
def __init__(
self,
client: weaviate.WeaviateClient,
collection_name: str,
kvstore: KVStore | None = None,
distance_metric: str = "COSINE",
):
self.client = client
self.collection_name = sanitize_collection_name(collection_name, weaviate_format=True)
self.kvstore = kvstore
self._check_distance_metric_support(distance_metric)
self.distance_metric = distance_metric
async def initialize(self):
pass
@ -82,6 +90,22 @@ class WeaviateIndex(EmbeddingIndex):
chunk_ids = [chunk.chunk_id for chunk in chunks_for_deletion]
collection.data.delete_many(where=Filter.by_property("chunk_id").contains_any(chunk_ids))
def _check_distance_metric_support(self, distance_metric: str) -> None:
"""Check if the distance metric is supported by Weaviate.
Args:
distance_metric: The distance metric to check
Raises:
NotImplementedError: If the distance metric is not supported yet
"""
if distance_metric != "COSINE":
# TODO: Implement support for other distance metrics in Weaviate
raise NotImplementedError(
f"Distance metric '{distance_metric}' is not yet supported by the Weaviate provider. "
f"Currently only 'COSINE' is supported. Please use 'COSINE' or switch to a different provider."
)
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
"""
Performs vector search using Weaviate's built-in vector search.
@ -329,8 +353,11 @@ class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProv
],
)
distance_metric = vector_store.distance_metric or "COSINE"
self.cache[vector_store.identifier] = VectorStoreWithIndex(
vector_store, WeaviateIndex(client=client, collection_name=sanitized_collection_name), self.inference_api
vector_store,
WeaviateIndex(client=client, collection_name=sanitized_collection_name, distance_metric=distance_metric),
self.inference_api,
)
async def unregister_vector_store(self, vector_store_id: str) -> None:

View file

@ -392,6 +392,9 @@ class OpenAIVectorStoreMixin(ABC):
if provider_id is None:
raise ValueError("Provider ID is required but was not provided")
# Extract distance_metric from extra_body if provided
distance_metric = extra_body.get("distance_metric")
# call to the provider to create any index, etc.
vector_store = VectorStore(
identifier=vector_store_id,
@ -400,6 +403,7 @@ class OpenAIVectorStoreMixin(ABC):
provider_id=provider_id,
provider_resource_id=vector_store_id,
vector_store_name=params.name,
distance_metric=distance_metric,
)
await self.register_vector_store(vector_store)