mirror of
https://github.com/meta-llama/llama-stack.git
synced 2026-01-04 04:52:17 +00:00
Added a draft implementation of the preprocessor chain.
This commit is contained in:
parent
16764a2f06
commit
b981181b25
7 changed files with 180 additions and 46 deletions
|
|
@ -13,10 +13,11 @@ from llama_stack.apis.common.content_types import URL
|
|||
from llama_stack.apis.preprocessing import (
|
||||
Preprocessing,
|
||||
PreprocessingDataType,
|
||||
PreprocessingInput,
|
||||
PreprocessingResponse,
|
||||
Preprocessor,
|
||||
PreprocessorChain,
|
||||
PreprocessorInput,
|
||||
PreprocessorOptions,
|
||||
PreprocessorResponse,
|
||||
)
|
||||
from llama_stack.apis.vector_io import Chunk
|
||||
from llama_stack.providers.datatypes import PreprocessorsProtocolPrivate
|
||||
|
|
@ -27,10 +28,10 @@ log = logging.getLogger(__name__)
|
|||
|
||||
class InclineDoclingPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate):
|
||||
# this preprocessor receives URLs / paths to documents as input
|
||||
INPUT_TYPES = [PreprocessingDataType.document_uri]
|
||||
input_types = [PreprocessingDataType.document_uri]
|
||||
|
||||
# this preprocessor either only converts the documents into a text format, or also chunks them
|
||||
OUTPUT_TYPES = [PreprocessingDataType.raw_text_document, PreprocessingDataType.chunks]
|
||||
output_types = [PreprocessingDataType.raw_text_document, PreprocessingDataType.chunks]
|
||||
|
||||
def __init__(self, config: InlineDoclingConfig) -> None:
|
||||
self.config = config
|
||||
|
|
@ -50,9 +51,9 @@ class InclineDoclingPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate
|
|||
async def preprocess(
|
||||
self,
|
||||
preprocessor_id: str,
|
||||
preprocessor_inputs: List[PreprocessingInput],
|
||||
preprocessor_inputs: List[PreprocessorInput],
|
||||
options: Optional[PreprocessorOptions] = None,
|
||||
) -> PreprocessingResponse:
|
||||
) -> PreprocessorResponse:
|
||||
results = []
|
||||
|
||||
for inp in preprocessor_inputs:
|
||||
|
|
@ -74,4 +75,12 @@ class InclineDoclingPreprocessorImpl(Preprocessing, PreprocessorsProtocolPrivate
|
|||
result = converted_document.export_to_markdown()
|
||||
results.append(result)
|
||||
|
||||
return PreprocessingResponse(status=True, results=results)
|
||||
return PreprocessorResponse(status=True, results=results)
|
||||
|
||||
async def chain_preprocess(
|
||||
self,
|
||||
preprocessors: PreprocessorChain,
|
||||
preprocessor_inputs: List[PreprocessorInput],
|
||||
is_rag_chain: Optional[bool] = False,
|
||||
) -> PreprocessorResponse:
|
||||
return await self.preprocess(preprocessor_id="", preprocessor_inputs=preprocessor_inputs)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue