mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
Fixes post-review and split TGI adapter into local and Inference Endpoints ones
This commit is contained in:
parent
5ab4fd31f7
commit
b96e705680
3 changed files with 98 additions and 17 deletions
|
@ -5,14 +5,20 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from .config import TGIImplConfig
|
||||
from .tgi import InferenceEndpointAdapter, LocalTGIAdapter
|
||||
|
||||
|
||||
async def get_adapter_impl(config: TGIImplConfig, _deps):
|
||||
from .tgi import TGIAdapter
|
||||
assert isinstance(config, TGIImplConfig), f"Unexpected config type: {type(config)}"
|
||||
|
||||
if config.is_local_tgi():
|
||||
impl = LocalTGIAdapter(config)
|
||||
elif config.is_inference_endpoint():
|
||||
impl = InferenceEndpointAdapter(config)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Invalid configuration. Specify either a local URL or Inference Endpoint details."
|
||||
)
|
||||
|
||||
assert isinstance(
|
||||
config, TGIImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
impl = TGIAdapter(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -12,11 +12,25 @@ from pydantic import BaseModel, Field, field_validator
|
|||
|
||||
@json_schema_type
|
||||
class TGIImplConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default="https://huggingface.co/inference-endpoints/dedicated",
|
||||
description="The URL for the TGI endpoint",
|
||||
url: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The URL for the local TGI endpoint (e.g., http://localhost:8080)",
|
||||
)
|
||||
api_token: Optional[str] = Field(
|
||||
default="",
|
||||
description="The HF token for Hugging Face Inference Endpoints",
|
||||
default=None,
|
||||
description="The HF token for Hugging Face Inference Endpoints (will default to locally saved token if not provided)",
|
||||
)
|
||||
hf_namespace: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The username/organization name for the Hugging Face Inference Endpoint",
|
||||
)
|
||||
hf_endpoint_name: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The name of the Hugging Face Inference Endpoint",
|
||||
)
|
||||
|
||||
def is_inference_endpoint(self) -> bool:
|
||||
return self.hf_namespace is not None and self.hf_endpoint_name is not None
|
||||
|
||||
def is_local_tgi(self) -> bool:
|
||||
return self.url is not None and self.url.startswith("http://localhost")
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
|
||||
from typing import AsyncGenerator
|
||||
|
||||
import requests
|
||||
from huggingface_hub import InferenceClient
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import StopReason
|
||||
|
@ -29,7 +30,7 @@ HF_SUPPORTED_MODELS = {
|
|||
}
|
||||
|
||||
|
||||
class TGIAdapter(Inference):
|
||||
class LocalTGIAdapter(Inference):
|
||||
|
||||
def __init__(self, config: TGIImplConfig) -> None:
|
||||
self.config = config
|
||||
|
@ -38,10 +39,36 @@ class TGIAdapter(Inference):
|
|||
|
||||
@property
|
||||
def client(self) -> InferenceClient:
|
||||
return InferenceClient(base_url=self.config.url, token=self.config.api_token)
|
||||
return InferenceClient(model=self.config.url, token=self.config.api_token)
|
||||
|
||||
def _get_endpoint_info(self):
|
||||
return {**self.client.get_endpoint_info(), "inference_url": self.config.url}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
try:
|
||||
info = self._get_endpoint_info()
|
||||
if "model_id" not in info:
|
||||
raise RuntimeError("Missing model_id in model info")
|
||||
if "max_total_tokens" not in info:
|
||||
raise RuntimeError("Missing max_total_tokens in model info")
|
||||
self.max_tokens = info["max_total_tokens"]
|
||||
|
||||
model_id = info["model_id"]
|
||||
model_name = next(
|
||||
(name for name, id in HF_SUPPORTED_MODELS.items() if id == model_id),
|
||||
None,
|
||||
)
|
||||
if model_name is None:
|
||||
raise RuntimeError(
|
||||
f"TGI is serving model: {model_id}, use one of the supported models: {', '.join(HF_SUPPORTED_MODELS.values())}"
|
||||
)
|
||||
self.model_name = model_name
|
||||
self.inference_url = info["inference_url"]
|
||||
except Exception as e:
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
raise RuntimeError(f"Error initializing TGIAdapter: {e}")
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
@ -63,14 +90,19 @@ class TGIAdapter(Inference):
|
|||
model_input = self.formatter.encode_dialog_prompt(messages)
|
||||
prompt = self.tokenizer.decode(model_input.tokens)
|
||||
|
||||
model_info = self.client.get_endpoint_info(model=self.config.url)
|
||||
input_tokens = len(model_input.tokens)
|
||||
max_new_tokens = min(
|
||||
request.sampling_params.max_tokens or model_info["max_total_tokens"],
|
||||
model_info["max_total_tokens"] - len(model_input.tokens) - 1,
|
||||
request.sampling_params.max_tokens or (self.max_tokens - input_tokens),
|
||||
self.max_tokens - input_tokens - 1,
|
||||
)
|
||||
|
||||
options = self.get_chat_options(request)
|
||||
print(f"Calculated max_new_tokens: {max_new_tokens}")
|
||||
|
||||
assert (
|
||||
request.model == self.model_name
|
||||
), f"Model mismatch, expected {self.model_name}, got {request.model}"
|
||||
|
||||
options = self.get_chat_options(request)
|
||||
if not request.stream:
|
||||
response = self.client.text_generation(
|
||||
prompt=prompt,
|
||||
|
@ -198,3 +230,32 @@ class TGIAdapter(Inference):
|
|||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class InferenceEndpointAdapter(LocalTGIAdapter):
|
||||
def __init__(self, config: TGIImplConfig) -> None:
|
||||
super().__init__(config)
|
||||
self.config.url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/{config.hf_namespace}/{config.hf_endpoint_name}"
|
||||
|
||||
@property
|
||||
def client(self) -> InferenceClient:
|
||||
return InferenceClient(model=self.inference_url, token=self.config.api_token)
|
||||
|
||||
def _get_endpoint_info(self) -> Dict[str, Any]:
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"authorization": f"Bearer {self.config.api_token}",
|
||||
}
|
||||
response = requests.get(self.config.url, headers=headers)
|
||||
response.raise_for_status()
|
||||
endpoint_info = response.json()
|
||||
return {
|
||||
"inference_url": endpoint_info["status"]["url"],
|
||||
"model_id": endpoint_info["model"]["repository"],
|
||||
"max_total_tokens": int(
|
||||
endpoint_info["model"]["image"]["custom"]["env"]["MAX_TOTAL_TOKENS"]
|
||||
),
|
||||
}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
await super().initialize()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue