registry refactor

This commit is contained in:
Xi Yan 2024-10-08 15:44:02 -07:00
parent a56ea48d71
commit b87bdd0176
5 changed files with 52 additions and 22 deletions

View file

@ -1,24 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .datasets import CustomDataset, HFDataset
# TODO: make this into a config based registry
DATASETS_REGISTRY = {
"mmlu-simple-eval-en": CustomDataset(
name="mmlu_eval",
url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
),
"mmmu-accounting": HFDataset(
name="mmlu_eval",
url="hf://hellaswag?split=validation&trust_remote_code=True",
),
}
def get_dataset(dataset_id: str):
dataset = DATASETS_REGISTRY[dataset_id]
dataset.load()
return dataset

View file

@ -1,62 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from abc import ABC, abstractmethod
from urllib.parse import parse_qs, urlparse
import pandas
from datasets import Dataset, load_dataset
class BaseDataset(ABC):
def __init__(self, name: str):
self.dataset = None
self.dataset_id = name
self.type = self.__class__.__name__
def __iter__(self):
return iter(self.dataset)
@abstractmethod
def load(self):
pass
class CustomDataset(BaseDataset):
def __init__(self, name, url):
super().__init__(name)
self.url = url
def load(self):
if self.dataset:
return
# TODO: better support w/ data url
if self.url.endswith(".csv"):
df = pandas.read_csv(self.url)
elif self.url.endswith(".xlsx"):
df = pandas.read_excel(self.url)
self.dataset = Dataset.from_pandas(df)
class HFDataset(BaseDataset):
def __init__(self, name, url):
super().__init__(name)
self.url = url
def load(self):
if self.dataset:
return
parsed = urlparse(self.url)
if parsed.scheme != "hf":
raise ValueError(f"Unknown HF dataset: {self.url}")
query = parse_qs(parsed.query)
query = {k: v[0] for k, v in query.items()}
path = parsed.netloc
self.dataset = load_dataset(path, **query)

View file

@ -8,11 +8,9 @@ from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.evals import * # noqa: F403
from termcolor import cprint
from llama_stack.distribution.registry.tasks.task_registry import TaskRegistry
from llama_stack.distribution.registry.datasets.dataset_registry import DatasetRegistry
from llama_stack.providers.impls.meta_reference.evals.datas.dataset_registry import (
get_dataset,
)
from llama_stack.distribution.registry.tasks.task_registry import TaskRegistry
from .config import MetaReferenceEvalsImplConfig
@ -34,7 +32,8 @@ class MetaReferenceEvalsImpl(Evals):
task: str,
) -> EvaluateResponse:
cprint(f"model={model}, dataset={dataset}, task={task}", "red")
dataset = get_dataset(dataset)
dataset = DatasetRegistry.get_dataset(dataset)
dataset.load()
task_impl = TaskRegistry.get_task(task)(dataset)
x1 = task_impl.preprocess()