feat: introduce llama4 support (#1877)

As title says. Details in README, elsewhere.
This commit is contained in:
Ashwin Bharambe 2025-04-05 11:53:35 -07:00 committed by GitHub
parent 23a99a4b22
commit b8f1561956
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
61 changed files with 205222 additions and 6439 deletions

View file

@ -8,6 +8,7 @@ from typing import Any, Dict
from uuid import uuid4
import pytest
import requests
from llama_stack_client import Agent, AgentEventLogger, Document
from llama_stack_client.types.shared_params.agent_config import AgentConfig, ToolConfig
@ -21,7 +22,7 @@ from llama_stack.apis.agents.agents import (
def get_boiling_point(liquid_name: str, celcius: bool = True) -> int:
"""
Returns the boiling point of a liquid in Celcius or Fahrenheit
Returns the boiling point of a liquid in Celcius or Fahrenheit.
:param liquid_name: The name of the liquid
:param celcius: Whether to return the boiling point in Celcius
@ -185,7 +186,7 @@ def test_builtin_tool_web_search(llama_stack_client_with_mocked_inference, agent
messages=[
{
"role": "user",
"content": "Search the web and tell me what is the local time in Tokyo currently.",
"content": "Who are the latest board members to join Meta's board of directors?",
}
],
session_id=session_id,
@ -429,19 +430,28 @@ def test_rag_agent(llama_stack_client_with_mocked_inference, agent_config, rag_t
def test_rag_agent_with_attachments(llama_stack_client_with_mocked_inference, agent_config):
urls = ["chat.rst", "llama3.rst", "memory_optimizations.rst", "lora_finetune.rst"]
urls = ["llama3.rst", "lora_finetune.rst"]
documents = [
# passign as url
Document(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
document_id="num-0",
content={
"type": "url",
"uri": f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{urls[0]}",
},
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
),
# passing as str
Document(
document_id="num-1",
content=requests.get(
f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{urls[1]}"
).text[:500],
mime_type="text/plain",
metadata={},
),
]
agent_config = {
**agent_config,
}
rag_agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
session_id = rag_agent.create_session(f"test-session-{uuid4()}")
user_prompts = [
@ -456,7 +466,7 @@ def test_rag_agent_with_attachments(llama_stack_client_with_mocked_inference, ag
documents,
),
(
"Tell me how to use LoRA",
"Tell me how to use LoRA in 100 words or less",
None,
),
]
@ -478,6 +488,9 @@ def test_rag_agent_with_attachments(llama_stack_client_with_mocked_inference, ag
def test_rag_and_code_agent(llama_stack_client_with_mocked_inference, agent_config):
if "llama-4" in agent_config["model"].lower():
pytest.xfail("Not working for llama4")
documents = []
documents.append(
Document(
@ -544,7 +557,7 @@ def test_rag_and_code_agent(llama_stack_client_with_mocked_inference, agent_conf
stream=False,
)
tool_execution_step = next(step for step in response.steps if step.step_type == "tool_execution")
assert tool_execution_step.tool_calls[0].tool_name == tool_name
assert tool_execution_step.tool_calls[0].tool_name == tool_name, f"Failed on {prompt}"
if expected_kw:
assert expected_kw in response.output_message.content.lower()
@ -565,18 +578,22 @@ def test_create_turn_response(llama_stack_client_with_mocked_inference, agent_co
agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
session_id = agent.create_session(f"test-session-{uuid4()}")
input_prompt = f"Call {client_tools[0].__name__} tool and answer What is the boiling point of polyjuice?"
response = agent.create_turn(
messages=[
{
"role": "user",
"content": "Call get_boiling_point and answer What is the boiling point of polyjuice?",
"content": input_prompt,
},
],
session_id=session_id,
stream=False,
)
assert len(response.input_messages) == 1
assert input_prompt == response.input_messages[0].content
steps = response.steps
assert len(steps) == 3
assert len(steps) >= 3 # some models call the tool twice
assert steps[0].step_type == "inference"
assert steps[1].step_type == "tool_execution"
assert steps[1].tool_calls[0].tool_name.startswith("get_boiling_point")

View file

@ -23,7 +23,12 @@ def skip_if_model_doesnt_support_completion(client_with_models, model_id):
provider_id = models[model_id].provider_id
providers = {p.provider_id: p for p in client_with_models.providers.list()}
provider = providers[provider_id]
if provider.provider_type in ("remote::openai", "remote::anthropic", "remote::gemini", "remote::groq"):
if provider.provider_type in (
"remote::openai",
"remote::anthropic",
"remote::gemini",
"remote::groq",
):
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support completion")

View file

@ -4,11 +4,15 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import pathlib
from pathlib import Path
import pytest
THIS_DIR = Path(__file__).parent
@pytest.fixture
def image_path():
@ -27,7 +31,6 @@ def base64_image_url(base64_image_data, image_path):
return f"data:image/{image_path.suffix[1:]};base64,{base64_image_data}"
@pytest.mark.xfail(reason="This test is failing because the image is not being downloaded correctly.")
def test_image_chat_completion_non_streaming(client_with_models, vision_model_id):
message = {
"role": "user",
@ -56,7 +59,99 @@ def test_image_chat_completion_non_streaming(client_with_models, vision_model_id
assert any(expected in message_content for expected in {"dog", "puppy", "pup"})
@pytest.mark.xfail(reason="This test is failing because the image is not being downloaded correctly.")
@pytest.fixture
def multi_image_data():
files = [
THIS_DIR / "vision_test_1.jpg",
THIS_DIR / "vision_test_2.jpg",
THIS_DIR / "vision_test_3.jpg",
]
encoded_files = []
for file in files:
with open(file, "rb") as image_file:
base64_data = base64.b64encode(image_file.read()).decode("utf-8")
encoded_files.append(base64_data)
return encoded_files
@pytest.mark.parametrize("stream", [True, False])
def test_image_chat_completion_multiple_images(client_with_models, vision_model_id, multi_image_data, stream):
if "llama-4" not in vision_model_id.lower() and "gpt-4o" not in vision_model_id.lower():
pytest.skip("Skip for non-llama4, gpt4o models")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": {
"data": multi_image_data[0],
},
},
{
"type": "image",
"image": {
"data": multi_image_data[1],
},
},
{
"type": "text",
"text": "What are the differences between these images? Where would you assume they would be located?",
},
],
},
]
response = client_with_models.inference.chat_completion(
model_id=vision_model_id,
messages=messages,
stream=stream,
)
if stream:
message_content = ""
for chunk in response:
message_content += chunk.event.delta.text
else:
message_content = response.completion_message.content
assert len(message_content) > 0
assert any(expected in message_content.lower().strip() for expected in {"bedroom"}), message_content
messages.append(
{
"role": "assistant",
"content": [{"type": "text", "text": message_content}],
"stop_reason": "end_of_turn",
}
)
messages.append(
{
"role": "user",
"content": [
{
"type": "image",
"image": {
"data": multi_image_data[2],
},
},
{"type": "text", "text": "How about this one?"},
],
},
)
response = client_with_models.inference.chat_completion(
model_id=vision_model_id,
messages=messages,
stream=stream,
)
if stream:
message_content = ""
for chunk in response:
message_content += chunk.event.delta.text
else:
message_content = response.completion_message.content
assert len(message_content) > 0
assert any(expected in message_content.lower().strip() for expected in {"sword", "shield"}), message_content
def test_image_chat_completion_streaming(client_with_models, vision_model_id):
message = {
"role": "user",

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 139 KiB