mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-06 10:42:39 +00:00
Merge branch 'main' into fix-base64
This commit is contained in:
commit
baddcf910b
10 changed files with 253 additions and 31 deletions
69
.github/workflows/tests.yml
vendored
Normal file
69
.github/workflows/tests.yml
vendored
Normal file
|
@ -0,0 +1,69 @@
|
|||
name: auto-tests
|
||||
|
||||
on:
|
||||
# pull_request:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
commit_sha:
|
||||
description: 'Specific Commit SHA to trigger on'
|
||||
required: false
|
||||
default: $GITHUB_SHA # default to the last commit of $GITHUB_REF branch
|
||||
|
||||
jobs:
|
||||
test-llama-stack-as-library:
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
|
||||
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
|
||||
TAVILY_SEARCH_API_KEY: ${{ secrets.TAVILY_SEARCH_API_KEY }}
|
||||
strategy:
|
||||
matrix:
|
||||
provider: [fireworks, together]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event.inputs.commit_sha }}
|
||||
|
||||
- name: Echo commit SHA
|
||||
run: |
|
||||
echo "Triggered on commit SHA: ${{ github.event.inputs.commit_sha }}"
|
||||
git rev-parse HEAD
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements.txt pytest
|
||||
pip install -e .
|
||||
|
||||
- name: Build providers
|
||||
run: |
|
||||
llama stack build --template ${{ matrix.provider }} --image-type venv
|
||||
|
||||
- name: Install the latest llama-stack-client & llama-models packages
|
||||
run: |
|
||||
pip install -e git+https://github.com/meta-llama/llama-stack-client-python.git#egg=llama-stack-client
|
||||
pip install -e git+https://github.com/meta-llama/llama-models.git#egg=llama-models
|
||||
|
||||
- name: Run client-sdk test
|
||||
working-directory: "${{ github.workspace }}"
|
||||
env:
|
||||
REPORT_OUTPUT: md_report.md
|
||||
shell: bash
|
||||
run: |
|
||||
pip install --upgrade pytest-md-report
|
||||
echo "REPORT_FILE=${REPORT_OUTPUT}" >> "$GITHUB_ENV"
|
||||
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
||||
LLAMA_STACK_CONFIG=./llama_stack/templates/${{ matrix.provider }}/run.yaml pytest --md-report --md-report-verbose=1 ./tests/client-sdk/inference/test_inference.py --md-report-output "$REPORT_OUTPUT"
|
||||
|
||||
- name: Output reports to the job summary
|
||||
if: always()
|
||||
shell: bash
|
||||
run: |
|
||||
if [ -f "$REPORT_FILE" ]; then
|
||||
echo "<details><summary> Test Report for ${{ matrix.provider }} </summary>" >> $GITHUB_STEP_SUMMARY
|
||||
echo "" >> $GITHUB_STEP_SUMMARY
|
||||
cat "$REPORT_FILE" >> $GITHUB_STEP_SUMMARY
|
||||
echo "" >> $GITHUB_STEP_SUMMARY
|
||||
echo "</details>" >> $GITHUB_STEP_SUMMARY
|
||||
fi
|
|
@ -7,9 +7,9 @@ You can run a Llama Stack server in one of the following ways:
|
|||
This is the simplest way to get started. Using Llama Stack as a library means you do not need to start a server. This is especially useful when you are not running inference locally and relying on an external inference service (eg. fireworks, together, groq, etc.) See [Using Llama Stack as a Library](importing_as_library)
|
||||
|
||||
|
||||
**Docker**:
|
||||
**Container**:
|
||||
|
||||
Another simple way to start interacting with Llama Stack is to just spin up docker which is pre-built with all the providers you need. We provide a number of pre-built Docker containers so you can start a Llama Stack server instantly. You can also build your own custom Docker container. Which distribution to choose depends on the hardware you have. See [Selection of a Distribution](distributions/selection) for more details.
|
||||
Another simple way to start interacting with Llama Stack is to just spin up a container (via Docker or Podman) which is pre-built with all the providers you need. We provide a number of pre-built images so you can start a Llama Stack server instantly. You can also build your own custom container. Which distribution to choose depends on the hardware you have. See [Selection of a Distribution](selection) for more details.
|
||||
|
||||
|
||||
**Conda**:
|
||||
|
@ -24,4 +24,5 @@ Lastly, if you have a custom or an advanced setup or you are developing on Llama
|
|||
importing_as_library
|
||||
building_distro
|
||||
configuration
|
||||
selection
|
||||
```
|
||||
|
|
|
@ -44,7 +44,7 @@ The following models are available by default:
|
|||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaBova.ai](https://sambanova.ai/).
|
||||
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaNova.ai](https://cloud.sambanova.ai/).
|
||||
|
||||
|
||||
## Running Llama Stack with SambaNova
|
||||
|
|
|
@ -140,6 +140,10 @@ class StackRun(Subcommand):
|
|||
return
|
||||
|
||||
def get_conda_prefix(env_name):
|
||||
# Conda "base" environment does not end with "base" in the
|
||||
# prefix, so should be handled separately.
|
||||
if env_name == "base":
|
||||
return os.environ.get("CONDA_PREFIX")
|
||||
# Get conda environments info
|
||||
conda_env_info = json.loads(
|
||||
subprocess.check_output(
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
import json
|
||||
import warnings
|
||||
from typing import AsyncGenerator, Literal
|
||||
from typing import AsyncGenerator, Literal, Union
|
||||
|
||||
from groq import Stream
|
||||
from groq.types.chat.chat_completion import ChatCompletion
|
||||
|
@ -30,6 +30,8 @@ from groq.types.shared.function_definition import FunctionDefinition
|
|||
|
||||
from llama_models.llama3.api.datatypes import ToolParamDefinition
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
TextDelta,
|
||||
ToolCallDelta,
|
||||
|
@ -150,15 +152,26 @@ def convert_chat_completion_response(
|
|||
_convert_groq_tool_call(tool_call)
|
||||
for tool_call in choice.message.tool_calls
|
||||
]
|
||||
return ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
tool_calls=tool_calls,
|
||||
stop_reason=StopReason.end_of_message,
|
||||
# Content is not optional
|
||||
content="",
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
if any(isinstance(tool_call, UnparseableToolCall) for tool_call in tool_calls):
|
||||
# If we couldn't parse a tool call, jsonify the tool calls and return them
|
||||
return ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
stop_reason=StopReason.end_of_message,
|
||||
content=json.dumps(tool_calls, default=lambda x: x.model_dump()),
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
else:
|
||||
# Otherwise, return tool calls as normal
|
||||
return ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
tool_calls=tool_calls,
|
||||
stop_reason=StopReason.end_of_message,
|
||||
# Content is not optional
|
||||
content="",
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
else:
|
||||
return ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
|
@ -214,15 +227,27 @@ async def convert_chat_completion_response_stream(
|
|||
|
||||
# We assume Groq produces fully formed tool calls for each chunk
|
||||
tool_call = _convert_groq_tool_call(choice.delta.tool_calls[0])
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=event_type,
|
||||
delta=ToolCallDelta(
|
||||
tool_call=tool_call,
|
||||
parse_status=ToolCallParseStatus.succeeded,
|
||||
),
|
||||
if isinstance(tool_call, ToolCall):
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=event_type,
|
||||
delta=ToolCallDelta(
|
||||
tool_call=tool_call,
|
||||
parse_status=ToolCallParseStatus.succeeded,
|
||||
),
|
||||
)
|
||||
)
|
||||
else:
|
||||
# Otherwise it's an UnparseableToolCall - return the raw tool call
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=event_type,
|
||||
delta=ToolCallDelta(
|
||||
tool_call=tool_call.model_dump_json(),
|
||||
parse_status=ToolCallParseStatus.failed,
|
||||
),
|
||||
)
|
||||
)
|
||||
)
|
||||
else:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
@ -234,12 +259,35 @@ async def convert_chat_completion_response_stream(
|
|||
event_type = ChatCompletionResponseEventType.progress
|
||||
|
||||
|
||||
def _convert_groq_tool_call(tool_call: ChatCompletionMessageToolCall) -> ToolCall:
|
||||
class UnparseableToolCall(BaseModel):
|
||||
"""
|
||||
A ToolCall with arguments that are not valid JSON.
|
||||
Mirrors the ToolCall schema, but with arguments as a string.
|
||||
"""
|
||||
|
||||
call_id: str
|
||||
tool_name: str
|
||||
arguments: str
|
||||
|
||||
|
||||
def _convert_groq_tool_call(
|
||||
tool_call: ChatCompletionMessageToolCall,
|
||||
) -> Union[ToolCall, UnparseableToolCall]:
|
||||
"""
|
||||
Convert a Groq tool call to a ToolCall.
|
||||
Returns an UnparseableToolCall if the tool call is not valid JSON.
|
||||
"""
|
||||
try:
|
||||
arguments = json.loads(tool_call.function.arguments)
|
||||
except Exception as e:
|
||||
return UnparseableToolCall(
|
||||
call_id=tool_call.id,
|
||||
tool_name=tool_call.function.name,
|
||||
arguments=tool_call.function.arguments,
|
||||
)
|
||||
|
||||
return ToolCall(
|
||||
call_id=tool_call.id,
|
||||
tool_name=tool_call.function.name,
|
||||
# Note that Groq may return a string that is not valid JSON here
|
||||
# So this may raise a 500 error. Going to leave this as is to see
|
||||
# how big of an issue this is and what we can do about it.
|
||||
arguments=json.loads(tool_call.function.arguments),
|
||||
arguments=arguments,
|
||||
)
|
||||
|
|
|
@ -57,6 +57,10 @@ MODEL_ALIASES = [
|
|||
"Meta-Llama-3.2-3B-Instruct",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Meta-Llama-3.3-70B-Instruct",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Llama-3.2-11B-Vision-Instruct",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
|
|
|
@ -161,7 +161,10 @@ class TogetherInferenceAdapter(
|
|||
yield chunk
|
||||
|
||||
def _build_options(
|
||||
self, sampling_params: Optional[SamplingParams], fmt: ResponseFormat
|
||||
self,
|
||||
sampling_params: Optional[SamplingParams],
|
||||
logprobs: Optional[LogProbConfig],
|
||||
fmt: ResponseFormat,
|
||||
) -> dict:
|
||||
options = get_sampling_options(sampling_params)
|
||||
if fmt:
|
||||
|
@ -175,6 +178,13 @@ class TogetherInferenceAdapter(
|
|||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
if logprobs and logprobs.top_k:
|
||||
if logprobs.top_k != 1:
|
||||
raise ValueError(
|
||||
f"Unsupported value: Together only supports logprobs top_k=1. {logprobs.top_k} was provided",
|
||||
)
|
||||
options["logprobs"] = 1
|
||||
|
||||
return options
|
||||
|
||||
async def chat_completion(
|
||||
|
@ -263,7 +273,9 @@ class TogetherInferenceAdapter(
|
|||
"model": request.model,
|
||||
**input_dict,
|
||||
"stream": request.stream,
|
||||
**self._build_options(request.sampling_params, request.response_format),
|
||||
**self._build_options(
|
||||
request.sampling_params, request.logprobs, request.response_format
|
||||
),
|
||||
}
|
||||
|
||||
async def embeddings(
|
||||
|
|
|
@ -23,6 +23,7 @@ from groq.types.chat.chat_completion_message_tool_call import (
|
|||
from groq.types.shared.function_definition import FunctionDefinition
|
||||
from llama_models.datatypes import GreedySamplingStrategy, TopPSamplingStrategy
|
||||
from llama_models.llama3.api.datatypes import ToolParamDefinition
|
||||
from llama_stack.apis.common.content_types import ToolCallParseStatus
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponseEventType,
|
||||
|
@ -347,6 +348,26 @@ class TestConvertNonStreamChatCompletionResponse:
|
|||
),
|
||||
]
|
||||
|
||||
def test_converts_unparseable_tool_calls(self):
|
||||
response = self._dummy_chat_completion_response_with_tool_call()
|
||||
response.choices[0].message.tool_calls = [
|
||||
ChatCompletionMessageToolCall(
|
||||
id="tool_call_id",
|
||||
type="function",
|
||||
function=Function(
|
||||
name="log",
|
||||
arguments="(number=10, base=2)",
|
||||
),
|
||||
),
|
||||
]
|
||||
|
||||
converted = convert_chat_completion_response(response)
|
||||
|
||||
assert (
|
||||
converted.completion_message.content
|
||||
== '[{"call_id": "tool_call_id", "tool_name": "log", "arguments": "(number=10, base=2)"}]'
|
||||
)
|
||||
|
||||
def _dummy_chat_completion_response(self):
|
||||
return ChatCompletion(
|
||||
id="chatcmpl-123",
|
||||
|
@ -478,6 +499,40 @@ class TestConvertStreamChatCompletionResponse:
|
|||
arguments={"origin": "AU", "destination": "LAX"},
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_returns_tool_calls_stream_with_unparseable_tool_calls(self):
|
||||
def tool_call_stream():
|
||||
chunk = self._dummy_chat_completion_chunk_with_tool_call()
|
||||
chunk.choices[0].delta.tool_calls = [
|
||||
ChoiceDeltaToolCall(
|
||||
index=0,
|
||||
type="function",
|
||||
id="tool_call_id",
|
||||
function=ChoiceDeltaToolCallFunction(
|
||||
name="get_flight_info",
|
||||
arguments="(origin=AU, destination=LAX)",
|
||||
),
|
||||
),
|
||||
]
|
||||
yield chunk
|
||||
|
||||
chunk = self._dummy_chat_completion_chunk_with_tool_call()
|
||||
chunk.choices[0].delta.content = None
|
||||
chunk.choices[0].finish_reason = "stop"
|
||||
yield chunk
|
||||
|
||||
stream = tool_call_stream()
|
||||
converted = convert_chat_completion_response_stream(stream)
|
||||
|
||||
iter = converted.__aiter__()
|
||||
chunk = await iter.__anext__()
|
||||
assert chunk.event.event_type == ChatCompletionResponseEventType.start
|
||||
assert (
|
||||
chunk.event.delta.content
|
||||
== '{"call_id":"tool_call_id","tool_name":"get_flight_info","arguments":"(origin=AU, destination=LAX)"}'
|
||||
)
|
||||
assert chunk.event.delta.parse_status == ToolCallParseStatus.failed
|
||||
|
||||
def _dummy_chat_completion_chunk(self):
|
||||
return ChatCompletionChunk(
|
||||
id="chatcmpl-123",
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncGenerator, Dict, List, Optional
|
||||
from typing import AsyncGenerator, Dict, List, Optional, Union
|
||||
|
||||
from llama_models.datatypes import (
|
||||
GreedySamplingStrategy,
|
||||
|
@ -121,7 +121,31 @@ def convert_openai_completion_logprobs(
|
|||
) -> Optional[List[TokenLogProbs]]:
|
||||
if not logprobs:
|
||||
return None
|
||||
return [TokenLogProbs(logprobs_by_token=x) for x in logprobs.top_logprobs]
|
||||
if hasattr(logprobs, "top_logprobs"):
|
||||
return [TokenLogProbs(logprobs_by_token=x) for x in logprobs.top_logprobs]
|
||||
|
||||
# Together supports logprobs with top_k=1 only. This means for each token position,
|
||||
# they return only the logprobs for the selected token (vs. the top n most likely tokens).
|
||||
# Here we construct the response by matching the selected token with the logprobs.
|
||||
if logprobs.tokens and logprobs.token_logprobs:
|
||||
return [
|
||||
TokenLogProbs(logprobs_by_token={token: token_lp})
|
||||
for token, token_lp in zip(logprobs.tokens, logprobs.token_logprobs)
|
||||
]
|
||||
return None
|
||||
|
||||
|
||||
def convert_openai_completion_logprobs_stream(
|
||||
text: str, logprobs: Optional[Union[float, OpenAICompatLogprobs]]
|
||||
):
|
||||
if logprobs is None:
|
||||
return None
|
||||
if isinstance(logprobs, float):
|
||||
# Adapt response from Together CompletionChoicesChunk
|
||||
return [TokenLogProbs(logprobs_by_token={text: logprobs})]
|
||||
if hasattr(logprobs, "top_logprobs"):
|
||||
return [TokenLogProbs(logprobs_by_token=x) for x in logprobs.top_logprobs]
|
||||
return None
|
||||
|
||||
|
||||
def process_completion_response(
|
||||
|
@ -188,7 +212,7 @@ async def process_completion_stream_response(
|
|||
yield CompletionResponseStreamChunk(
|
||||
delta=text,
|
||||
stop_reason=stop_reason,
|
||||
logprobs=convert_openai_completion_logprobs(choice.logprobs),
|
||||
logprobs=convert_openai_completion_logprobs_stream(text, choice.logprobs),
|
||||
)
|
||||
if finish_reason:
|
||||
if finish_reason in ["stop", "eos", "eos_token"]:
|
||||
|
|
|
@ -116,6 +116,11 @@ models:
|
|||
provider_id: sambanova
|
||||
provider_model_id: Meta-Llama-3.2-3B-Instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.3-70B-Instruct
|
||||
provider_id: sambanova
|
||||
provider_model_id: Meta-Llama-3.3-70B-Instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
|
||||
provider_id: sambanova
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue