Fixes post-review and split TGI adapter into local and Inference Endpoints ones

This commit is contained in:
Celina Hanouti 2024-09-09 17:47:49 +02:00
parent 5ab4fd31f7
commit b96e705680
3 changed files with 98 additions and 17 deletions

View file

@ -5,14 +5,20 @@
# the root directory of this source tree.
from .config import TGIImplConfig
from .tgi import InferenceEndpointAdapter, LocalTGIAdapter
async def get_adapter_impl(config: TGIImplConfig, _deps):
from .tgi import TGIAdapter
assert isinstance(config, TGIImplConfig), f"Unexpected config type: {type(config)}"
if config.is_local_tgi():
impl = LocalTGIAdapter(config)
elif config.is_inference_endpoint():
impl = InferenceEndpointAdapter(config)
else:
raise ValueError(
"Invalid configuration. Specify either a local URL or Inference Endpoint details."
)
assert isinstance(
config, TGIImplConfig
), f"Unexpected config type: {type(config)}"
impl = TGIAdapter(config)
await impl.initialize()
return impl

View file

@ -12,11 +12,25 @@ from pydantic import BaseModel, Field, field_validator
@json_schema_type
class TGIImplConfig(BaseModel):
url: str = Field(
default="https://huggingface.co/inference-endpoints/dedicated",
description="The URL for the TGI endpoint",
url: Optional[str] = Field(
default=None,
description="The URL for the local TGI endpoint (e.g., http://localhost:8080)",
)
api_token: Optional[str] = Field(
default="",
description="The HF token for Hugging Face Inference Endpoints",
default=None,
description="The HF token for Hugging Face Inference Endpoints (will default to locally saved token if not provided)",
)
hf_namespace: Optional[str] = Field(
default=None,
description="The username/organization name for the Hugging Face Inference Endpoint",
)
hf_endpoint_name: Optional[str] = Field(
default=None,
description="The name of the Hugging Face Inference Endpoint",
)
def is_inference_endpoint(self) -> bool:
return self.hf_namespace is not None and self.hf_endpoint_name is not None
def is_local_tgi(self) -> bool:
return self.url is not None and self.url.startswith("http://localhost")

View file

@ -7,6 +7,7 @@
from typing import AsyncGenerator
import requests
from huggingface_hub import InferenceClient
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import StopReason
@ -29,7 +30,7 @@ HF_SUPPORTED_MODELS = {
}
class TGIAdapter(Inference):
class LocalTGIAdapter(Inference):
def __init__(self, config: TGIImplConfig) -> None:
self.config = config
@ -38,10 +39,36 @@ class TGIAdapter(Inference):
@property
def client(self) -> InferenceClient:
return InferenceClient(base_url=self.config.url, token=self.config.api_token)
return InferenceClient(model=self.config.url, token=self.config.api_token)
def _get_endpoint_info(self):
return {**self.client.get_endpoint_info(), "inference_url": self.config.url}
async def initialize(self) -> None:
pass
try:
info = self._get_endpoint_info()
if "model_id" not in info:
raise RuntimeError("Missing model_id in model info")
if "max_total_tokens" not in info:
raise RuntimeError("Missing max_total_tokens in model info")
self.max_tokens = info["max_total_tokens"]
model_id = info["model_id"]
model_name = next(
(name for name, id in HF_SUPPORTED_MODELS.items() if id == model_id),
None,
)
if model_name is None:
raise RuntimeError(
f"TGI is serving model: {model_id}, use one of the supported models: {', '.join(HF_SUPPORTED_MODELS.values())}"
)
self.model_name = model_name
self.inference_url = info["inference_url"]
except Exception as e:
import traceback
traceback.print_exc()
raise RuntimeError(f"Error initializing TGIAdapter: {e}")
async def shutdown(self) -> None:
pass
@ -63,14 +90,19 @@ class TGIAdapter(Inference):
model_input = self.formatter.encode_dialog_prompt(messages)
prompt = self.tokenizer.decode(model_input.tokens)
model_info = self.client.get_endpoint_info(model=self.config.url)
input_tokens = len(model_input.tokens)
max_new_tokens = min(
request.sampling_params.max_tokens or model_info["max_total_tokens"],
model_info["max_total_tokens"] - len(model_input.tokens) - 1,
request.sampling_params.max_tokens or (self.max_tokens - input_tokens),
self.max_tokens - input_tokens - 1,
)
options = self.get_chat_options(request)
print(f"Calculated max_new_tokens: {max_new_tokens}")
assert (
request.model == self.model_name
), f"Model mismatch, expected {self.model_name}, got {request.model}"
options = self.get_chat_options(request)
if not request.stream:
response = self.client.text_generation(
prompt=prompt,
@ -198,3 +230,32 @@ class TGIAdapter(Inference):
stop_reason=stop_reason,
)
)
class InferenceEndpointAdapter(LocalTGIAdapter):
def __init__(self, config: TGIImplConfig) -> None:
super().__init__(config)
self.config.url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/{config.hf_namespace}/{config.hf_endpoint_name}"
@property
def client(self) -> InferenceClient:
return InferenceClient(model=self.inference_url, token=self.config.api_token)
def _get_endpoint_info(self) -> Dict[str, Any]:
headers = {
"accept": "application/json",
"authorization": f"Bearer {self.config.api_token}",
}
response = requests.get(self.config.url, headers=headers)
response.raise_for_status()
endpoint_info = response.json()
return {
"inference_url": endpoint_info["status"]["url"],
"model_id": endpoint_info["model"]["repository"],
"max_total_tokens": int(
endpoint_info["model"]["image"]["custom"]["env"]["MAX_TOTAL_TOKENS"]
),
}
async def initialize(self) -> None:
await super().initialize()